
UKAEA-RACE-PR(21)01

Salvador Pacheco-Gutierrez, Ipek Caliskanelli,

Robert Skilton

Point Cloud Compression and
Transmission for Remote Handling

Applications

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

Point Cloud Compression and
Transmission for Remote Handling

Applications

Salvador Pacheco-Gutierrez, Ipek Caliskanelli, Robert Skilton

This is a preprint of a paper submitted for publication in
Journal of Software - JSW

Point Cloud Compression and Transmission for Remote
Handling Applications

Salvador Pacheco-Gutierrez1*, Ipek Caliskanelli1, Robert Skilton1

1 UK Atomic Energy Authority, Remote Applications in Challenging Environments, Culham Science Centre,
Abingdon, Oxfordshire OX14 3DB, United Kingdom.

* Corresponding author. Tel.: +44 (0)1235 467107; email: salvador.pacheco-gutierrez@ukaea.uk
Manuscript submitted August 25, 2020; accepted September 10, 2020.
doi: ???

Abstract: Remote handling systems are commonly used for decommissioning and maintenance of hazardous
environments, especially in the nuclear sector. The necessity for a more realistic and accurate user interaction
with the remote environment has led research towards the usage of immersive technologies such as
augmented and virtual reality. In order for this to succeed, the state of the remote environment needs to be
known accurately at all times. Information gathered using RGB-D cameras can serve this purpose. The high
accuracy and density of data retrieved by these devices provide an extraordinary insight of the remote
environment but can represent a burden on the communication channels. This paper addresses two point
cloud compression techniques based on kd-trees and octrees for point cloud data transmission within a Robot
Operative System (ROS) communications middleware.

Key words: Kd-tree, octree, point cloud compression, remote handling, ROS.

1. Introduction

In the nuclear sector, inspection and maintenance of the facilities are carried out by remote operations (i.e.
using teleoperation systems). Such remote operations involve handling of devices and objects in hazardous
environments such as nuclear reactor vessels or contaminated gloveboxes. Therefore, the utilisation of

technologies that guarantee safety of the human operator and protection of the facility are required e.g.
robotic systems.

Although the use of teleoperated systems in nuclear industry can be considered as the standard tool
nowadays, there is a big push towards the integration of novel solutions in order to assist and guide the
human operator, e.g. viewing systems. This aim is to improve safety while increasing efficiency and reducing

operational costs.
Given the fact that teleoperated systems heavily depend on in-situ viewing systems, research focused on

the recreation of a more realistic, real-time and accurate visualisation of environment is required.
Furthermore, improvements on viewing systems are more likely to reduce the mental burden on the human

operator whilst providing guidance on specific tasks in the assistive manner.
Virtual reality (VR), a fully immersive visual technology, frequently used in the recreation of 3D

environments that the user can interact with, was first introduced as a simulation tool in 1960s [1], and was
rapidly adopted for remote handling operation in JET (Joint European Torus) at UKAEA [2].

Subsequent technologies such as augmented reality (AR), which is a human-machine interaction tool that
superpose 3D information on the real scene, appear suitable to remote handling applications. However,

problems related to depth perception, fidelity, luminescence [12] and particularly latency create a gap for
remote nuclear handling tasks.

For the integration of AR in remote handling applications, it is necessary to maintain an up-to-date model

of the environment to guarantee an accurate virtual representation of the scene. Therefore, it is necessary to
accurately measure the state of the remote environment, objects and robotic systems in real-time.

Off-the-shelve RGBD cameras can be used for retrieving 3D information in low radiation environments (e.g.
gloveboxes). These cameras can provide high-resolution point clouds1 ranging from a few thousands to
several million points. This amount of data, although beneficial in terms of accuracy and resolution, can

represent a burden for the communication channels and transport of data, especially in scenarios where the
operator is far away from the location of interest. Having said that, the inspiration for this work arise due to
absence of benchmarked compression and transmission techniques for point cloud data.

This paper assesses two techniques for compression of point clouds: an octree-based technique from PCL

[13] and a kd-tree-based technique from the recently developed Google's DRACO library [20]. The
communication ecosystem was based on the middleware ROS (Robotic Operative System) Melodic, for which
a new message type for compressed point cloud was developed. For comparison purposes, two RGBD sensors
with different resolutions were used to gather 3D point cloud data: Kinect2 and Zivid One+ Small. Codification
and decodification of point cloud data streams is performed in different processing units communicating

through a local area network, this in order to mimic a remote data collection, compression and transmission
(see Fig 3).

This paper is organised as follows: section 2 provides an insight of the latest developments in point cloud
compression techniques. Section 3 discusses the implementation of the compression techniques analysed,

while section 4 discusses the results obtained. Conclusions can be found in section 5.

2. Literature Review

The transmission of high-density point clouds requires large transmission bitrates. According to [3], for
a set of ~1M points transmitted at 30 frames per second (fps), results in a total bandwidth of ~3.6Gbps, this
for the solely purpose or having a visually pleasant and realistic representation of 3D point cloud data. This

clearly exemplifies the needs for point cloud compression.
Similar to video or audio, point cloud compression (PCC) techniques can also be divided into two: lossy as

[13][14] and lossless as [20]. On one hand, lossless compression eliminate redundancy in the data whilst
maintaining original information that results in decompressing the data without losing any of it. On the other
hand, lossy compression removes unnecessary data by means of data quantisation [15].

The need for standardisation of compression techniques brought the attention of the Moving Picture
Experts Group (MPEG), which launched a call for proposals [21] resulting in what can be considered another
division in compression techniques: video-based compression (V-PPC) and geometry based compression (G-
PCC)[3]. The former technique V-PPC converts 3D point clouds into 2D images for video streaming, therefore

benefiting from the well-developed video compression techniques. The latter (G-PCC), encodes information
directly in 3D space using data structures, such as octrees. As mentioned in [3], G-PCC is more suitable for
sparse point clouds, which applies for most real-time data acquisition applications. Standardisation works
are still ongoing and are expected to be delivered under ISO/IEC 23090-5 and -9 for V-PCC and G-PCC
respectively.

Octree-based data structures, that applies a recursive decomposition principle, date from the early eighties
and were developed to produce a representation of 3D objects [4][5]. Other applications that implement
octrees include 3D navigation [6][16] and shape analysis by means of convolutional neural networks [7][17].

1 A 3D point cloud is a set of points in ℝ usually carrying other attributes such as colour and texture.

In 2006, the first application of octrees for point cloud compression was proposed in [18], where the point
cloud is encoded based on the occupied octree cells. For PCC applications, octrees are sheared up to a certain
depth level in the tree-like structure, then, points lying within each cell are combined, together with its

attributes, to generate a single data point. This technique was soon implemented in the emerging Point Cloud
Library for dynamic point cloud coding [14].

Similar to octrees, kd-trees are also a space partitioning data structure that utilises a multidimensional
binary search tree [8]. Initially developed for the purpose of fast search, research started to be conducted on
applying this technique for mesh compression [9] and its adaptation for point cloud compression [19] and

combination with a model-based approach [10].
Within the robotic operative system (ROS) middleware, the handling, transfer and processing of raw point

cloud data messages remains as a problem [22]. In other words, large point cloud data sets represent a
burden for the ROS communication network. Although ROS carries PCL within its library directory for

different point cloud-related processing tasks, there is currently no native message for compressed point
clouds nor compression technique natively implemented.

3. Point Cloud Compression Strategy

The compression of the point cloud is performed using two different strategies: octree and kd-tree based
codification. For the first, we used an implementation provided by the Point Cloud Library [14], and for the
latter a relatively new implementation by Google called DRACO [20]. Each strategy provides different

parameters for adjusting the compression to our needs. It is important to mention that these parameters
need to be adjusted depending on the type of sensor used, point cloud resolution and density required.

3.1. Octree-based Point Cloud Compression

An octree is a data structure that allows to perform spatial partitioning to a set of points converting them
into a tree-like structure (see Fig. 1). This is done by iteratively dividing the space into eight identical boxes,
starting with the initial bounding box, also known as the root.

Fig 1. Octree schematic representation [23].

The construction of an octree is achieved by iteratively traversing the tree from lower to higher depth levels,
while assigning the corresponding child leaf to every branch. This is done until each point is added to a list of
points corresponding to a leaf node [14]. At the highest depth level, each leaf node can be considered as a
Boolean value (bit). Due to the fact that spatial partition is always performed in groups of eight elements a
node can be represented as a single byte. Knowing the codification order, the spatial distribution of a set of
points can be efficiently represented using a stream of bytes. Other relevant data such as the three depth, can
be added to the stream as a header providing information to the decoder. This can then be easily transformed
into a ROS message.

PCL [13] provides an octree implementation class with six configuration parameters and 12 pre-defined
compression profiles listed in Table I. The nomenclature for the pre-defined compression profiles is

intuitevely defined. For instance, MRON-C stands for Medium Resolution ONline Colour, whereas HROFF-NC
means High Resolution OFFline No Colour. MRON-C is the default compression profile.

Table I. Octree configuration parameters

Compression
profile

Compression parameters
Point
Resolution

Octree
Resolution

Downsample?
Frame
Rate

Colour
Coding

Colour Bit
Resolution

LRON-C 0.01 0.01 True 50 True 4
LRON-NC 0.01 0.01 True 50 False 4
LROFF-C 0.01 0.01 True 100 True 4
LROFF-NC 0.01 0.01 True 100 False 4
MRON-C* 0.005 0.01 False 40 True 5
MRON-NC 0.005 0.01 False 40 False 5
MROFF-C 0.005 0.01 False 100 True 5
MROFF-NC 0.005 0.005 True 100 False 5
HRON-C 0.0001 0.01 False 30 True 7
HRON-NC 0.0001 0.01 False 30 False 7
HROFF-C 0.0001 0.01 False 100 True 8
HROFF-NC 0.0001 0.0001 True 100 False 8

*Default profile

The class allows to specify whether colour is included during codification, this is set by the colour coding
flag. Downsample the cloud prior to codification is also possible, this can increase compression speed but can
significantly reduce the density and quality of the cloud.

3.2. Kd-tree-based Point Cloud Compression

Similar to octrees, a kd-tree is a data structure based on spatial partitioning. Conversely to octrees, on which
partition is always defined by a set of eight children bounding boxes, kd-trees performs space partition by
means of hyperplanes aligned with the dimensional axes. This iterative one-dimensional partition is usually
computed by algorithms such as Quick Sort [11], which uses the median as root value and then separates
values on its left and right. This is then repeated on the previously obtained divisions until there is only one
element in the partition as shown in Fig. 2.

Fig 2. Kd-tree partition and tree schematic for the set of points: [(1,9), (2,7), (3,1), (4,5), (6,2), (7,8), (8,4), (9,3)].

DRACO is a open-source library developed by Google with aims at improving transmission of 3D graphics
[20]. DRACO provides a class for mesh and point cloud compression by means of kd-trees. This class allows
to control several compression options such as the number of quantisation bits for all attributes. It also allows
the specification and compression of user-defined attributes, which results in high flexibility and adaptation
to carry multiple types on point cloud information. A key configuration parameter is the compression level,
which allows specification of compression quality. The highest the compression level, the long it takes to

compress. For our application, we focus primarily on the compression of geometry and colour attributes
listed in Table II. In terms of coordinate quantisation, the actual precision will depend on the scale of the
attribute values, e.g. the scale of the 𝑋, 𝑌 and 𝑍.

Table II. Kd-tree configuration parameters

Parameter Default value Description
Position quantification [bits] 10 Precision of the quantised box
Colour quantification [bits] 8 2 = 256 colours

Compression level (CL) 7
Range = [0-10]
10 – Best compression, slowest speed
0 – Worst compression, fastest speed

In comparison with the octree-based PCC, that holds a consistent and predictable structure over time, kd-

trees divide the space at each tree leaf based statistical parameters such as the median. This makes kd-trees
highly dependent on the point cloud's bounding box and the data lying within [15]. This bounding box can
vary drastically when acquiring data in real-time and by the type of sensor used. Hence, kd-trees are
considered efficient for one-off PCC, for multiple frame codification, kd-tree can be expensive to compute.

3.3. ROS Integration

The integration of cameras, compression algorithms and network connection were conducted within the
ROS middleware. To achieve compatibility, containerisation was also utilised in order to isolate camera-
specific libraries and controllers from the rest of the system. Figure 3 shows a simplified schematic diagram
of the setup.

Fig 3. Schematic diagram of the compression/decompression setup.

The codified point cloud resulting from the compression was encapsulated in the form of a customised ROS
message. The message structure contains information such as sequence number, time stamp and reference
frame, cloud ID and the string of characters corresponding to the codified cloud.

4. Results

The performance of each compression technique is assessed against four key performance metrics:

 Number of points, before compression and after decompression.

 Compression and decompression execution time.

 Size, in kb, of the compressed cloud.

 Transmission time.
Compression and decompression are performed in two different computers simulating the remote and

local systems. Both devices have been connected to a standard home router through Ethernet. In order to
ensure synchronised time stamps for determining transmission time, computer's clocks were synchronised
using network time protocol (NTP). TCP is used for network communications. Other protocols such as UDP
may provide faster transmission rates at the cost of potentially less reliable data transfer.

For comparison purposes, we have used two different RGBD cameras with different characteristics: Kinect2
and Zivid One+ Small. Kinect2 is widely used within the community due to its low cost and high-quality point
cloud data. Zivid is a sophisticated industrial camera that provides very high resolution and density point

clouds. In its SD resolution, Kinect2 can provide circa 220k points per frame, where in contrast with Zivid can
deliver over 2M points per frame.

For the PCL's octree compression, the 12 pre-defined profiles shown in Table I are compared. For the
DRACO's kd-tree codification, the compression level (CL), listed in Table II, is swept from 0 to 10. For each
compression profile, a stream of 100 raw point clouds is gathered within the workspace of each sensor. This

is done to avoid NaN values (invalid readings) and to achieve a consistently dense point cloud.
The results obtained using Kinect2 and Zivid camera are shown in Fig 4 and Fig 5 respectively. The left and

right columns on each figure corresponds to a different compression technique, kd-trees (DRACO) and
octrees (PCL) respectively.

Fig 4. Compression performance evaluation using Kinect2.

The first row shows the number of points before compression and after decompression. As can be observed,
DRACO performs a lossless compression while PCL is lossy, having a loss ratio of up to ~ 92% in its low-resolution
compression profiles (LRON-C, LRON-NC, LROFF-C, LROFF-NC).

The second row shows the execution time for compression and decompression. DRACO's kd-tree encoder
exhibits a jump in the computational time CL5 and CL6 for compression while decompression time remains
steady over all compression levels. PCL's compression and decompression times follow a similar trend varying
due to resolution and colour coding.

The codified cloud size, listed in the third row, remains almost the same for all DRACO's compression levels
making this parameter invariant to the compression level. This also relates to the invariance on decompression
time. PCL's octree cloud size varies drastically when colour is not encoded. For Kinect2 and Zivid point cloud data,

DRACO's compression ratio is ~5.25 and ~7.75, respectively, whilst PCL's compression ratio using MRON-C profile
is ~6 and ~10.9, respectively.

Fig 5. Compression performance evaluation using Zivid One+ Small camera.

Transmission time, shown in the last row of Fig 4 and Fig 5, is dependent on the size of the compressed cloud.
For referencing, the transmission of a single raw point cloud frame of Kinect2 and Zivid cameras takes ~1.34 and
~4.5 seconds respectively. Thus, for Kinect2 and Zivid cameras, DRACO provides a transmission ratio improvement
of ~33.5 and ~15 respectively, whilst PCL's MRON-C profile provides a transmission ratio improvement of ~35.2
and ~19.5 respectively. The transmission time could be improved by other means, this would include modification
on both the software and hardware. To begin with, a different communication protocol could be used, such as UDP.
Implementing the same algorithms on a high-end network system together with a dedicated network device could
offer a faster transmission rate. Given the importance of high transmission rate in achieving realistic, accurate
visualisation systems, we may consider adopting some of these changes in the future to speed up transmission of
the data.

5. Conclusions

This paper provides a comparative study between two different point cloud compression techniques, kd-
tree and octree, using DRACO and Point Cloud Library, respectively. This study is implemented using the ROS
communication middleware. Compressed point cloud data transmits across the network faster, as opposed
to transmission of raw data. Empirical results illustrate that the kd-tree implementation exhibits invariable

point cloud compression size for different compression levels. Thus, causes variation only on the quality of
the compressed cloud. The MRON-C (medium resolution with colour) compression profile used in the octree
implementation results in a challenging trade-off between data loss and compressed cloud size, whilst
maintaining colour information.

 To facilitate integration within the ROS middleware, a new ROS message type is created and used to
transmit the codified data across the ROS network. Latency is considered as a big problem within the ROS
community, and results demonstrated in this paper show that the point cloud compression improves the

latency of the point cloud transmission drastically.
The research presented in this paper lays out the payment towards achieving improvements on viewing

systems and we are aiming to extend our implementation to facilitate real-time visualisation of remote
environments for object manipulation and grasping using a digital twin in the future.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

SP conducted the research and software development, IC and RS provided guidance, support and feedback;
all authors had approved the final version.

Acknowledgment

This work is funded by the UK Engineering \& Physical Sciences Research Council (EPSRC) Grant No.
EP/S03286X/1. The authors would like to thank Michael Hellebrand and National Nuclear User Facility for

Hot Robotics project (Grant No. EP/T011432/1) for leasing hardware to support this research.

References
(Journal article)
[1] Nee A., Ong S. (2013). Virtual and augmented reality applications in manufacturing. 7th IFAC Conference

on Manufacturing Modelling, Management, and Control, IFAC Proceedings Volumes: Vol. 46, No. 9, (pp. 15
– 26).

[2] Sanders S., Carman P. (2006). Colour, design and virtual reality at jet. Optics & Laser Technology: Vol. 38,
No. 4, (pp. 335 – 342). Colour and Design in the natural and man-made worlds.

[3] Graziosi D., Nakagami O., Kuma S., Zaghetto A., Suzuki T., Tabatabai A. (2020). An overview of ongoing
point cloud compression standardization activities: video-based (v-pcc) and geometry-based (g-pcc).
APSIPA Transactions on Signal and Information Processing, Vol. 9.

[4] Jackins C. L., Tanimoto S. L. (1980). Oct-trees and their use in representing three-dimensional objects.

Computer Graphics and Image Processing, Vol. 14, No. 3, (pp. 249 – 270).
[5] Meagher D. (1982). Geometric modelling using octree encoding. Computer Graphics and Image

Processing, Vol. 19, No. 2, (pp. 129 – 147).
[6] Saona-Vazquez C., Navazo I., Brunet P. (1999). The visibility octree: a data structure for 3d navigation.

Computers and Graphics, Vol. 23, No. 5, (pp. 635 – 643).

[7] Wang P. S., Liu Y., Guo Y. X., Sun C. Y., Tong X. (2017). O-cnn: Octree-based convolutional neural networks
for 3d shape analysis. ACM Transactions on Graphics., Vol. 36, No 4.

[8] Bentley J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, Vol. 18, (p. 509517).

[9] Gandoin P. M., Devillers O. (2002). Progressive lossless compression of arbitrary simplicial complexes.
ACM Transactions on Graphics, Vol. 21, (p. 372379).

[10] Lien J. M., Kurillo G., Bajcsy R. (2010). Multi-camera tele-immersion system with real-time model driven
data compression. The Visual Computer, Vol. 26, (pp. 3–15).

[11] Hoare C. A. R. (1961). Algorithm 64: Quicksort. Communications of the ACM, Vol. 4. Association for

Computing Machinery (p. 321).

(Conference paper in published proceedings)
[12] Do T. D., Laviola J. J., McMahan R. P. (2020). The effects of object shape, fidelity, color, and luminance on

depth perception in handheld mobile augmented reality. In proceedings of IEEE International Symposium
on Mixed and Augmented Reality (ISMAR).

[13] Rusu R. B., Cousins S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China.

[14] Kammerl J., Blodow N., Rusu R. B., Gedikli S., Beetz M., Steinbach E. (2012). Real-time compression of
point cloud streams. In 2012 IEEE International Conference on Robotics and Automation, (pp. 778–785).

[15] Cao C., Preda M., Zaharia T. (2019), 3d point cloud compression: A survey. The 24th International
Conference on 3D Web Technology. (pp. 1–9).

[16] Chen S. (1990). A spherical model for navigation and spatial reasoning. In Proceedings., IEEE
International Conference on Robotics and Automation, Vol.2, (pp. 776–781).

[17] Tatarchenko M., Dosovitskiy A., Brox T., (2017). Octree generating networks: Efficient convolutional
architectures for high-resolution 3d outputs. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV).
[18] Schnabel R., Klein R. (2006). Octree-based point-cloud compression. Symposium on Point-Based Graphics.

The Eurographics Association (pp. 111–120).

[19] Waschbüsch M., Gross M., Eberhard F., Lamboray E., Würmlin S. (2004). Progressive compression of
point-sampled models. In Proceedings of the First Eurographics Conference on Point-Based Graphics,

SPBG’04. Eurographics Association, (p. 95103).
(Online resource)
[20] Google (2020). Draco: 3d data compression. Library for compressing and decompressing 3D geometric

meshes and point clouds, Last access February 2020.

[21] Motion Picture Experts Group (2016). Call for proposals for point cloud compression.

https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression/call-proposals-point-
cloud-compression.

[22] R. D. Forums (2019). Compressed pointcloud2. ROS discourse forums. Last edit on September 2019.
https://discourse.ros.org/t/compressed-pointcloud2/10616.

[23] W. F. Wikipedia (2010). Schematic drawing of an octree, a data structure of computer science. Online,
March 2010. https://commons.wikimedia.org/wiki/File:Octree2.svg.

Salvador Pacheco-Gutierrez was born in Irapuato, Mexico. He studied in The University
of Guanajuato, where he obtained his BSc in Mechatronics Engineering focusing on
kinematic analysis of robot manipulators. He then studied a PhD in robotics in The

University of Manchester UK, applying control theory and computer vision to mobile robots
for nuclear decommissioning.

He conducted post-doctoral research in The University of Manchester in model
predictive control for applications in energy management. He then moved to industry to

lead the automation and robotics development for Sensor Coating Systems LTD in London. During this time,

he delivered several public funded research projects and supervised internships and master students in their
industrial placements and thesis. He currently works as Control Systems Software Engineer in the UK Atomic
Energy Authority, where he is working in an EPSRC funded project focused on the development of a digital-
twin system for remote handling applications in collaboration with The University of Manchester and the

Korea Atomic Energy Research Institute. His main interests are robotics, computer vision, machine learning
and software development.

Ipek Caliskanelli PhD MIET is a Research Engineer at RACE. Ipek has granted her PhD in
Computer Science from the University of York in 2014. Her thesis explored resource

efficiency and load-distribution of distributed embedded systems.
 Ipek’s research interests are focused on optimisation, real-time systems-of-systems
control, multi-agent systems, cooperation and coordination. Ipek has 10 years of academic
and industrial research experience in developing software frameworks and control

algorithms for wide range of distributed digital systems including embedded, cyber-physical and robotic
systems. Her industry focus primarily span around real-time interoperable systems-of-systems control
frameworks for nuclear and other extreme environments.

Robert Skilton graduated with an MSc in Cybernetics in 2011, and is currently studying
for a PhD in Autonomous Robotics and Machine Learning at the Surrey Technology for
Autonomous systems and Robotics (STAR) Lab.
 He is Head of Cybernetics and Lead Technologist at RACE, a UK centre for Remote
Applications in Challenging Environments, where he leads a team specialising in control

systems, autonomy, and perception for robotic operation and inspection in hazardous
environments. He is a Chartered Engineer, brings experience in developing robotic systems for hazardous
environments and has developed numerous robotic and software platforms for use in nuclear and other
extreme environments. Robert has experience from a wide range of roles on industrial engineering and R&D

projects including in telerobotics, and is currently leading various related activities including the Robotics
and AI in Nuclear (RAIN) work on teleoperation of industrial robots.

