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A Kinematics Optimization Framework with Improved Computational
Efficiency for Task-Based Optimum Design of Serial Manipulators in

Cluttered Environments

Nikola Petkov1,2, Ozan Tokatli1, Kaiqiang Zhang1,∗, Huapeng Wu2, and Robert Skilton1

Abstract— It is challenging to find optimum kinematic de-
signs for non-standard robotic manipulators, e.g., medical,
nuclear, and space manipulators, which are demanded to adapt
to arbitrary complex tasks in constraints. Such design opti-
mization can be modelled as a multi-dimensional non-convex
optimization problem with nonlinear constrained conditions.
However, it is non-trivial to ensure the essential reachability
condition, i.e., the existence of continuous trajectories between
demand positions for serial articulated manipulators, given
complex spatial constraints, like obstacles and boundaries.
Traditional solutions integrate standard motion planning or
inverse kinematics algorithms within a kinematic-design op-
timization process, resulting in significant demand for time
and computing resources. To accelerate design optimization at
improved efficiency, we design a novel robust design framework
built on a new kinematic design synthesis, which allows for
simultaneously optimizing dimension and topology of a serial
manipulator’s kinematics for arbitrary tasks in constrained
environments, using a generalised parametric kinematic model.
Significantly, in contrast to standard solutions, we develop a
novel computationally effective reachability verification method,
which rapidly aborts infeasible motions by exploiting efficient
collision checks, based on the Rapidly-exploring Random Tree
(RRT) algorithm. The effectiveness of the proposed design
framework is verified and evaluated by comparing to baseline
benchmarks. Results demonstrate the novel design framework
can accelerate kinematic design optimization by an order
of magnitude compared to the current state-of-the-art, and
optimise link dimension and joint type simultaneously of serial
robots for cluttered environments.

Index Terms— Design Optimisaiton, Kinematics, Motion
Planning, Reachability

I. INTRODUCTION

In applications such as medical [1], nuclear decommis-
sioning [2], and in-space servicing [3], environmental con-
straints create collision hazard and limit target reachability.
The development of customized, cost-efficient serial artic-
ulated robotic systems for cluttered environments requires
reducing both the time spent on design and the associated
hardware expenses. A key challenge in this process is
to configure the manipulator’s kinematics—irrespective of
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the degrees of freedom (DOFs)—while adhering to spatial
limitations and design requirements (such as minimum link
length) to successfully perform the tasks dictated by the
robot’s specific application [4]. Task based design [5], [6],
uses prior knowledge of the task to optimise the robot
kinematics. Patel et al. [7], gives a comprehensive review of
the task based kinematic design problem, and offers a general
methodology for task-based prototyping of serial robotic
manipulators. More recently, Kivela et al. [8], and Maaroof
et al. [9], provide another generic solution for gradient
based kinematic design optimization evaluated on drilling
robots, and medical application respectively. However, these
studies assume collision free workspace where the inverse
kinematics computation does not have any space constraints
and is not hard to solve.

In cluttered environments, the use of motion planning
is essential to assure the design requirements, particularly
reachability, are met. Kahrs et al. [10], proposed an approach
for kinematic design of medical robots called “RRT of
RRTs” where the robot is designed by sampling both in the
design space and the configuration of the robot. Baykal et
al. [11], improves this approach by using Adaptive Simulated
Annealing (ASA) [12] instead of RRT for sampling of
the design space, and proves the approach is asymptoti-
cally optimal under mild assumptions. However, [11] does
not provide a generic solution for the dimension-topology
synthesis problem, i.e., optimizing the kinematic chain by
exploiting variations in link length, joint actuation types,
and kinematic-chain topology. Gamper et al. [13], proposes
a pruning function objective, which minimises a maximal
robot model by converging towards solutions with minimal
number of links of the robot (by allowing link lengths to set
to 0), instead of the minimal length of the robot, effectively
reducing its DOFs (, i.e., optimizing the kinematic design by
simplifying the kinematics complexity) in the process.

Despite these advances, there remains a lack of generic
solution to task-based kinematic design optimization for
serial manipulators, allowing to simultaneously optimize link
dimension and kinematic topology while ensuring the reach-
ability in heavily spatial constrained settings. Importantly, it
is demanding to implement the optimization problem using
a time efficient solution to the related reachability problem
therein. This paper addresses these challenges and proposes
a design framework which brings the following novelties to
the optimal kinematic design problem.
1) An optimal design framework developed from a new



kinematic design synthesis, which permit to search a
complete solution space of a kinematic chain taking into
account dimension (e.g., link length, joint range, etc.) and
topology (e.g., joint actuation types and its topology in the
kinematic chain) of serial robots tailored for constrained
environments, using a generalised parametric kinematic
model.

2) A novel extension to the Rapidly-exploring Random
Tree (RRT) algorithm, that integrates trajectory collision
detection to significantly enhance sampling efficiency.

Results of the comparative analysis of the proposed
method for kinematic design optimization for reachability of
targets in cluttered environments show significant improve-
ment in rate of convergence over the baseline benchmarks
[11] when using the proposed motion planning enhancement.
The increased sampling efficiency of RRT, enables explo-
ration of larger collision-free distances between nodes (way-
points), significantly reducing motion planning time. Results
of the evaluation of the proposed optimal design framework
in 3D, show a time effective convergence towards optimal
values of the design variables, minimising the: lengths and
number of links, and ranges, number, and type (rotation or
prismatic) of DOFs.

The paper is organized as follows. In Section II the formu-
lation of the robot kinematic model, workspace, obstacles,
trajectories and reachability of points in the work space
are defined. Section III defines the optimization problem,
i.e., the kinematic design synthesis. Section IV presents the
effectiveness and advancement of the proposed approach via
a case study. Discussions and conclusions are in Section V
and Section VI, respectively.

II. PROBLEM STATEMENT AND FORMULATION

A. Robot Kinematic Model

The forward kinematics of a robot can be represented by
the product of homogeneous transformation matrices which
encode the geometry and actuation related components of
the kinematic chain into a matrix notation. In the standard
Denavitt-Hartenberg (DH) notation, the geometric parame-
ters of the kinematic chain, which are α and a, are embedded
together with the actuation variables of the robot θ and d.

In this work we are separating geometric parameters and
actuation variables into separate transformation matrices and,
initially, consider a 6 DOF actuation for each link: 3 rotations
(ϕ, γ, ψ) and 3 translations (x, y, z). This provides the most
general form of a serial kinematic chain and also allow us to
perform search on the geometry of the robot without the
meddling of the actuation variables. The generic forward
kinematics model of the robot, from base frame to end-
effector frame, used in this study is given by Eq. (1).

Tn
1 =

n∏
i=1

Ti · Tact,i (1)

where Ti is the geometric variables of the robot with constant
DH values (αi, ai, θi, di). Note that the θ and d in Ti are
not actuation variables as in standard DH notation but they
are only defining the geometry of the linkage at its initial

configuration and they are set to zero. On the other hand,
Tact,i defines the contribution of the actuators into the forward
kinematics. In the general case each joint is considered to
be actuated with a 6 DOF actuator which leads to Eq. (2).

Tact,i =

[
Rx(ϕi) 0
0T 1

] [
Ry(γi) 0
0T 1

]
(2)

[
Rz(ψi) 0
0T 1

] I

xiyi
zi


0T 1


In Eq. (2), Rx(ϕi), Ry(γi), and Rz(ψi) are the rotation

matrices corresponding to the Tait–Bryan angles ϕi, γi, ψi ∈
R, and xi, yi, and zi ∈ R are the translations in the local
frame. The identity matrix I ∈ R3×3 and the zero vector 0 ∈
R3 are used to construct the homogeneous transformation
matrix [14].

B. Workspace

We define the workspace W as a set of sphere obstacles
and task points in 3D space.

Let Ok be the kth sphere obstacle where ok =
(xk, yk, zk) ∈ R3 is the center of the kth obstacle. rk ∈ R is
the radius of the kth obstacle. Let m be the total number of
obstacles. The set of obstacles O is defined as

O = {(ok, rk) | ok ∈ R3, rk ∈ R, (3)
∀k ∈ {1, 2, . . . ,m}}

Let pj = (xj , yj , zj) ∈ R3 be the jth task point. Let l be
the total number of task points. The set of all task points P
is defined as

P = {p | p ∈ R3 and ∥p− ok∥ > rk, } (4)
∀k ∈ {1, . . . ,m}

We constrain the set of task points P so that the task points
are outside of the obstacles’ radius (reachable).

The workspace W can be defined as the union of the set
of obstacles and the set of task points:

W = O ∪ P (5)

C. Colliders

Let ci,ℓ = (xi,ℓ, yi,ℓ, zi,ℓ) ∈ R3 be the ℓth collider point
along the ith link of the robot, where i = 1, 2, . . . , n and
ℓ = 1, 2, . . . , si with si being the number of collider points
on the ith link.

The position of the collider points ci,ℓ is derived from the
kinematic transformations T i

1 applied to each link, as

ci,ℓ = T i
1

[
ℓai
si + 1

, 0, 0, 1

]T
, ∀ℓ ∈ {1, 2, . . . , si} (6)

where ai ∈ R is the length of the ith link.
The set of collider points Ci for the ith link is defined as

Ci =
{
ci,ℓ | ci,ℓ ∈ R3,∀ℓ ∈ {1, 2, . . . , si}

}
(7)



The complete set of collider points for all links C is

C =

n⋃
i=1

Ci =
{
ci,ℓ | ci,ℓ ∈ R3 ∀i ∈ {1, 2, . . . , n},

∀ℓ ∈ {1, 2, . . . , si}} (8)

Each collider point ci,ℓ is located along the body of the robot
and moves according to the transformations applied to the
ith link of the robot.

D. Valid Robot Trajectories

Let q = (θ1, θ2, . . . , θn, α1, α2, . . . , αn, a1, a2, . . . , an,
d1, d2, . . . , dn) ∈ R4n represent the configuration parame-
ters, where θi ∈ [0, 2π) and αi ∈ [0, 2π) are the joint angles
and link twist angles, respectively, and ai ∈ R and di ∈ R
are the link lengths and offsets, respectively.

To define a set of valid trajectories Tv for the robot for a
workspace W and configuration parameters q, we consider
consecutive neighboring valid actuation values a(t), ensuring
that the norms of the delta distances of the joints’ positions
in Cartesian space, and joint space, are less than a fixed limit
Lmax, and there are no collisions between the robot and the
obstacles at each time step t.

The set of all actuation values a is defined as

a = {(ϕi(t), γi(t), ψi(t), xi(t), yi(t), zi(t)) | t ∈ [0, 1],

∀i ∈ {1, 2, . . . , n}} (9)

where
• ϕi(t) ∈ R represents the rotation about the x-axis (roll).
• γi(t) ∈ R represents the rotation about the y-axis

(pitch).
• ψi(t) ∈ R represents the rotation about the z-axis (yaw).
• xi(t) ∈ R represents the translation along the x-axis.
• yi(t) ∈ R represents the translation along the y-axis.
• zi(t) ∈ R represents the translation along the z-axis for

the i-th joint at time t.
Let a0 = (0, 0, . . . , 0) ∈ R6n represent the home position

where all actuation values are zero. Let atask ∈ R6n represent
the actuation values that make the end-effector reach the task
point. Each trajectory Tv(t) starts from the home position a0,
and ends at the actuation values atask.

The set of valid trajectories Tv is defined as

Tv = {{a(t) | t ∈ [0, 1]} | a(0) = a0,a(1) = atask,
(10)

∥f(a(t+∆t))− f(a(t))∥+ λ∥a(t+∆t)− a(t)∥ < Lmax,

ci,ℓ(t)− ok∥ > rk,

∀i ∈ {1, 2, . . . , n},∀ℓ ∈ {1, 2, . . . , si},
∀t ∈ [0, 1−∆t],∀k ∈ {1, 2, . . . ,m}}

, where
• f(a(t)) ∈ R3n represents the Cartesian positions of all

joints calculated by the forward kinematics function.
• Lmax ∈ R is the max distance metric between two nodes

in each trajectory a(t) in terms of Cartesian and joint
space distances.

• ∥ci,ℓ(t)− ok∥ > rk ensures that the collider points are
outside the obstacles at all times t.

Smaller values of Lmax ensure smoothness of the robot
motion in Cartesian space. Using higher limits is in turn
limited by the size of the obstacles and their clearances. If
a higher limit Lmax is applied, there is a potential that some
of the obstacles (dependent on their size) could be skipped
between a pair of trajectory steps of the robot, and this needs
to be accounted for in the kinematic design optimization
process.

E. Workspace Reachability

Workspace reachability is defined as the existence of a
set of valid robot trajectories Tv such that all task points
in the set P are reachable by the robot with configuration
parameters q. Formally, the reachability set R is redefined
as a subset of the task points set P that contains only the
points pj where a valid trajectory exists

R(q,W ) =
{
pj ∈ P | ∃Tvj (q) ⊂ Tv(q) :

a(0) = 0 and a(1) = atask,j and
cend-effector(atask,j) = pj} (11)

where
• W is the workspace.
• P is the set of task points.
• Tv is the set of valid trajectories.
• cend-effector(atask,j) is the position of the end-effector

determined by the forward kinematics equation given
the actuation values atask,j .

Workspace reachability R(q,W ) can be quantified as the
ratio between the dimension of the reachability set R and
the dimension of the task points set P

R(q,W ) =
dim(R(q,W ))

dim(P)
(12)

III. KINEMATICS OPTIMIZATION FRAMEWORK

In Section II, we formulated a mathematical definition to a
generic kinematic design problem of serial robots given tasks
and constraints in cluttered environments, via a reduction of
a generic kinematic model of the robot. In order to reduce
the complexity of the design space, and to increase sampling
efficiency of the motion planning aspect of the problem,
we further constrain the set of valid trajectories Tv by
imposing trajectory collision constraints to each consecutive
configuration of the robot in each valid trajectory.

A. Integrated collision avoidance

The proposed approach examines the space between two
successive configurations of the robot from the set of valid
trajectories Tv for collisions with the obstacles defined by
the set of obstacles O.

Let ci,ℓ(t) = (xi,ℓ(t), yi,ℓ(t), zi,ℓ(t)) ∈ R3 be the position
of the ℓth collider on the ith link at time t.

We construct a set of line segments L between the
corresponding colliders ci,ℓ(t) at two consecutive time steps,



Fig. 1: Visualisation of the effects of the proposed integrated
trajectory collision detection for path planning. In cases such
as b), a collision is not detected and the robot can move over
the obstacle due to the coarser sampling of the joint space
(Lmax = π/4). The proposed trajectory collision checking
c), successfuly avoids all obstacles for (Lmax = π/4). The
proposed trajectory collision lines are shown in blue.

t and t +∆t, and then check if any of these line segments
intersect with any of the obstacles from O.

The set of collision mesh lines L is defined as:

L =
{
(ci,ℓ(t), ci,ℓ(t+∆t)) | ci,ℓ(t) ∈ R3 (13)

∀i ∈ {1, 2, . . . , n},∀ℓ ∈ {1, 2, . . . , si},∀t ∈ [0, 1−∆t]}

where

• ci,ℓ(t) is the position of the ℓth collider on the ith link
at time t.

• ci,ℓ(t+∆t) is the position of the ℓth collider on the ith

link at time t+∆t.

The collision condition for a line segment and a spherical
obstacle can be defined based on the minimum distance
between the line segment and the center of the sphere. The
minimum distance between a line segment (c1, c2) and a
point o is given by

dmin =
∥(c2 − c1)× (c1 − o)∥

∥c2 − c1∥
(14)

where × denotes the cross product and ∥ · ∥ denotes the
Euclidean norm. For a valid line segment, where there are
no collision conditions active, the minimum distance dmin

should be greater than the sum of the obstacle radius rk and
a clearance ϵ

dmin > rk + ϵ (15)

Thus, the set of valid line segments Lvalid is defined as

Lvalid =
{
(ci,ℓ(t), ci,ℓ(t+∆t)) | ci,ℓ(t) ∈ R3 (16)

∀i ∈ {1, 2, . . . , n},∀ℓ ∈ {1, 2, . . . , si},
∀t ∈ [0, 1−∆t],∀k ∈ {1, 2, . . . ,m},

∥(ci,ℓ(t+∆t)− ci,ℓ(t))× (ci,ℓ(t)− ok)∥
∥ci,ℓ(t+∆t)− ci,ℓ(t)∥

> rk + ϵ

}
where

• ci,ℓ(t) is the position of the ℓth collider on the ith link
at time t.

• ci,ℓ(t+∆t) is the position of the ℓth collider on the ith

link at time t+∆t.
• ok ∈ R3 is the center of the kth obstacle.
• rk ∈ R is the radius of the kth obstacle.
• ϵ ∈ R is the clearance.

Now we can further constrain the set of valid trajectories
Tv and redefine it as follows:

Tv = {{a(t) | t ∈ [0, 1]} | a(0) = a0,a(1) = atask,

∥f(a(t+∆t))− f(a(t))∥+ λ∥a(t+∆t)− a(t)∥ < Lmax,

∥ci,ℓ(t)− ok∥ > rk + ϵ,

∀i ∈ {1, 2, . . . , n},∀ℓ ∈ {1, 2, . . . , si},
∀t ∈ [0, 1−∆t],∀k ∈ {1, 2, . . . ,m},
dim(Lv) = dim(L)} (17)

where

• a(t) ∈ R6n represents the actuation parameters at t.
• f(a(t)) ∈ R3n represents the Cartesian positions of all

joints calculated by the forward kinematics function.
• Lmax ∈ R is the fixed limit for the delta distances.
• a0 represents the home position.
• atask represents the actuation values reaching the task

point.
• ∥ci,ℓ(t)− ok∥ > rk + ϵ ensures that the collider points

are outside the obstacles at all times t.
• dim(Lv) is the dimension of the set of valid line

segments that are not colliding with obstacles.
• dim(L) is the dimension of the original set of line

segments.

By iterating through all colliders and time steps along the
trajectory, and ensuring that all line segments satisfy the
collision condition, the proposed method ensures that the
robot’s path is collision-free.

B. Optimization via a Kinematic Design Synthesis

This study aims to achieve a collective kinematic design
synthesis by means of optimizing the lengths and number of
links, but also ranges, number, type of actuators, as defined
in the proposed generic form of the kinematic model of a
serial robot in Section II-A. Here, we introduce constraints
on the upper and lower bounds of the joint axes (Tait–Bryan
angles and translations) and use them as additional design
variables to enable optimization of the number and type of



DOFs of the proposed generic robot model. The upper and
lower bounds for the joint axes are defined as follows

ϕmin
i ≤ ϕi ≤ ϕmax

i , γmin
i ≤ γi ≤ γmax

i ,

ψmin
i ≤ ψi ≤ ψmax

i , xmin
i ≤ xi ≤ xmax

i , (18)

ymin
i ≤ yi ≤ ymax

i , zmin
i ≤ zi ≤ zmax

i

Let the vectors of lower and upper bounds for each joint axis
for each link i, and DH parameters of each link be

qi = (θi, αi, ai, di) ∈ R4 (19)

amin
i = (ϕmin

i ,γmin
i ,ψmin

i ,xmin
i ,ymin

i , zmin
i ) ∈ R6 (20)

amax
i = (ϕmax

i ,γmax
i ,ψmax

i ,xmax
i ,ymax

i , zmax
i ) ∈ R6 (21)

The combined design space for all links can be given as

x = (q1, . . . ,qn,a
min
1 , . . . ,amin

n ,

amax
1 , . . . ,amax

n ) ∈ R16n (22)

The proposed optimization problem aims to find the op-
timal set of robot parameters q, and joint axis bounds
amin and amax that maximize the workspace reachability
R(q,W,amin,amax), ensuring that all task points in the
workspace are reachable, while minimizing the arctan of
the total link lengths and joint axis ranges. Formally, the
optimization problem is defined as follows

min
x

λ0(1−R(x(q,amin,amax),W )) (23)

+

n∑
i=1

(λ1Ai + λ2Bi + λ3Ci + λ4Di) + λ5E

subject to qi ∈ R4 and qmin
i ≤ qi ≤ qmax

i (24)

ainitial min
i ≤ amin

i ≤ amax
i ≤ ainitial max

i , (25){
Ai = arctan(ai) if R = 1

Ai = 1 if R < 1
, (26){

Bi = arctan(amax
i − amin

i ) if R = 1

Bi = 1 if R < 1
, (27){

Ci = 1 if ai > 0

Ci = 0 if ai = 0
, (28){

Di = 1 if amax
i − amin

i > 0

Di = 0 if amax
i − amin

i = 0
, (29){

E = 0 if R = 1

E = 1 if R < 1
, (30)

∀i ∈ {1, 2, . . . , n} (31)

where
• R(x(q,amin,amax),W ) is the reachability ratio for a

given configuration q, workspace W , and joint axis
bounds amin

i and amax
i .

• λ1···5 is a weighting factor used to balance the objec-
tives.

• arctan(amax
i − amin

i ) denotes the sum of the arctangent
of the joint axis ranges values.

• ainitial max is the initial upper bound for the joint axes.
• ainitial min is the initial lower bound for the joint axes.

IV. RESULTS

The results were evaluated based on the time efficiency of
the kinematic design optimization for reachability of targets.
The optimal design framework is not constrained to a specific
method for solving the optimization problem proposed in
Section III-B. Therefore, in order to determine the most ap-
propriate optimization method to use forward, a comparative
analysis was performed between ASA used in [11], Particle
Swarm Optimization (PSO) [15], and Genetic Algorithm
(GA) [16], as common benchmarks in the literature. We
compare the baseline method (ASA+RRT) [11] which does
not use the proposed trajectory collision detection, to other
sampling methods (ASA, PSA, GA) all which are set to
use the proposed trajectory collision detection (Section II-
A) integrated in the RRT motion planning step. For the
baseline method (ASA+RRT) [11], the maximum distance
between the nodes in the trajectories of the motion planning
method (RRT) was set to Lmax = π/40. This value was
experimentally tuned to the maximum value for which the
robot will not move over obstacle, and is depended on the
size of the smallest obstacle in the environment as illustrated
in Fig. 1. For the rest of the sampling methods, the maximum
distance between the nodes in the trajectories of the motion
planning method (RRT) was set to Lmax = π/4, allowing
larger distance between samples of robot configuration.

A. Comparative analysis for rate of convergence in a planar
workspace.

The analysis was performed in a simplified 2D (XZ)
workspace W = Oi ∪ Pj ,∀i ∈ 1, 2, ..., 5,∀j ∈ 1, 2, ..., 10.
The design variables used in this case are x = qp, where
qp = (a1, a2, . . . , a8) ∈ R1×8 are the lengths of each link
and n = 8 is the size of the kinematic parametric model
Eq. (1). The subset of the actuation variables used in this
analysis are ap = (γ1, γ2, . . . , γ8) ∈ R1×8, where each
actuator performed rotation solely along the y axis. The rest
of the actuation variables set to zero.

This experiment was implemented in Python, utilizing the
generic versions of ASA, PSO, GA, and RRT algorithms,
and was executed on an Intel i9 laptop with 32GB RAM,
with the parameters tuned manually. Ten optimization runs
were conducted, each with a unique randomized workspace

Fig. 2: Optimisation performance for workspace reachability
using ASA, PSO, GA with trajectory collision checking and
max node-to-node distance Lmax = π/4, and ASA without
improved trajectory collision checking and Lmax = π/40.



W and design vector x. Each run was constrained to 60
minutes, resulting in averaged reachability as Fig. 2 shows.

The results shown in Fig. 2 indicate that the combination
of GA and RRT, with the proposed trajectory collision con-
straints and Lmax = π/4, outperformed both PSO and ASA,
under similar conditions, and significantly outperformed the
baseline ASA + RRT approach [11] in terms of the rate of
their convergence. Therefore, GA is used in the evaluation
of the convergence rate in the next experiment.

B. Kinematic design synthesis in a volumetric workspace
The proposed design framework is evaluated for reach-

ability of targets in a 3D setting where both link lengths
and DOFs are optimised simultaneously in order to prove its
rate of convergence. A workspace W was defined with 32
spherical obstacles and 10 task points: W = Oi ∪ Pj ,∀i ∈
1, 2, ..., 32,∀j ∈ 1, 2, ..., 10. The size of the parametric
kinematic model of the robot Eq. (1), is the same as in the
2D experiment and it is set to n = 8.

The robot configuration was set to includes one prismatic
joint on the x axis per link, followed by two rotational joints
ϕ and γ on the x and y axes. The remaining actuation
variables were set to zero.

Therefore, the actuation subset was defined as ap =
(ϕ1, ϕ2, . . . , ϕ8, γ1, γ2, . . . , γ8, x1, x2, . . . , x8) ∈ R3×8, with
the design space vector extended to x = qp,a

min
p ,amax

p ∈
R7×8. Here, amin

p and amax
p represent the minimum and

maximum ranges for ϕ, γ, and x.
An experiment was conducted using a randomized

workspace W and initial conditions qp, amin
p , and amax

p ,
forming the design vector x. Ten runs were performed to
ensure consistency with the results averaged.

Fig. 3: Average results for simultaneous dimension and type
synthesis of a serial robot for workspace reachability in 3D
case, achieved over 10 experimental runs with randomized
start conditions qp and workspace W .

The results shown on Fig. 3, demonstrate the convergence
rate of the proposed optimization framework for simultane-
ous kinematic design and type synthesis of serial robots for
workspace reachability. The framework effectively optimises
the length and number of links, and range, number, and
type of DOFs, all while achieving 100% target reachability.
Compared to the results in the 2D setting case (Fig. 2), the
convergence rate of the reachable targets is expectantly lower
due to increased complexity of the problem (3D), and the
higher number of design variables used.

V. DISCUSSION

Designing cost-effective bespoke robotic systems in clut-
tered settings depends on time efficient kinematic design
of manipulators (regardless of its DOFs) given space con-
straints, and design constraints (e.g., minimum link length)
for achieving tasks specific to the application of the robot.

The combination of GA for sampling in design space, and
RRT with the proposed integrated trajectory collision detec-
tion for sampling in configuration space, provides robust rate
of convergence, with a significant improvement over the state
of the art [11] in a 2D case, and prove the timely convergence
of the approach for simultaneous optimization of length and
number of links, and number and type of DOFs for attaining
100% of target reachability in a complex 3D cluttered case.

The proposed trajectory collision detection (Section III-
A), assumes linear interpolation between the Cartesian paths
of the robot’s collision points. While this works well for
intermediate angle/length displacements of the robot joints,
we recommend that a limit to the upper bound of Lmax is
used (e.g. π/3) to attain this assumption. This issue can be
mitigated by increasing the clearance between obstacles and
the robot during collision checks.

Our results use a scheduler that starts with a larger value
of Lmax to enable rapid coarse exploration of the workspace,
gradually reducing Lmax to improve motion planning in
tighter spaces. Another scheduler increases the maximum
iterations for RRT as the high-level optimizer converges,
facilitating better workspace exploration as design variables
approach optimal values [11].

While RRT does not provide optimal trajectories, it ef-
fectively addresses workspace reachability, which is the
focus and one key contribution of this study. The supreme
convergence properties demonstrates the applicability of our
approach for a wide range of real-world scenarios, from
space to medical robotics, where customized solutions are
essential. While the results are promising, future research
could explore dynamic models with constraints like mass,
torque, and payload capacity. Integrating advanced machine
learning algorithms could further improve efficiency and
adaptability.

VI. CONCLUSION

By integrating enhanced motion planning through trajec-
tory collision detection into the design process, the proposed
design framework significantly increased the convergence
rate of kinematic design optimization in cluttered environ-
ments. The combination of the proposed motion planning
for reachability estimation, paired with Genetic Algorithm
for iteration of design variables, has proven effective in
optimizing both the structure and dimensions of serial robots
via the kinematic design synthesis, ensuring maximum reach-
ability in various cluttered environments in 3D. This research
provided a tool that is intended to be used by design
engineers, from the medical, nuclear or space sectors, to
mitigate design uncertainty at early stages in order to prevent
critical implications to budget, safety and schedule.
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