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Abstract: Remote handling systems are commonly used for decommissioning and maintenance of hazardous 
environments, especially in the nuclear sector. The necessity for a more realistic and accurate user interaction 
with the remote environment has led research towards the usage of immersive technologies such as 
augmented and virtual reality. In order for this to succeed, the state of the remote environment needs to be 
known accurately at all times. Information gathered using RGB-D cameras can serve this purpose. The high 
accuracy and density of data retrieved by these devices provide an extraordinary insight of the remote 
environment but can represent a burden on the communication channels. This paper addresses two point 
cloud compression techniques based on kd-trees and octrees for point cloud data transmission within a Robot 
Operative System (ROS) communications middleware. 
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1. Introduction 

In the nuclear sector, inspection and maintenance of the facilities are carried out by remote operations (i.e. 
using teleoperation systems). Such remote operations involve handling of devices and objects in hazardous 
environments such as nuclear reactor vessels or contaminated gloveboxes. Therefore, the utilisation of 

technologies that guarantee safety of the human operator and protection of the facility are required e.g. 
robotic systems.  

Although the use of teleoperated systems in nuclear industry can be considered as the standard tool 
nowadays, there is a big push towards the integration of novel solutions in order to assist and guide the 
human operator, e.g. viewing systems. This aim is to improve safety while increasing efficiency and reducing 

operational costs.  
Given the fact that teleoperated systems heavily depend on in-situ viewing systems, research focused on 

the recreation of a more realistic, real-time and accurate visualisation of environment is required. 
Furthermore, improvements on viewing systems are more likely to reduce the mental burden on the human 

operator whilst providing guidance on specific tasks in the assistive manner. 
Virtual reality (VR), a fully immersive visual technology, frequently used in the recreation of 3D 

environments that the user can interact with, was first introduced as a simulation tool in 1960s [1], and was 
rapidly adopted for remote handling operation in JET (Joint European Torus) at UKAEA [2]. 

Subsequent technologies such as augmented reality (AR), which is a human-machine interaction tool that 
superpose 3D information on the real scene, appear suitable to remote handling applications. However, 



 

 

 

problems related to depth perception, fidelity, luminescence [12] and particularly latency create a gap for 
remote nuclear handling tasks. 

For the integration of AR in remote handling applications, it is necessary to maintain an up-to-date model 

of the environment to guarantee an accurate virtual representation of the scene. Therefore, it is necessary to 
accurately measure the state of the remote environment, objects and robotic systems in real-time. 

Off-the-shelve RGBD cameras can be used for retrieving 3D information in low radiation environments (e.g. 
gloveboxes). These cameras can provide high-resolution point clouds1  ranging from a few thousands to 
several million points. This amount of data, although beneficial in terms of accuracy and resolution, can 

represent a burden for the communication channels and transport of data, especially in scenarios where the 
operator is far away from the location of interest. Having said that, the inspiration for this work arise due to 
absence of benchmarked compression and transmission techniques for point cloud data. 

This paper assesses two techniques for compression of point clouds: an octree-based technique from PCL 

[13] and a kd-tree-based technique from the recently developed Google's DRACO library [20]. The 
communication ecosystem was based on the middleware ROS (Robotic Operative System) Melodic, for which 
a new message type for compressed point cloud was developed. For comparison purposes, two RGBD sensors 
with different resolutions were used to gather 3D point cloud data: Kinect2 and Zivid One+ Small. Codification 
and decodification of point cloud data streams is performed in different processing units communicating 

through a local area network, this in order to mimic a remote data collection, compression and transmission 
(see Fig 3). 

This paper is organised as follows: section 2 provides an insight of the latest developments in point cloud 
compression techniques. Section 3 discusses the implementation of the compression techniques analysed, 

while section 4 discusses the results obtained. Conclusions can be found in section 5. 

2. Literature Review 

The transmission of high-density point clouds requires large transmission bitrates.  According to [3], for 
a set of ~1M points transmitted at 30 frames per second (fps), results in a total bandwidth of ~3.6Gbps, this 
for the solely purpose or having a visually pleasant and realistic representation of 3D point cloud data. This 

clearly exemplifies the needs for point cloud compression.  
Similar to video or audio, point cloud compression (PCC) techniques can also be divided into two: lossy as 

[13][14] and lossless as [20]. On one hand, lossless compression eliminate redundancy in the data whilst 
maintaining original information that results in decompressing the data without losing any of it. On the other 
hand, lossy compression removes unnecessary data by means of data quantisation [15]. 

The need for standardisation of compression techniques brought the attention of the Moving Picture 
Experts Group (MPEG), which launched a call for proposals [21] resulting in what can be considered another 
division in compression techniques: video-based compression (V-PPC) and geometry based compression (G-
PCC)[3]. The former technique V-PPC converts 3D point clouds into 2D images for video streaming, therefore 

benefiting from the well-developed video compression techniques. The latter (G-PCC), encodes information 
directly in 3D space using data structures, such as octrees. As mentioned in [3], G-PCC is more suitable for 
sparse point clouds, which applies for most real-time data acquisition applications. Standardisation works 
are still ongoing and are expected to be delivered under ISO/IEC 23090-5 and -9 for V-PCC and G-PCC 
respectively. 

Octree-based data structures, that applies a recursive decomposition principle, date from the early eighties 
and were developed to produce a representation of 3D objects [4][5]. Other applications that implement 
octrees include 3D navigation [6][16] and shape analysis by means of convolutional neural networks [7][17]. 

 
1 A 3D point cloud is a set of points in ℝ  usually carrying other attributes such as colour and texture. 



 

 

 

In 2006, the first application of octrees for point cloud compression was proposed in [18], where the point 
cloud is encoded based on the occupied octree cells. For PCC applications, octrees are sheared up to a certain 
depth level in the tree-like structure, then, points lying within each cell are combined, together with its 

attributes, to generate a single data point. This technique was soon implemented in the emerging Point Cloud 
Library for dynamic point cloud coding [14]. 

Similar to octrees, kd-trees are also a space partitioning data structure that utilises a multidimensional 
binary search tree [8]. Initially developed for the purpose of fast search, research started to be conducted on 
applying this technique for mesh compression [9] and its adaptation for point cloud compression [19] and 

combination with a model-based approach [10]. 
Within the robotic operative system (ROS) middleware, the handling, transfer and processing of raw point 

cloud data messages remains as a problem [22]. In other words, large point cloud data sets represent a 
burden for the ROS communication network. Although ROS carries PCL within its library directory for 

different point cloud-related processing tasks, there is currently no native message for compressed point 
clouds nor compression technique natively implemented. 

3. Point Cloud Compression Strategy 

The compression of the point cloud is performed using two different strategies: octree and kd-tree based 
codification. For the first, we used an implementation provided by the Point Cloud Library [14], and for the 
latter a relatively new implementation by Google called DRACO [20]. Each strategy provides different 

parameters for adjusting the compression to our needs. It is important to mention that these parameters 
need to be adjusted depending on the type of sensor used, point cloud resolution and density required.  

3.1. Octree-based Point Cloud Compression 

An octree is a data structure that allows to perform spatial partitioning to a set of points converting them 
into a tree-like structure (see Fig. 1). This is done by iteratively dividing the space into eight identical boxes, 
starting with the initial bounding box, also known as the root. 

 
Fig 1. Octree schematic representation [23]. 

The construction of an octree is achieved by iteratively traversing the tree from lower to higher depth levels, 
while assigning the corresponding child leaf to every branch. This is done until each point is added to a list of 
points corresponding to a leaf node [14]. At the highest depth level, each leaf node can be considered as a 
Boolean value (bit). Due to the fact that spatial partition is always performed in groups of eight elements a 
node can be represented as a single byte. Knowing the codification order, the spatial distribution of a set of 
points can be efficiently represented using a stream of bytes. Other relevant data such as the three depth, can 
be added to the stream as a header providing information to the decoder. This can then be easily transformed 
into a ROS message. 

PCL [13] provides an octree implementation class with six configuration parameters and 12 pre-defined 
compression profiles listed in Table I. The nomenclature for the pre-defined compression profiles is 



 

 

 

intuitevely defined. For instance, MRON-C stands for Medium Resolution ONline Colour, whereas HROFF-NC 
means High Resolution OFFline No Colour. MRON-C is the default compression profile. 

 
Table I. Octree configuration parameters 

Compression 
profile 

Compression parameters 
Point  
Resolution 

Octree 
Resolution 

Downsample? 
Frame  
Rate 

Colour 
Coding 

Colour Bit  
Resolution 

LRON-C 0.01 0.01 True 50 True 4 
LRON-NC 0.01 0.01 True 50 False 4 
LROFF-C 0.01 0.01 True 100 True 4 
LROFF-NC 0.01 0.01 True 100 False 4 
MRON-C* 0.005 0.01 False 40 True 5 
MRON-NC 0.005 0.01 False 40 False 5 
MROFF-C 0.005 0.01 False 100 True 5 
MROFF-NC 0.005 0.005 True 100 False 5 
HRON-C 0.0001 0.01 False 30 True 7 
HRON-NC 0.0001 0.01 False 30 False 7 
HROFF-C 0.0001 0.01 False 100 True 8 
HROFF-NC 0.0001 0.0001 True 100 False 8 

*Default profile 
 

The class allows to specify whether colour is included during codification, this is set by the colour coding 
flag. Downsample the cloud prior to codification is also possible, this can increase compression speed but can 
significantly reduce the density and quality of the cloud. 

3.2. Kd-tree-based Point Cloud Compression 

Similar to octrees, a kd-tree is a data structure based on spatial partitioning. Conversely to octrees, on which 
partition is always defined by a set of eight children bounding boxes, kd-trees performs space partition by 
means of hyperplanes aligned with the dimensional axes. This iterative one-dimensional partition is usually 
computed by algorithms such as Quick Sort [11], which uses the median as root value and then separates 
values on its left and right. This is then repeated on the previously obtained divisions until there is only one 
element in the partition as shown in Fig. 2. 

 

 
Fig 2. Kd-tree partition and tree schematic for the set of points: [(1,9), (2,7), (3,1), (4,5), (6,2), (7,8), (8,4), (9,3)]. 

DRACO is a open-source library developed by Google with aims at improving transmission of 3D graphics 
[20]. DRACO provides a class for mesh and point cloud compression by means of kd-trees. This class allows 
to control several compression options such as the number of quantisation bits for all attributes. It also allows 
the specification and compression of user-defined attributes, which results in high flexibility and adaptation 
to carry multiple types on point cloud information. A key configuration parameter is the compression level, 
which allows specification of compression quality. The highest the compression level, the long it takes to 



 

 

 

compress. For our application, we focus primarily on the compression of geometry and colour attributes 
listed in Table II. In terms of coordinate quantisation, the actual precision will depend on the scale of the 
attribute values, e.g. the scale of the 𝑋, 𝑌 and 𝑍. 

 
Table II. Kd-tree configuration parameters 

Parameter Default value Description 
Position quantification [bits] 10 Precision of the quantised box 
Colour quantification [bits] 8 2 = 256 colours 

Compression level (CL) 7 
Range = [0-10] 
10 – Best compression, slowest speed 
0 – Worst compression, fastest speed 

 
In comparison with the octree-based PCC, that holds a consistent and predictable structure over time, kd-

trees divide the space at each tree leaf based statistical parameters such as the median. This makes kd-trees 
highly dependent on the point cloud's bounding box and the data lying within [15]. This bounding box can 
vary drastically when acquiring data in real-time and by the type of sensor used. Hence, kd-trees are 
considered efficient for one-off PCC, for multiple frame codification, kd-tree can be expensive to compute. 

3.3. ROS Integration 

The integration of cameras, compression algorithms and network connection were conducted within the 
ROS middleware. To achieve compatibility, containerisation was also utilised in order to isolate camera-
specific libraries and controllers from the rest of the system. Figure 3 shows a simplified schematic diagram 
of the setup. 

 

 
Fig 3. Schematic diagram of the compression/decompression setup. 

The codified point cloud resulting from the compression was encapsulated in the form of a customised ROS 
message. The message structure contains information such as sequence number, time stamp and reference 
frame, cloud ID and the string of characters corresponding to the codified cloud. 

4. Results 

The performance of each compression technique is assessed against four key performance metrics: 

 Number of points, before compression and after decompression. 

 Compression and decompression execution time. 

 Size, in kb, of the compressed cloud. 

 Transmission time. 
Compression and decompression are performed in two different computers simulating the remote and 

local systems. Both devices have been connected to a standard home router through Ethernet. In order to 
ensure synchronised time stamps for determining transmission time, computer's clocks were synchronised 
using network time protocol (NTP). TCP is used for network communications. Other protocols such as UDP 
may provide faster transmission rates at the cost of potentially less reliable data transfer. 



 

 

 

For comparison purposes, we have used two different RGBD cameras with different characteristics: Kinect2 
and Zivid One+ Small. Kinect2 is widely used within the community due to its low cost and high-quality point 
cloud data. Zivid is a sophisticated industrial camera that provides very high resolution and density point 

clouds. In its SD resolution, Kinect2 can provide circa 220k points per frame, where in contrast with Zivid can 
deliver over 2M points per frame. 

For the PCL's octree compression, the 12 pre-defined profiles shown in Table I are compared. For the 
DRACO's kd-tree codification, the compression level (CL), listed in Table II, is swept from 0 to 10. For each 
compression profile, a stream of 100 raw point clouds is gathered within the workspace of each sensor. This 

is done to avoid NaN values (invalid readings) and to achieve a consistently dense point cloud. 
The results obtained using Kinect2 and Zivid camera are shown in Fig 4 and Fig 5 respectively. The left and 

right columns on each figure corresponds to a different compression technique, kd-trees (DRACO) and 
octrees (PCL) respectively. 

 
Fig 4. Compression performance evaluation using Kinect2. 

The first row shows the number of points before compression and after decompression. As can be observed, 
DRACO performs a lossless compression while PCL is lossy, having a loss ratio of up to ~ 92% in its low-resolution 
compression profiles (LRON-C, LRON-NC, LROFF-C, LROFF-NC). 

The second row shows the execution time for compression and decompression. DRACO's kd-tree encoder 
exhibits a jump in the computational time CL5 and CL6 for compression while decompression time remains 
steady over all compression levels. PCL's compression and decompression times follow a similar trend varying 
due to resolution and colour coding. 

The codified cloud size, listed in the third row, remains almost the same for all DRACO's compression levels 
making this parameter invariant to the compression level. This also relates to the invariance on decompression 
time. PCL's octree cloud size varies drastically when colour is not encoded. For Kinect2 and Zivid point cloud data, 



 

 

 

DRACO's compression ratio is ~5.25 and ~7.75, respectively, whilst PCL's compression ratio using MRON-C profile 
is ~6 and ~10.9, respectively. 

 
Fig 5. Compression performance evaluation using Zivid One+ Small camera. 

Transmission time, shown in the last row of Fig 4 and Fig 5, is dependent on the size of the compressed cloud. 
For referencing, the transmission of a single raw point cloud frame of Kinect2 and Zivid cameras takes ~1.34 and 
~4.5 seconds respectively. Thus, for Kinect2 and Zivid cameras, DRACO provides a transmission ratio improvement 
of ~33.5 and ~15 respectively, whilst PCL's MRON-C profile provides a transmission ratio improvement of ~35.2 
and ~19.5 respectively. The transmission time could be improved by other means, this would include modification 
on both the software and hardware. To begin with, a different communication protocol could be used, such as UDP. 
Implementing the same algorithms on a high-end network system together with a dedicated network device could 
offer a faster transmission rate. Given the importance of high transmission rate in achieving realistic, accurate 
visualisation systems, we may consider adopting some of these changes in the future to speed up transmission of 
the data. 

5. Conclusions 

This paper provides a comparative study between two different point cloud compression techniques, kd-
tree and octree, using DRACO and Point Cloud Library, respectively. This study is implemented using the ROS 
communication middleware. Compressed point cloud data transmits across the network faster, as opposed 
to transmission of raw data. Empirical results illustrate that the kd-tree implementation exhibits invariable 

point cloud compression size for different compression levels. Thus, causes variation only on the quality of 
the compressed cloud. The MRON-C (medium resolution with colour) compression profile used in the octree 
implementation results in a challenging trade-off between data loss and compressed cloud size, whilst 
maintaining colour information. 



 

 

 

 To facilitate integration within the ROS middleware, a new ROS message type is created and used to 
transmit the codified data across the ROS network. Latency is considered as a big problem within the ROS 
community, and results demonstrated in this paper show that the point cloud compression improves the 

latency of the point cloud transmission drastically. 
The research presented in this paper lays out the payment towards achieving improvements on viewing 

systems and we are aiming to extend our implementation to facilitate real-time visualisation of remote 
environments for object manipulation and grasping using a digital twin in the future. 
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