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Abstract

In respect of their symmetry properties, toroidal magnetically confined plasmas have
much in common with the Taylor-Couette flow. Symmetry-based analysis (equivariant
bifurcation theory) has proved very powerful in the analysis of the latter problem. This
paper discusses applicability of the method to nuclear fusion experiments such as toka-
maks and pinches. Likely behaviour of the simplest models of rotationally symmetric
tokamaks is described, and found to be potentially consistent with observation.



Chapter 1

Introduction

The most developed of the modern magnetic fusion concepts is the tokamak, dis-
cussed for example in the textbook by Wesson [1]. As a result of forty years of re-
search, a huge body of knowledge concerning tokamaks has been amassed. However,
a complete understanding of some of the most prominent phenomena has not yet been
achieved. The disparate time and spatial scales mean the problem will remain very
computationally demanding for the foreseeable future, whereas diagnosing the be-
haviour of some aspects of extremely hot plasma is still a very challenging problem
for the experimenter.

In these circumstances, it is natural to consider analogous experiments involving liq-
uids. Seemingly, the most intensively studied configuration most analogous to toroidal
plasma devices is the Taylor-Couette (T-C) experiment. This consists of an tall, annular
cylinder of fluid confined by vertical (curved) walls which may rotate independently
at different, fixed speeds. There are four external parameters (two rotation rates and
two radii of cylinders) plus those determined by the properties of the fluid such as its
viscosity. The experiment has been described both in the general literature [2, § 5] and
by Feynman [3, § 41-6].

For low rotation rates and reasonable values of the other parameters, T-C flow consists
of a steady motion in the azimuthal direction which varies only in the radial direc-
tion. However, as rotation rates increase, this symmetric state becomes unstable to a
wide variety of different modes depending on the particular values of the parameters.
The analogy with the tokamak should begin to become apparent: in its basic form the
tokamak is also a four-parameter system, with imposed magnetic field and total cur-
rent providing the driving energy rather than cylinder rotation, and two geometrical
parameters, where minor radius is analogous to fluid thickness.

The bifurcating modes in the T-C flow may be classified in terms of their symmetries.
All possible symmetries may be discovered by studying the group of symmetries of
the apparatus GS(A). The apparatus is clearly rotationally symmetric about the verti-
cal axis, but not reflectionally symmetric because of the spinning cylinders, hence the
relevant symmetry group is SO(2). In the vertical direction it is to a first approxima-
tion invariant under translation because of the tallness, and reflectionally symmetric
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about the mid-plane. However, since the flow near the midplane invariably breaks
up into roll structures periodic in the vertical, it is modelled as invariant under the
group O(2) = SO(2) n Z(2), the semi-direct product of rotations SO(2) and reflec-
tions Z(2). The complete symmetry group is therefore SO(2) × (SO(2) n Z(2)).
SO(2) is an infinite, albeit compact group, which includes discrete symmetries like
rotation through 180o, 120o etc. Possible mode patterns are given by isotropy sub-
groups of GS(A), which are numerous. Moreover, when the mathematical analysis
showed that certain allowed patterns had not so far been described experimentally,
newer experiments were performed which successfully exhibited these symmetries.
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Chapter 2

Symmetries of the Tokamak

The importance of T-C flow for magnetic fusion is that (SO(2)×SO(2))nZ(2) is the
group of symmetries of the ‘periodic cylinder’ magnetohydrodynamic (MHD) model
of the tokamak and magnetic pinch. The periodic cylinder is a circular cylinder with
its flat ends identified one with another, designed to approximate a large aspect ratio
torus, ie. one with major radius much larger than minor radius. There are two SO(2)
subgroups corresponding to the two angular coordinates θ and φ and a reflection sym-
metry (θ, φ) → (−θ,−φ). To understand the latter symmetry, it is helps to remember
that the (rate of change of) current in poloidal field coils generally produces the plasma
current in the tokamak, so that device operation is fundamentally controlled by two or-
thogonal vector fields, the currents in respectively the toroidal and poloidal field coils.
Since the single-fluid MHD equations are invariant under change of sign of magnetic
field, reversing the current in both sets of coils leads to the same dynamics.

Analogy with the T-C flow suggests the tokamak will exhibit a wide variety of be-
haviour as parameters are varied. In practice, the baseline H-mode operation for
present ITER tokamak experiments [4] is planned on the basis of a central sawtooth
mode, the frequent occurrence of edge localised modes (ELMs), the possible occa-
sional presence of other large scale ‘tearing’ modes, and anomalous heat loss caused
apparently by many small-scale modes.

Potential analogues between phenomena in T-C flow and tokamaks are listed in the
table, on the basis of their respective symmetries. The possible link between the saw-
tooth oscillation and steady rolls is discussed below. The association has to be tentative
because the evolution of the tokamak design has been away from circular cross-section,
so that real devices deviate significantly from poloidal (θ) rotational symmetry.

The reflection combines with the azimuthal (φ) rotational symmetry so non-circular
tokamaks may be treated with certainty as having only O(2) symmetry. Moreover,
individual particle motion is not invariant under reversal of sign of magnetic field, so
a less collisional ‘kinetic’ plasma (eg. to which a two-fluid MHD model applies) may
not have the Z(2) symmetry property.
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Table 2.1: Tokamak and T-C flow analogues.
Taylor-Couette Tokamak
Steady sheared flow MHD equilibrium
Rolls (Taylor cells) Sawtooth oscillation
Rotating wave Mirnov oscillation
Modulated rotating
waves

Complex Mirnov sig-
nal
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Chapter 3

Equivariant Bifurcation Theory

It seems therefore that a first analysis of tokamaks using equivariant bifurcation the-
ory should only assume the SO(2) symmetry in the azimuthal direction, applicable
whether a particle or fluid model is appropriate. Equivariant bifurcation theory means
bifurcation theory analyses performed in the presence of symmetry [5, 6].

The mathematical theory of the onset of instability in nonlinear systems is known as
bifurcation theory, see for example Kuznetsov [7]. The key idea is that near onset,
system behaviour is governed by a low order system of ODEs, with nonlinear inter-
actions among the variables represented by low order terms in a multi-variable Taylor
expansion. It is a natural generalisation of linear stability theory which can be seen as
a truncation of the Taylor series at first order. Frequently the time dependent variables
represent mode amplitudes, and an example frequently quoted concerning the effect of
symmetry is when the problem is invariant under reflection. For then both a and −a
must be solutions of the ODEs, which rules out terms such as a2 in the governing
equations, which do not change sign when a does.

Magnetic fusion experiments might be expected to be a fertile ground for bifurca-
tion theory, since typically the performance is optimal close to the onset of instability.
Nonetheless, there is the objection that the radius of convergence of the Taylor series
may be estimated to be of order S−2, where S is the Lundquist number, and values
of S range up to 1012. It is therefore conceivable that the range of validity of the
Taylor series approximation is too small to be quantitatively useful. However, the
qualitative predictive powers of bifurcation theory are usually good until another in-
stability emerges, which is why the theory emphasises qualitative (or more formally
topological) properties. Moreover, as far as quantitatively interpreting experiment is
concerned, it is conceivable that a re-normalisation approach may be adequate, eg.
using a low order rational polynomial to represent the neglected higher order terms.
There is the caution that when the spatial dependence of the unstable mode changes as
fast as it grows, eg. as occurs in the simplest MHD model of m > 1 tearing modes [8],
even renormalisation may not be enough to relate observations quantitatively to mode
amplitude. Qualitative behaviour should be the same for these modes however and in
any event, the relation of the simplest theories to experiment is unclear.
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First, consider the standard approach to representing bifurcations in a rotationally sym-
metric system.

3.1 Axisymmetry

Introduce an explicit spatial dependence, by supposing that the angle about the axis of
symmetry is φ, then symmetry-breaking solutions y(t) may be written

y = a exp (inφ) + ā exp (−inφ) (3.1)

Here the overbar denotes complex conjugate, n is (integer) mode number and a(t) is
the time dependent complex mode amplitude.

The aim is to produce low order polynomial nonlinear equations which are invariant
under rotation. It will be seen that such an evolution equation for a may not contain
quadratic terms, ie. any of the terms a2, ā2, or aā. For, translating the angle φ by p/n
in Equation (3.1) shows that if a gives a solution to the problem, aeip must also be
a solution. However, the quadratic terms acquire factors of either e±2ip or ei0 = 1.
Similarly, cubic terms such as a3 and ā3 are excluded. Hence the governing equation
for a to cubic accuracy is of form

ȧ = µa + σ|a|2a (3.2)

where µ and σ are complex constants.

Equation (3.2) is easier to understand if the representation a = r exp (iξ) is introduced
where r is the (real) amplitude of complex number a and ξ is its phase. Differentiating

ȧ = (ṙ + irξ̇) exp iξ (3.3)

substituting in Equation (3.2) multiplied by exp (−iξ), writing µ = µr + iµi and
σ = σr + iσi, and equating real and imaginary parts gives

ṙ = µrr + σrr
3 (3.4)

ξ̇ = µi + σir
2 (3.5)

From Equation (3.4), the (real) amplitude will have the sudden switch-on typical of
the Hopf bifurcation as µr increases through zero, and if σr < 0 will saturate at finite
amplitude. The overall solution y now contains the multiplicative term exp (iµit),
since at the bifurcation point σr = 0, the restriction is only that µr be small, not µi,
ie. the solution is of travelling-wave type. Such travelling waves are expected in
dissipative systems on general symmetry grounds [9], where it is also argued that the
rotating waves will become unstable to modulated travelling waves [9]. The limitations
of symmetry arguments are however evident in that there is no constraint on the sign
of σi - the mode frequency may increase or decrease with mode amplitude.

This is a convenient point to comment upon the importance of the hitherto neglected
Z(2) symmetry. If φ is imagined to correspond to a linear combination of θ and φ, then
Equation (3.1) with φ replaced by−φ is also a solution. This implies that a = ā, hence
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a is real and y corresponds to the saturated helical waves (representing tearing modes)
expected in single-fluid MHD. Confidence in the applicability of Equation (3.2) when
a is real may be increased when it is realised that it also appears in ref [10] for a detailed
analysis of the m = n = 1 resistive mode, see additionally ref [11, Appendix].

3.2 Variational Constraint

There is a further constraint which may well be relevant to tokamaks, namely that the
dynamics is Hamiltonian, governed by a variational principle. This is the case of ideal
MHD, for example [1, § 6.5].

Suppose the Lagrangian is L(y, ẏ, t) where y is restricted to the modal representa-
tion Equation (3.1). Rotational invariance suggests taking the Lagrangian L, expressed
in terms of a, as

2L = |ȧ|2 + µ|a|2 + σ|a|4 (3.6)

where µ and σ are real parameters. To carry out the variation with y, it is convenient
again to write a = r exp (iξ), and treat r and ξ as independent variables.

The Lagrangian becomes

2L = ṙ2 + r2ξ̇2 + µr2 + σr4 (3.7)

whence the variational equations are

d

dt
(
∂L

∂ṙ
)− ∂L

∂r
= r̈ − rξ̇2 − µr − 2σr3 = 0 (3.8)

d

dt
(
∂L

∂ξ̇
)− ∂L

∂ξ
=

d

dt
(r2ξ̇) = 0 (3.9)

Equation (3.9) implies ξ̇ = C/r2, for Casimir constant C. The reflectionally sym-
metric case C = 0 is easy to understand. It represents standing waves with amplitude
obeying the equation

r̈ = µr + 2σr3 (3.10)

Apparently similar to the Equation (3.4), this admits quite different, oscillatory dy-
namics because of the second time derivative. Equation (3.10) is easiest to understand
by considering motion in the potential corresponding to its first integral, although its
solution may also be given explicitly in terms of Jacobi elliptic functions.

It seems reasonable to assume that initially r is small= ε at the onset of instability. For
the case where µ > 0, s < 0, r is then forced to grow slowly whilst its amplitude is
small. However it will grow at an ever-increasing rate, until the r3 term kicks in when
r = O(

√
(µ/σ)) and just as rapidly returns it to a low level. In other words the system

will be generically bursty, with its solutions suddenly rising up by a factor O(1/ε).

Interaction with an axisymmetric mode, representing the tokamak equilibrium config-
uration, will, in order to satisfy equivariance, be via a term proportional to |a|2 = r2.
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Suppose the axisymmetric mode z is governed by dissipative dynamics, then the sim-
plest bifurcation model is the fold, which with the interaction term added, is

ż = α− βz2 − r2 (3.11)

As Figure 3.1 shows, for plausible parameter values (plausible because rescaling z
to be of order unity will increase parameter β to order unity), the equilibrium mode
exhibits saturated cyclic behaviour, the crashes corresponding to the bursts of the non-
axisymmetric mode.

Figure 3.1: Time series plots of solutions to the system of Equation (3.10) coupled to
Equation (3.11). The variables r and z are plotted in order from the top against time t
which runs horizontally. Parameters µ = −σ = 1, α = 1, β = 0.001, initial values
r = 0.01 and z = 0.

There is also a question concerning how finite dissipation affects these ideal models.
However, there is good evidence that oscillatory behaviour persists at least at higher
amplitude, although small amplitude non-reversing oscillations may damp. The de-
generate, symmetric Takens-Bogdanov bifurcation, which includes terms representing
dissipation, contains Equation (3.10) in its unfolding [12, § 7.3], and exhibits oscilla-
tion.

The sawtooth mode is a candidate for identification with the Taylor cells since it is
almost as ubiquitous in tokamaks as the Taylor cell is in T-C flow, and both are non-
travelling waves. The fact that the sawtooth continues to oscillate in time is accounted
for by the relative smallness of dissipative effects in the tokamaks compared to T-C
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flow. The identification of kinetic tearing modes with T-C travelling waves is natural
because, as well as possessing the same qualitative behaviour, neither normally occurs
until there is already a different wave pattern present.
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Chapter 4

Conclusions

The systematic nonlinear analysis of tokamaks and similar devices, where even linear
stability analysis may be formidably involved, is much harder than for the T-C flow.
However, using only relatively simple equivariant bifurcation theory, this paper has
reproduced the principal qualitative features of tokamak discharges, namely

1. Saturated travelling waves in a generic dissipative model.

2. Bursty and sawtoothing behaviour in a generic model with an ideal symmetry
breaking mode.

This has important theoretical ramifications, in that (2) demonstrates that just because
a physical model exhibits bursty or sawtoothing behaviour is no sure guarantee that
it correctly explains sawteeth or ELMs: any model obeying the symmetry constraints
will exhibit such behaviour, which is generic to ideal axisymmetric models. On a more
positive note, however, these results make it more likely that simple model ODEs of
the type discussed can be used to fit to experimental data, where they might produce in-
formation regarding the nonlinear terms. This information should be useful to compare
with physical theories and also possibly in the devising of feedback control strategies
to suppress mode growth.

Further work needs to be pursued in parallel with any application to experimental
analysis. First, it is likely that in key regions of operating space, two or possibly even
more different modes are simultaneously close to instability. Hence, higher order,
degenerate bifurcation theories of the kind described in ref [7] need to be developed
for symmetric systems. Secondly, it would be sensible to look systematically at the
effect of introducing small amounts of dissipation into the bursty model, and also
to include small symmetry-breaking terms in the manner described by Crawford and
Knobloch [13], to investigate eg. the effects of magnetic field control coils. It would be
well also to understand better the effects of noise, as originally conceived by ref [14].
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