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Abstract

Sensor technologies will play a key role in the success of Remote Maintenance (RM) systems for future fusion reac-
tors. In this paper, three key types of sensor technologies of particular interest in the robotics field at the moment are
evaluated, namely: Colour-Depth cameras, LIDAR (Light Detection And Ranging), and Millimetre-Wave (mmWave)
RADAR. The evaluation of the sensors is performed based on the following criteria: the types of data they provide,
the accuracy at different distances, and the potential environmental resistance of the sensor (namely gamma radiation).
The authors review the progress in making these three types of sensor capable of operating in Fusion facilities and
discuss possible mitigations. Experiments are performed to demonstrate the pros and cons of each type of sensor by
collecting data from radar, colour-depth camera and LIDAR, simultaneously. The paper concludes with a performance
comparison between sensors, as well as discussing the possibility of combining them, fostering redundancy in case of
failure of any individual sensor device.
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1. Introduction1

Sensor technologies will play a key role in the suc-2

cess of Remote Maintenance (RM) systems for future3

fusion reactors such as ITER (International Thermonu-4

clear Experimental Reactor) and EU-DEMO (the Eu-5

ropean Union DEMOnstration fusion power reactor).6

Large parts of these facilities will be completely off-7

limits to human personnel due to the extremely high8

radiation levels in and around the reactor. This means9

that the vast majority of maintenance operations must10

be performed remotely. The facilities will be composed11

of 3 main types of areas where RM will be required:12

In-Vessel, Ex-Vessel and Active Maintenance Facilities.13

The operation of ex-vessel transportation is one of the14

key issues during maintenance, since the mobile plat-15

forms of transportation have to carry the activated mate-16

rial extracted from the reactor to a maintenance facility.17

The nuclear environment has a set of unique chal-18

lenges compared to more traditional industrial environ-19

ments, which makes the use of mobile robotics with on-20

board sensing equipment especially challenging. The21

∗Corresponding author
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high radiation levels present will degrade the digital22

components of the sensors and any on-board processing23

devices. In addition, there are several other constraints24

in these scenarios such as residual magnetic fields (with25

a strong impact on electronic devices), cluttered condi-26

tions for operation, and levels of dust.27

Figure 1: The cask and plug remote handling system of ITER (left
image) and the design proposed for the ex-vessel transfer cask for
DEMO (right image), [1]. This system handles ex-vessel transporta-
tion of, amongst other things, activated material extracted from the
reactor.

However, these challenges must be overcome in or-28

der to ensure the successful maintenance of both ITER29
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[2] and DEMO [1] [3] since the proposed RM solutions30

both currently rely on independent mobile Autonomous31

Ground Vehicles (AGVs) transferring equipment, tool-32

ing and components all around the reactor building and33

maintenance facilities (Figure 1). The sensors enabling34

this transportation work will need to be installed on-35

board the AGVs and are thus exposed to any radiation36

in the present environment as well as radiation coming37

from the transported load.38

High reliability will be critical, since in case of sen-39

sor failure a recovery and rescue operation may need40

to be triggered. This can lead to increased shutdown41

time of the reactor, which means the costs of the main-42

tenance would increase dramatically. Much like other43

large power-generating installations, the cost of down-44

time for EU-DEMO is expected to be in the millions of45

euros per day [4]. Since one of the goals of the EU-46

DEMO is to prove the cost-effectiveness of Fusion, this47

means that the sensor systems used for RM must be ro-48

bust to the failure of any one device or sensor which49

could delay the completion of the maintenance tasks.50

In industry, the traditional mobile robots, mainly51

AGVs, have their own sensors installed on board [3].52

In addition, the principle of operation is mainly based53

on odometry measured by its internal sensors and one54

external sensing technology (e.g. sonars, LIDAR) [5].55

However, the scenario conditions found in industry,56

mainly assembly and storage warehouses, where AGVs57

are used, are different from nuclear facilities. In addi-58

tion, in case of failure, the failed AGV is simply moved59

aside, replaced by an operational one and set to wait for60

a technician to be repaired. This approach cannot be as-61

sumed in a nuclear facility, especially when transporting62

heavy activated loads.63

In nuclear facilities/scenarios, the radiation effect is64

by far the most important issue for the common tech-65

nologies of robotics available for industry, even during66

a machine shutdown. In ITER the rates will be in the67

order of hundreds of Gy/hour [6], and in DEMO they68

will be a minimum of 1 kGy/hour in-vessel [7]. Sen-69

sors, the most sensible parts of the mobile platforms,70

are commonly installed onboard and thus exposed to the71

radiation in the environment and especially that of the72

transported load (sensors are close to it). Therefore, in73

order to mitigate the risk of failure, the most appropriate74

sensing technologies need to be selected and combined.75

These should operate on different principles in order to76

provide maximum redundancy and minimising the risk77

of simultaneous breakdowns. [8] presents well-known78

and mature navigation technologies used by AGVs in79

industry: with a physical path (e.g., wire/inductive guid-80

ance, optical line guidance and magnetic tape guidance)81

and with a virtual path (e.g., laser based, motion cap-82

ture, inertial, magnetic-gyro) to be followed by the AGV83

during the operations of transportation. For maximum84

flexibility and reliability, on-board situational aware-85

ness sensors should be used. Radiation shielding is im-86

practical due to the weight penalty it would impose on a87

mobile robot, so radiation tolerant sensor systems must88

be developed. Even these radiation-hardened sensors89

will eventually fail, so combining the data from mul-90

tiple different technologies is recommended to ensure91

redundancy.92

Sensing technologies is a changing world, mature93

sensors are getting more sophisticated and new tech-94

nologies are arising. In particular the sensing technolo-95

gies related to virtual paths, where few or no interven-96

tion is required in the scenario and can be used beyond97

the path following.98

This work is mainly focused on comparing three99

different technologies with particular interest in the100

robotics field at the moment and with potential ad-101

vantages for nuclear facilities. These technologies are102

based on 1) image and depth cameras, 2) LIDAR sys-103

tems and 3) mmWave radars. Other groups have inves-104

tigated and compared the performance of remote sen-105

sors - for a general overview, see [9]. For a review fo-106

cused on industrial applications of these technologies,107

see [10]. It is a common approach to combine more than108

one remote sensing technology (see [11] for a LIDAR-109

depth camera example and [12] for LIDAR-radar), but110

to our knowledge no other paper has evaluated the use111

of all three of these technologies in a nuclear remote112

maintenance context. In addition, we have the focus of113

making the results intuitively understandable for Fusion114

researchers working outside Remote Maintenance.115

The remainder of the paper is organized as follows.116

Section 2 presents the justification for why remote sens-117

ing is needed in Nuclear facilities. Section 3 provides118

explanations for how the sensing technologies in ques-119

tion work. Section 4 compares the performance and en-120

vironmental sensitivity of the sensor technologies. Sec-121

tion 5 presents the comparison tests carried out for this122

paper. Finally, Section 6 concludes the paper with rele-123

vant remarks and areas of interest for further work.124

2. Remote sensing needs in nuclear facilities125

Remote sensing is concerned with the perception of126

the environment surrounding by sensors installed on the127

mobile platform (onboard sensors) or installed on the128

building (offboard sensors). The most commonly used129

approach is based on onboard sensors, such as in in-130

dustries, where the AGV carry the required internal (to131
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measure internal signals) and external sensors (to mea-132

sure environment values). [8]. In some configurations,133

additional elements can be installed on the scenario to134

improve the performance of the onboard sensors. These135

elements are normally passive, such as beacons or re-136

flective markers used for optical devices, as detailed137

later in Section 3. No matter where the sensors are138

installed, these devices perform acquisitions of physi-139

cal quantities present in the scenario, and translate them140

into electrical signals that are sent to a central process-141

ing unit (CPU). The CPU can be installed on the mobile142

platform or in a remote control room, outside of the op-143

eration area where human being are not allowed, often144

referred to as the Red Zone.145

The electrical signals collected by the sensors com-146

prises the remote sensing of the surrounding scenario,147

i.e., the sensor data, that can be used for different pur-148

poses. The sensor data is characterized by the type of149

information acquired, accuracy, precision, resolution,150

frequency of acquisition, time of response, etc. Conse-151

quently, each sensor must be allocated for specific tasks152

according to its specifications.153

Once the sensor data reaches the CPU, it is able to154

i) compute the data to take decisions in real time, and155

ii) send the data with or without pre-processing such156

as compression, to a remote control room for different157

purposes. This configuration is similar to industrial fa-158

cilities, however the remote sensing can be extended to159

outboard sensors, i.e., sensors installed on the building160

[13] which send the data directly to a control room. The161

data acquired by different types of onboard and offboard162

sensors must satisfy the following sensing needs in par-163

ticular for mobile platforms:164

• run in autonomous configuration by means of an165

on-board control system under monitoring of the166

supervisory control system;167

• follow predefined computed trajectories and avoid168

collision with other equipment to prevent damage169

[14];170

• localize in the scenario, with a pose (position and171

orientation) estimation, identifying the level of172

confidence; [13] [15]173

• alignment and feedback during docking;174

• provide information required to feed a Digital Twin175

system to simulate all the RM system to optimize176

logistics procedures and mitigate the risks of fail-177

ure; and178

• support for remote and rescue operation, when and179

where necessary.180

The sensing technologies addressed to satisfy the181

needs presented above, in particular the offboard sen-182

sors, can also be envisaged to other purposes beyond183

the mobile platform. For instance, to supervise static184

robotic manipulators, to perform inspections in the sce-185

nario and to perform surveillance of unexpected issues,186

such as leakage detection.187

3. Three key sensing technologies188

In this section, we introduce three key types of sens-189

ing technologies which are often used for mobile robot190

navigation in the robotics field at the moment. Each191

technology is illustrated by a Commercial off-the-shelf192

(COTS) sensor, as depicted in Figure 2c. The key types193

of sensing technologies are:194

1. Colour-depth/RGB-D cameras such as the Mi-195

crosoft Kinect, Intel RealSense (Figure 2a) and196

similar devices197

2. LIDAR (Light Detection And Ranging) such as198

the VLP-16 (Figure 2b)199

3. Millimetre-Wave RADAR such as the TI AWR200

1443 (Figure 2c)201

3.1. Colour-Depth Cameras202

Colour-depth cameras, also referred to as RGB-D203

cameras, are well established for use in mobile robotics204

applications. They are made up of two main compo-205

nents: 1) a standard digital camera capturing RGB-data206

and 2) a projector-sensor system capturing depth data.207

This depth system can function in different ways, one208

of which is projecting a grid of structured light in a non-209

visible spectrum onto a scene, and then interpret the dis-210

tortions of this grid/pattern to determine the distance to211

- and shape of - any object which is in front of it. This is212

the reason RGB-D cameras are sometimes referred to as213

Structured Light Cameras. This data is then combined214

with the feed from a standard digital camera to produce215

a coloured 3D point cloud. The technology is afford-216

able, lightweight, requires low power and it is a quite217

mature technology. However, one major drawback with218

this technology is the short range of the depth sensor –219

it relies on a light projection and the effective range is220

between 1 and 8 meters, typically no more than 10 m.221

For comprehensive reviews of the use of these sensors222

in robotics, see, for instance, [16]. In addition, a first223

study of applying colour-depth cameras was performed224

in 2013 about the localization of Cask and Plug Remote225

Handling System in ITER using multiple video cameras226

for motion Capture [14].227
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(a) RGB-D sensor: Intel RealSense d435 (b) LIDAR: Velodyne VLP-16 Puck
(c) mmWave radar: Texas Instruments
AWR1443

Figure 2: Example sensors of each type being compared; also the sensors used in Section 5 for comparison.

3.2. LIDAR228

LIDAR sensors work by utilising one or more laser229

distance measurement sensor(s) to bounce a laser beam230

of surrounding objects to rapidly scan a scene, some-231

times in a focused area and sometimes by scanning, i.e.,232

rotating the laser emitter and receiver around an interval233

angle (e.g. full 360 degrees) and varying the angle of234

the internal distance measurement sensor. LIDAR sens-235

ing is very mature technology (since the late 80s) and236

are often used in the automotive and industrial sectors237

to measure distances and provide situational awareness.238

Several approaches have been developed considering239

the LIDAR sensors as onboard sensors. However, mo-240

tivated by the acute characteristics of transported loads,241

we have investigated the use of laser range finders as off-242

board sensors for mobile robotic vehicle localization in243

ITER ex-vessel [13] and [15]. In addition, we have also244

tested LIDAR scanners for use as on-board sensors in-245

side the Joint European Torus tokamak during its 2016-246

17 shutdown (see [17] and [18]). This work combined247

sequential 2D LIDAR scans with a digital RGB camera248

data to create a coloured point cloud.249

3.3. Millimetre-Wave RADAR250

The millimetre-Wave RADAR works similarly to251

more traditional RADAR technology in that electro-252

magnetic signals are sent out from an antenna and253

bounced off of obstacles, returning an echo which is de-254

tected. This echo is timed, and this provides a measure-255

ment of distance. More recently, this technology has256

been miniaturised to the point where the whole RADAR257

fits on a small circuit board with integrated send and re-258

ceive antennas, and the way these signals are generated259

is based on a frequency modulation continuous wave260

(FMCW) principle where a chirp with rapidly chang-261

ing frequency is emitted by the radar. Like LIDAR,262

it has pulsed time-of-flight and continuous-wave vari-263

ants, including FMCW. This measures the frequencies264

returning from a continuous frequency-modulated beam265

rather than a pulse. The emitted signal is modulated266

with a sinusoidal or square wave with a frequency in the267

range of 10-100Mhz.268

Sensors based on millimetre-Wave RADAR have be-269

come increasingly compact and well-performing during270

the last few years, and are increasingly used for ob-271

stacle detection and avoidance in the fields of mobile272

robotics and automotive sensing due to their small foot-273

print, low weight, lack of moving parts, and the fact that274

the radar signals are not typically affected by rain, snow275

or smoke. For an example of a dataset including radar276

data collected and made available for autonomous car277

research, see [19]. For an evaluation of the potential278

of creating navigation maps using mmWave radar, see279

[20]. A recent development in the field is milliMap,280

a single-chip mmWave radar based indoor mapping281

system targeted towards low-visibility environments to282

assist in emergency response [12]. This utilises the283

AWR1443 sensor in order to create a map of an indoor284

scenario with smoke (same sensor which we use in our285

own experiments, see Section 5). For an illustration of286

the types of data returned by these sensors, cf. Figure 3.287

In summary, the three sensing technologies presented288

above have potential to be used in nuclear facilities.289

However, the way of working, as well as the type of290

collected by these sensors are considerately different.291

The next section compares these sensing technologies292

in detail.293

4. Comparisons between sensing technologies294

In this section, we highlight the differences between295

the technologies introduced in Section 3 as well as the296

effects this has on their performance and durability.297
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Figure 3: Illustration of data provided by two different types of
RADAR sensor as well as a LIDAR. Image from [12].

The sensing technologies are necessary in the follow-298

ing three scenarios of Nuclear Fusion facilities:299

1. In-Vessel (high rad), inspection by generating 3D300

reconstructions (ambitious, long-term)301

2. Ex-vessel (lower rad), Mobile robotics to help302

when navigating around, transporting tools, com-303

ponents, radioactive materials etc.304

3. Repair/Maintenance Facility etc., this will be a lot305

like the ex-vessel and like Decommissioning306

At present, none of these sensing technologies would307

survive a large radiation dose. Therefore, the compari-308

son is mainly focused on ex-vessel scenarios, where the309

lower levels of radiation are expected. However, work310

to create radiation tolerant versions are ongoing, and by311

investigating the complimentary nature of these tech-312

nologies we can fully understand which technology is313

most appropriate for what application once more rugged314

versions become available, and how these technologies315

can best compliment each other. Besides radiation lev-316

els, nuclear scenarios include additional constraints not317

common in industries, such as residual magnetic fields,318

dust (especially contaminated dust), bad lighting condi-319

tions, as well as the restriction that human beings are not320

able to enter the area in most of the cases, even in situa-321

tion of failure. The individual specification of each type322

of technology is important to evaluate its applicability323

in nuclear scenario.324

Table 1 summarizes the main criteria of comparison325

used to evaluate the sensing technologies:326

• type of information gathered in the operation sce-327

nario;328

• maximum range expected in conditions of nuclear329

galleries;330

• data density or equivalent to resolution;331
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Figure 4: Chart showing accuracy at different distances for Kinect ver-
sion 1 and 2 [21]. Data for Intel RealSense extrapolated from official
datasheet [22].

• post-processing of data required for use;332

• the potential environmental resistance of the sensor333

(gamma radiation);334

• severity to dust expected in nuclear scenarios;335

• field of view;336

• data rate or frequency;337

• measurement per second.338

In the next subsection we review the expected accu-339

racy achievable in realistic scenarios with these three340

types of sensors, as well as the progress in making these341

three types of sensor capable of operating in Fusion fa-342

cilities and discuss possible mitigation.343

4.1. Colour-Depth Cameras344

The Microsoft Kinect v1, released in 2011, helped to345

kick-start the usage of Colour-Depth Cameras for mo-346

bile robotics. The Kinect version 2 was released in 2014347

and uses a slightly different technology for its depth per-348

ception. As such, many papers have investigated the349

accuracy of one or both of these sensors, for example350

[21]. The range of the Version 1 is given as 0.7m -351

6.0m, and the range of the Version 2 is 0,8m - 4.2m.352

In [23], the authors examine the accuracy over the full353

range of both sensors. This data can be seen in Fig-354

ure 4. Other colour-depth cameras appeared in the mar-355

ket, such as the Structure Sensor 3D [24]. Work was356
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Technology type RGB-D/Depth sensor LIDAR RADAR
Sensor example Intel RealSense Velodyne VLP-16 TI AWR 1443 mmWave
Type of informa-
tion

Light collection and pro-
jected structured light

Laser signal bounced off tar-
get and measured

Millimetre-Wave radio sig-
nals emitted and received

Range Low High Medium
Data density High (colour and depth data) Medium Low
Required Post-
processing

Medium High Low

Progress in radia-
tion hardening

Medium (RGB) Medium Low

Sensitivity to dust High Medium Low
Field of view 70◦x 60◦ 360◦x 30◦ 90◦x 45◦

Data rate Color: 1920 x 1080 pixels,
up to 60 fps
Depth: 720 x 720 pixels, up
to 30 fps

200MB/min point clouds several KB/min (adjustable
number of strongest returns)

Sampling 30 FPS 5-20 Hz 6M-12M samples per sec-
ond

Table 1: Comparison of sensor features.

done combining this camera with a radiological sensor357

and both installed on a COTS UAV for 3D reconstruc-358

tion of a scenario and radiological hotspots detection359

and localization, [25]. The initial version of this sensor360

only included depth and greyscale images. The most re-361

cent version already included colour. Probably, the most362

popular colour-depth camera at the moment is the Intel363

RealSense, which has a range up to 10m, an error rate364

of 2% of distance (according to the manufacturer), and365

provides high resolution coloured images. The accuracy366

of the most used cameras (Kinect versions 1 and 2 and367

RealSense) is plotted in Figure 4.368

Since colour-depth cameras are effectively made up369

of two separate sensors which are combined, both parts370

(RGB and Depth) have to be radiation hardened. Work371

carried out for ITER Remote Maintenance has sug-372

gested digital CMOS cameras could be developed with373

several MGy of lifetime tolerance [26], demonstrating374

the feasibility of designing a CMOS RGB camera-on-a-375

chip with a lifetime tolerance above 6 MGy. This leaves376

the Depth sensor portion and the on-board processing377

CPU of the sensor needing radiation hardening. These378

components remains the biggest challenge for utilising379

this type of sensor in a nuclear environment.380

4.2. LIDAR381

LIDAR sensors operate over a large range, and un-382

like Colour-Depth cameras, the distance error does not383

vary appreciably over this range. For example, the ac-384

curacy of the VLP-16 has been reported to be +-2 cm385

over most of its 100m range [9] . Indeed, onboard LI-386

DAR systems has been demonstrated to be capable of387

localising a mobile robot in oil-gas environment, with388

1- 2cm accuracy [27]. In another piece of work, a co-389

located LIDAR and Camera both implemented in the390

same hardware achieved a resolution of 3.5cm over a391

5m range when being used for AGV navigation [28].392

Steps are also being taken to improve the tolerance393

of LIDAR scanners. LIDAR scanner components such394

as Time-to-Digital converters have been created with395

a radiation tolerance of 5 MGy [29], and Time-to-396

Digital converters which can be used for LIDAR re-397

ceivers have been created with 1 MGy radiation toler-398

ance [30]. While the achievable radiation tolerance lev-399

els for a full LIDAR system are not yet known, this400

raises the real possibility that such sensors could be-401

come available for high-radiation environments. Com-402

mercial off the shelf LIDAR sensors have also been ra-403

diation tested, and in one test the STMicroelectronics404

VL53L0X LIDAR mudule was tested to 5.8 kGy with-405

out issue, once the on-board DC voltage regulator was406

replaced with an external supply [31].407

4.3. mmWave Radar408

Though FMCW radars are very compact and versa-409

tile, extracting useful location and velocity data from410

the raw signals requires a fair bit of processing. This411

is normally done on-board the device itself and so does412

not need to trouble the user, but this does limit the per-413

formance compared to other types of radar [32].414

6



Radar sensors have other problems not faced by lasers415

or cameras. The beams are less focused, allowing for416

coverage of a wide area in a single pulse, but making417

spatial accuracy poor. Systems with multiple antennas,418

or a more focused steered beam, can help mitigate this.419

Regarding depth accuracy, phase evaluation algorithms420

have been developed which enable a range accuracy of421

within about 5 micrometers over a measurement range422

of at least 0.035 to 2 m [33] [34] This shows the achiev-423

able accuracy in a laboratory setting and the promise of424

the technology in theory.425

In real-world settings using portable devices, the ac-426

curacy is much lower, and there is a limit on how well427

different targets can be distinguished from each other.428

[35] found a minimum distinguishable range difference429

of 0.3m, below which two targets could not be separated430

and appeared as a single radar ”peak”.431

In summary, mmWave radar accuracy performance432

can be difficult to quantify. On one hand, extremely im-433

pressive performance using a custom 80 MHz radar has434

been achieved in the lab but on the other, real-world per-435

formance is still a challenge.436

The sensing element on the radar (antenna) is inher-437

ently rad-hard since it is just a piece of metal, though438

the on-board processing required is a hindrance in terms439

of making the sensor work in a high-radiation environ-440

ment. One option would be to place the device in a441

shielded box with only the antenna on the outside if this442

box - this is a solution which the radar is much better443

suited for than the other sensors evaluated here.444

4.4. Combining sensors data445

The technologies described in Section 3 all provide446

reasonably reliable distance measurements in indoor or447

industrial environments. However, the way the data is448

collected and processed is very different, leading to a449

range of different strengths and weaknesses for each450

sensor. This means that often, combining two or more451

differing types of sensor can produce a more accurate or452

otherwise robust sensor value than only using one single453

sensor would allow.454

Combining the output from several complimentary455

sensors is certainly nothing new. There is a range456

of publications available detailing the efforts made by457

other researches in combining these sensor technolo-458

gies, both with each other and occasionally with other459

types of sensor. For example, [9] lists and compares460

performance of different LIDAR scanners and colour-461

depth cameras based on Time-of-Flight methods. [11]462

combined LIDAR and RGB-D data to enable naviga-463

tion around uneven indoor environments. [36] com-464

bined radar odometry as well as Visual Odometry, and465

found that radar performs better on flat featureless ar-466

eas such as well, whereas visual sensors perform better467

in cluttered environments. [37] found that mapping us-468

ing both LIDAR and RGB-D point clouds combines the469

benefits of LIDAR when it comes to measurement accu-470

racy and RGB-D for feature extraction. [38] combines a471

mm-wave portable scanner concept with a depth camera472

for people scanning. They are merged to show both the473

external layer of the object (global point cloud) and the474

second one related to inner layers (global reflectivity).475

Since all sensors have benefits and drawbacks, it is476

likely the best solution will come from deploying a477

range of different sensors based on different principles478

in order to minimise the effect of any one technological479

failure or issue causing catastrophic results.480

5. Experiments481

In order to further explain and highlight the differ-482

ences between the 3 technologies which this paper fo-483

cuses on, we designed an experiment which combined484

all three on a single platform. In this, our goal was not to485

achieve an especially high level of accuracy, but to pro-486

duce a basic demonstration of what can be done with487

currently available off-the-shelf sensors which can be488

obtained by most researchers, and to present the results489

in a way which allows non-specialists to get an intuitive490

understanding of the differences in the data which each491

of these types of sensor produces.492

We selected the following sensors, since they are493

commonly used for research and reasonably priced494

compared to other sensors of their type:495

• Colour-Depth Camera: Intel RealSense d435496

• LIDAR: Velodyne VLP-16497

• mmWave radar: TI mmWave Demo AWR 1443498

BOOST499

For photographs of these sensors, cf. Figure 2.500

5.1. Experimental Setup501

In Figure 5, one can see the setup of the three sen-502

sors. All the sensors were secured on an aluminum case,503

where the power source and CPU are enclosed. This504

case was designed to be robust enough to secure heavy505

sensors such as the LIDAR, even on rough terrain.506

During the experiment, the setup was carried by a507

person at waist height (˜1m), but the apparatus can also508

be transported by ground vehicles or even drones. The509

colour-depth camera and the radar are facing forward510

and as such the person carrying the case does not com-511

promise the collected samples. On the other hand, the512

7



Figure 5: Three-sensor setup used to perform the tests.

LIDAR collects information all around 360o, therefore513

all points at short range (<1m) were removed.514

The LIDAR was powered directly by a 3S Lipo515

battery (12V), while the radar was powered by a516

12DC/5DC power converter. The CPU in use was a517

Nvidia Jetson Nano, powered by the same DC/DC unit.518

The colour-depth camera was powered by USB from the519

Nano.520

The Jetson runs Ubuntu 18.04 and had installed ROS521

Melodic. Offical ROS Packages for all three sensors522

were installed, and nodes published point clouds period-523

ically to individual topics. All samples were collected524

into ROS Bag files, and later analyzed, transformed and525

visualized using the PCL 1.8 library. The coding lan-526

guage used was C++.527

5.2. Methodology528

Since the LIDAR is the de facto standard for 3D re-529

construction and it is known to provide the greatest pre-530

cision when compared to the other technologies, we531

considered the LIDAR to be our ground-truth.532

Once the data had been collected, the second step was533

to reconstruct the 3D scenario using LIDAR data and a534

SLAM algorithm (ALOAM [39]). We have tested other535

methods in the past, such as LOAM and HDL-SLAM ,536

but in general ALOAM is sufficient for the task of gen-537

erating a meaningful 3D scenario, namely a thin floor538

plane and flat walls. Besides registering LIDAR frames539

into a fixed referential, ALOAM also computes the es-540

timated path (pose and position).541

Later, both radar and RGB-D frames were trans-542

formed (rotations and translation) according to their543

pose and position relative to the LIDAR. Finally, these544

point clouds were registered into the world fixed refer-545

ential using the ALOAM generated path, and at the end546

saved into PCD files.547

5.3. Experimental Results548

Multiple trials were performed along the same cor-549

ridor, all with very similar results. We show the point550

clouds, from one of the trials inside a university campus551

building corridor. This is a representative environment552

since large corridors are a common feature in most nu-553

clear installations, including nuclear fusion installations554

[14]. This location encompasses multiple metal objects555

namely decorative airplane engines, and is surrounded556

by metal doors and windows. Other objects such as557

wood benches are also present. These features can be558

seen in Figure 6. The top photograph was taken close559

by the assumed origin of the (world) fixed referential.560

Figure 6: Indoor test scenario. Top image is facing the direction of
movement during the trial. Bottom image, shows the opposite view.

The output from each sensor provides a very differ-561

ent set of information about the scene. As a matter of562

reference, in this particular trial we collected data for563

49s, overall producing 1GB of compressed data (ROS564

lz4 compression). While the LIDAR and RGB-D cam-565

era generated around 1.5 million points, the radar output566

produced only around 18k points. Overall, RGB-D data567

8



(a) RGB-D sensor: Intel RealSense (b) mmWave radar: TI AWR 1443 (c) LIDAR: Velodyne VLP-16 Puck (d) All three sensors

Figure 7: A single frame from each one of the sensors.

utilizes more space than the LIDAR since RGB color is568

also stored.569

In Figure 7, one can compare the major differences570

of the datasets of a single frame, where we can define571

a frame as a single point cloud we collect at a given572

time. LIDAR has a great range and detail; it is able to573

detect the end of the corridor event at the start. Radar574

produces only data very close to the sensor and hard to575

comprehend without the LIDAR as a reference. RGB-D576

generates a detailed view of the near by area, despite the577

limited field of view, barely reaching both walls at the578

same time.579

When considering all data collected while moving the580

sensing platform along the corridor, we obtain a better581

picture of the sensors performance. In Figure 8, on can582

see an isometric, upper view of the corridor and in Fig-583

ure 9 we can see the same data from a top-down view.584

The pink line represents the motion along the corridor,585

starting at the top-right corner and ending at the bottom-586

left corner of the view. It is present in all views for587

orientation of the reader. The point clouds from LI-588

DAR and RGB-D provide plenty of 3D detail. It is clear589

that the LIDAR provides superior performance regard-590

ing precision and better coverage (higher FoV). RGB-D591

is able to grasp the true colors of the environment as592

well as a good 3D structure, but only provides data at a593

very short range. The radar dataset is noisier, but nev-594

ertheless able to detect major features such as the floor595

directly in front to the sensor, the walls and windows596

metal frames, and lastly the two big airplane engines on597

site. In addition, the fact that the radar dataset is very598

sparse can provide an advantage in that less processing599

is required to handle the data.600

In Figure 10, one can see in detail one of the airplane601

engines, namely the one shown in the top photograph of602

Figure 6. It is clear that all sensors can see it.603

Note that while the LIDAR has 360◦FoV, the other604

sensors had to be facing such features to guarantee they605

were not missed. That is the reason why the bottom-left606

view of Figure 9a and Figure 9c are missing informa-607

tion. The LIDAR also missed some floor in the begin-608

ning and at the end of the path, due to its vertical FoV609

limitations (cf.Figure 9b).610

6. Conclusion611

The challenge of how to provide adequate remote612

sensing in nuclear environments such as Fusion remote613

maintenance, decommissioning or other nuclear appli-614

cations will not be solved by a single technology. For615

reasons of redundancy and robustness to unexpected er-616

rors, it is desirable to utilise several sensors based on617

differing sensing modalities and implementation tech-618

nologies. This will ensure that no single technological619

weakness or situation will cause the whole system to620

fail.621

Our experiments highlight the varying amounts of622

data provided from different sensors in order to extract623

required information for a task such as obstacle avoid-624

ance: the radar information displayed in Figure 9c can625

be used to avoid obstacles with a much smaller num-626

ber of points being processed by the system. However,627

the low data density provides a less comprehensive view628

of the environment, limiting the capabilities to produce629

a robust map and contextual information such as clear630

object shapes. Color/RGB-D sensors also provides high631

data density and high levels of environmental aware-632

ness, but are hampered by the requirement for consis-633

tent lighting levels for quality RGB images as well as634

the short range of their depth camera elements. This635

highlights the value of utilising multiple sensors for re-636

mote sensing tasks.637

The results from our experiments combining LIDAR638

and radar data can be seen in Figure 9d. This is a clear639

example of the different data densities highlighted in Ta-640

ble 1.641

It was also our goal to provide an intuitive under-642

standing of the differences (including pros and con) be-643

9



tween the types of data provided by these different sen-644

sor technologies to researchers in the Fusion field who645

may not be knowledgeable about robotics. We believe646

the sensor data figures provided accomplishes this task,647

since they provide a clear indication as to how a partic-648

ular sensor sees its surroundings.649

The most sensible part of each one of the three tech-650

nologies presented herein, are exposed to radiation.651

Therefore, none of these technologies would survive a652

large radiation dose. The LIDAR is probably the best653

candidate technology to protect the sensor by a set of654

mirrors. The same approach can be used for the cam-655

eras, but probably only for the RGB part and not for656

the depth, since the mirror glass affects the performance657

of light project and, hence, the estimation of distances.658

The radar could have its antenna placed outside of a659

shielded box with the processing part inside, but shield-660

ing would only add a limited amount of lifetime unless661

prohibitively thick and heavy shielding is used. In sum-662

mary, the expected time life of these technologies are663

similar. Combining different sensors working in paral-664

lel, rather than improve the quality of the data, provides665

the ability to understand when one of the sensors started666

to malfunctioning. A recovery operation can be trig-667

gered and a rescue operation is avoided, which is an im-668

portant benefit in terms of costs and interruption during669

a maintenance of a power reactor.670

Future work will include further testing of different671

combinations of the sensor technologies presented here672

in differing scenarios in order to better characterise their673

performance. Could also look at the different types of674

robot expected in fusion ex-vessel and which sensor fits675

which type of robot.676
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(a) RGB-D sensor: Intel RealSense (b) LIDAR: Velodyne VLP-16 Puck

(c) mmWave radar: Texas Instruments AWR 1443 (d) All three sensors

Figure 8: Isometric like views of the data of each sensor individually – a),b) and c), and all data merged – d).
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(a) RGB-D sensor: Intel RealSense

(b) LIDAR: Velodyne VLP-16 Puck

(c) mmWave radar: TI AWR1443

(d) All three sensors

Figure 9: Topview of the corridor, selecting different sensor datasets.

(a) RGB-D sensor: Intel RealSense

(b) LIDAR: Velodyne VLP-16 Puck

(c) mmWave radar: TI AWR1443

(d) All three sensors

Figure 10: Detail of a metal engine on the corridor, selecting different
sensor datasets
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