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Adaptive Identifier-Critic-Based Optimal Tracking
Control for Nonlinear Systems With

Experimental Validation
Jing Na , Member, IEEE, Yongfeng Lv , Graduate Student Member, IEEE, Kaiqiang Zhang , Member, IEEE,

and Jun Zhao , Graduate Student Member, IEEE

Abstract—This article presents and practically validates an
identifier-critic-based approximate dynamic programming (ADP)
method to online address the optimal tracking control problem
for nonlinear continuous-time unknown systems. The imposed
assumption on precisely known system dynamics is obviated
via a neural network (NN) identifier. A static control is first
adopted to retain the steady-state tracking response, while an
optimal control derived via the ADP method is proposed to reg-
ulate the tracking error by minimizing a cost function. A critic
NN is then trained online to obtain the solution of the associated
Hamilton–Jacobi–Bellman (HJB) equation. The learning of the
identifier NN and critic NN is performed online simultaneously
by tailoring a novel adaptation method, which can guarantee the
convergence of the estimated NN weights. Consequently, the critic
NN can be used to construct the optimal control policy directly,
such that the actor NN used in the previous ADP schemes is
avoided. Simulations are performed to verify the suggested con-
trol, and experiments on a helicopter plant are carried out to
show its feasibility and improved control response.

Index Terms—Adaptive dynamic programming, adaptive con-
trol, neural network (NN), optimal control.

I. INTRODUCTION

THE PRIMARY tracking control design objective is to
find proper control actions such that the state (or out-

put) of a system can track a given trajectory. Among different
control schemes, adaptive control [1] has been developed for
systems with uncertain parameters. To minimize a predefined
cost function, optimal control [2] has been derived based on
the Pontryagin’s minimum principle. Although it is practi-
cally useful, classical optimal control was solved offline based
on fully known system dynamics [3]. Hence, some effort has
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been recently made to use adaptive techniques in the optimal
control synthesis. Specifically, optimal control can also be
solved via the reinforcement learning (RL) algorithms [4].
In this line, Werbos [5] introduced an RL-based approximate
dynamic programming (ADP) with a critic–actor framework,
which employs two neural networks (NNs) to obtain optimal
control solutions. This idea has been further developed for
solving various optimal control problems [2], [3], [6]–[14].

The ADP approaches have initially been developed
for discrete-time (DT) systems [10], [15]–[20], whereas it
is a nontrivial challenge to develop ADP control algo-
rithms for continuous time (CT) systems [2]–[4], [6], [21].
Abu-Khalaf and Lewis [22] proposed an offline ADP scheme
to design an approximately optimal control. In [3] and [23], an
integral RL-based online policy iteration (PI) was developed,
where a critic NN and an actor NN are trained sequentially.
A synchronous ADP algorithm [24] was further proposed,
with both the critic and actor NNs being trained simultane-
ously. To relax assumptions on accurate system dynamics,
an identifier-critic–actor ADP structure was presented using
an identifier to estimate the unknown drift dynamics [25]. It
is noted that the convergence of identifier NN weights was
not addressed, though the identifier output error converges to
zero in [25]. The work of [26] further relaxed the assump-
tion on the input dynamics and presented a new adaptation in
terms of the experience replay method. Note that an extra actor
NN is used in these ADP schemes to derive control actions,
thereby, imposing demanding computational costs. In paral-
lel, Jiang and Jiang [27], [28] presented a new PI method,
which solves the algebraic Riccati equation (ARE) to find an
optimal control of linear CT systems without the need for
NNs. Recently, an off-policy RL scheme [29] was also used to
solve robust control of uncertain systems using an optimal con-
trol method. However, all of the above results address optimal
regulation problem only.

Compared with the optimal regulation problem, the track-
ing control is more complicated due to its noncausal prop-
erty [2], [30]. The inverse optimal control [31], [32] was
studied for specific systems to minimize the cost function with-
out solving the Hamilton–Jacobi–Bellman (HJB) equation.
Alternatively, an NN approximator was used in the optimal
control design of linear systems [33]. However, ADP-based
optimal tracking control of nonlinear CT systems has been
less developed in comparison to the optimal regulation. In
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fact, the existing ADP solutions for optimal tracking control
can be mainly divided in two categories: In [34] and [35],
linear quadratic output tracking of linear systems was solved
by using a system augmentation approach, where the track-
ing error dynamics and command generator are merged into
one augmented system. However, extension of this idea to
fully unknown nonlinear systems is challenging. Another solu-
tion for optimal tracking control was given in [36], where
a static control is used to transform the tracking control of
the original system into the optimal regulation of an induced
error system. In this line, the work of [37] combined the
system augmentation and steady-state control to present an
optimal tracking control for uncertain systems. The subse-
quent work [38] adopted a concurrent-earning-based identifier
for tracking control of nonlinear systems with unknown drift
dynamics. In [39], Q-learning was incorporated into the lin-
ear virtual reference feedback tuning to achieve a model-free
tracking control. An observer was used together with the
critic–actor-based ADP control in [40] to remedy the unknown
system state and dynamics. However, these optimal track-
ing controllers all depend on the identifier-critic–actor-based
ADP structure. The other issue is these approaches require
an extra actor NN to prove the closed-loop stability, because
the convergence of the identifier NN weights is not addressed
for the adaptive laws designed via the gradient descent
algorithm [36]. Hence, this ADP structure with triple approx-
imators has slow convergence speed and heavy computational
costs. This problem was tackled in our previous work [41] by
developing a dual approximator-based ADP method. However,
the input dynamics of the system are assumed to be a known
constant in [41].

This article proposes and practically validates a simpli-
fied ADP framework based on an identifier NN and a critic
NN only, motivated to solve the optimal tracking control
problem of nonlinear systems with fully unknown dynam-
ics. Specifically, an error feedback term is used to enhance
the convergence in this work, therefore, remedying previously
imposed assumptions on the input dynamics [41]. Then a com-
posite control with a steady-state control and an optimal
control is suggested. First, an NN identifier is constructed to
online estimate the unknown dynamics. The identified dynam-
ics are used to retain the steady-state tracking response, while
the optimal control is then proposed to regulate the control
error and minimize a cost function. To realize this optimal
control, a critic NN is trained online to solve the derived
optimal equation. Both the identifier NN and critic NN can
be trained simultaneously by using adaptive algorithms with
the obtained estimation error [42]. Since this adaptation is
designed to ensure the convergence of the NN weights to
unknown ideal values, the critic NN can be utilized to directly
derive the optimal control action. Therefore, the widely used
actor NN is avoided, resulting in an effective ADP frame-
work with dual approximators, reduced computational burden,
and fast convergence. Consequently, it can be seen that the
adaptive laws presented in this article are different to the
Least-Squares [25] or Levenberg–Marquardt algorithms [24]
in other ADP schemes. Simulations are given to verify the
proposed methods. More specifically, practical experiments

are carried out on a Quanser helicopter to exemplify the
proposed ADP method and demonstrate its improved control
performance.

In brief, this article has the following contributions in
comparison to other ADP methods.

1) An identifier-critic-based ADP scheme is used. This
scheme has a dual approximation structure, resulting
in reduced computational costs. Since the identifier and
critic NNs are trained via a novel adaptation rather than
the classical gradient schemes [24], [25], [36], the con-
vergence of critic NN weights can be retained. Thus,
the actor NN used in the existing identifier-critic–actor-
based ADP structure [25], [36] is avoided.

2) The previously imposed assumptions on the accurate
model of drift dynamics [3], [24], [37] and input dynam-
ics [36], [38], [41] are obviated. This work suggests an
improved identifier over previous work [41].

3) Practical experiments are given to exemplify the
presented ADP method, besides numerical simulations.
It is found that the steady-state control with an optimal
compensation derived via ADP can achieve better track-
ing performance.

The problem formulation is shown in Section II. The NN
identifier is designed in Section III. Section IV gives the
adaptive optimal control design. Simulations and experimen-
tal results are provided in Sections V and VI to validate
the proposed control method, respectively. Section VII draws
some conclusions.

II. PROBLEM FORMULATION AND PRELIMINARIES

A class of nonlinear affine multi-input multi-output (MIMO)
systems are considered as

ẋ = f (x)+ g(x)u (1)

where x ∈ R
n, u ∈ R

m are the system state and control vectors;
f (x) ∈ R

n and g(x) ∈ R
n×m are unknown functions.

The aim of this article is to design a controller u(t), which
not only guarantees that the state x(t) of system (1) tracks
a given reference trajectory xd(t) but also makes the tracking
error converge to zero in an optimal manner, i.e., to minimize
a predefined performance index [36] given by

V(e(t)) =
∫ ∞

t
r(e(τ ), u(τ ))dτ (2)

where e = x−xd denotes the control error, r(•, •) : Rn×R
m →

R with r(e(τ ), u(τ )) ≥ 0 is the utility function; xd(t) and ẋd(t)
are bounded references to be tracked; f (x)+g(x)u is Lipschitz
on a compact set �, thus system (1) is stabilizable [24]. The
tracking error e(t) is utilized in the cost function (2) as this
article studies optimal tracking control problem. In order to
address the unknown dynamics in system (1), we first propose
an NN identifier, and then use the reconstructed dynamics to
design a controller that realize an effective composite control
with a new ADP scheme.

Definition 1 [1]: A vector or matrix φ is persistently
excited (PE) if there exist constants τ > 0, ε > 0 such that∫ t+τ

t φ(r)φT(r)dr ≥ εI, ∀t ≥ 0.
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Throughout this article, λmax(·) and λmin(·) represent the
maximum and minimum eigenvalues of matrices.

III. ADAPTIVE NN-BASED IDENTIFICATION

To handle the unknown dynamics in system (1), an adaptive
identifier is proposed. Without loss of generality, the unknown
dynamics f (x), g(x) are assumed to be smooth functions on
a compact set �, and thus approximated via NNs [43]–[45]
as

f (x) = θξ(x)+ εf , g(x) = ψς(x)+ εg (3)

with θ ∈ R
n×kθ , ψ ∈ R

n×kψ the ideal NN weights, ξ ∈ R
kθ ,

ς ∈ R
kψ×m the regressors, and εf , εg the approximation errors.

Substituting the NN approximation (3) into system (1), we
can rewrite system (1) in a compact form as

ẋ = WT
1 φ1(x, u)+ εT (4)

with W1 = [θ, ψ]T ∈ R
d×n the augmented weights matrix,

φ1(x, u) = [ξT(x), uTςT(x)]T ∈ R
d the augmented regres-

sor for d = kθ + kψ , and εT = εf + εgu the augmented
NN error. Note that the NNs can also be replaced by fuzzy
systems [46]–[48]. In practice, the basis function in the regres-
sors ξ, ς can be implemented by sigmoid functions. For
specific systems where the unknown nonlinearities can be
formulated in the linearly parameterized form as (3), the
regressors can be designed based on the plant information as
shown in the case studies (see simulations in Section V).

As shown in [25], we know that the NN regressors ξ , ς ,
and approximation errors εf , εg are all bounded. Based on
Weierstrass theorem [22], [24], it is true that the NN errors εf

and εg will vanish as the number of neurons increases (i.e.,
kθ , kψ → ∞).

Remark 1: Some recent works have reported several adap-
tive identifier designs for system (4), e.g., [25], [36] and
references therein. However, the adaptive laws used to update
the NN weights are driven by the identifier output error (the
error between x and the identifier output x̂), so that the conver-
gence of identifier NN weights cannot be retained. This article
will address this issue by developing a new adaptive law that
guarantees the convergence and simplifies the control design.

We first impose filtering operations on the measured x and
φ1 in (4) to obtain the filtered variables xf and φ1f as [49]{

kẋf + xf = x
kφ̇1f + φ1f = φ1

(5)

where k > 0 is a filter coefficient.
Based on (4) and (5), it can be verified

ẋf = x − xf

k
= WT

1 φ1f + εTf (6)

where εTf is the filtered bounded error kε̇Tf + εTf = εT .
The auxiliary matrices P1 ∈ R

d×d and Q1 ∈ R
d×n now can

be calculated as⎧⎨
⎩

Ṗ1 = −�1P1 + φ1fφ
T
1f , P1(0) = 0

Q̇1 = −�1Q1 + φ1f

[
x−xf

k

]T
, Q1(0) = 0

(7)

where �1 > 0 is a forgetting factor to guarantee the bounded-
ness of P1 and Q1.

The aim to introduce the filters in (5) and variables P1,Q1
is to online calculate the matrix M1 ∈ R

d×n as

M1 = P1Ŵ1 − Q1. (8)

With the matrix M1, the NN weights can be estimated by

˙̂W1 = −�1M1 (9)

with �1 > 0 is the learning gain. The motivation of introducing
the auxiliary matrices P1 and Q1 is to extract the estimation
error variable M1, which enables the adaptive law (9) to retain
convergence of the estimated NN weighted, using the known
system dynamics x, φ1.

The PE condition is necessary for guaranteeing the con-
vergence of the adaptive laws in [22], [24], [25], and [36].
In this work, the relationship between the PE condition and
the positive definiteness of matrix P1 is first investigated as
follows.

Lemma 1: Suppose the augmented regressor φ1 is PE, then
P1 is positive definite, i.e., there exists a constant σ1 > 0 such
that λmin(P1) > σ1.

Proof: The transfer function of (5) is given by 1/(ks + 1),
which is stable, minimum phase and strictly proper.
Consequently, the PE property of the filtered regressor φ1f

equals to the PE property of φ1 [1].
Suppose φ1 is PE, indicating φ1f is PE, then from

Definition 1, the PE condition
∫ t+τ

t φT
1f (r)φ1f (r)dr ≥ εI is

equivalent to
∫ t

t−τ φ
T
1f (r)φ1f (r)dr ≥ εI for t > τ > 0. Hence,

the following inequality is true:

e−�1τ

∫ t

t−τ
φT

1f (r)φ1f (r)dr ≥ e−�1τ εI. (10)

Within the time interval r ∈ [t − τ, t], we know t − r ≤ τ ,
and thus e−�1(t−r) ≥ e−�1τ > 0 holds, such that∫ t

t−τ
e−�1(t−r)φT

1f (r)φ1f (r)dr ≥
∫ t

t−τ
e−�1τ φT

1f (r)φ1f (r)dr

≥ e−�1τ εI. (11)

Moreover, it can be verified for all t > τ > 0 that∫ t

0
e−�1(t−r)φT

1f (r)φ1f (r)dr >
∫ t

t−τ
e−�1(t−r)φT

1f (r)φ1f (r)dr.

(12)

From (11) and (12), one can conclude that

P1 =
∫ t

0
e−�1(t−r)φT

1f (r)φ1f (r)dr > e−�1τ

∫ t

t−τ
φT

1f (r)φ1f (r)dr

≥ e−�1τ εI. (13)

Hence, P1 is positive definite, therefore, λmin(P1) > σ1 > 0
is true with σ1 = e−�1τ ε. This finishes the proof.

Remark 2: Although the PE condition is well-recognized
in the ADP literatures [22], [24], [25], [36], it is difficult
to test the PE condition directly [1]. Lemma 1 shows that
the PE condition implies the positive definite property of P1.
Therefore, it is possible to online validate the PE property
by assessing whether λmin(P1) > σ1 > 0. This online verifi-
able condition λmin(P1) > σ1 > 0 is used in this article and
it also provides a feasible method to test the PE condition.
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However, Lemma 1 does not necessarily show the relaxation
of the PE condition, though this can also be done by using
the concurrent-learning or experience replay (see [26], [38]).

The main conclusion of this section is presented as follows.
Theorem 1: For nonlinear system (4) with the adaptive algo-

rithm (9), if φ1 satisfies the PE condition, the identifier weights
error W̃1 = W1 − Ŵ1 converges to a small set around zero.
Moreover, in the absence of NN approximation errors (i.e.,
εT = 0), W̃1 converges to zero.

Proof: We first derive the solution of (7) as⎧⎨
⎩

P1(t) = ∫ t
0 e−�1(t−r)φ1f (r)φT

1f (r)dr

Q1(t) = ∫ t
0 e−�1(t−r)φ1f (r)

[
x(r)−xf (r)

k

]T
dr.

(14)

Then from (6)–(14), it can be validated that

Q1 = P1W1 − υ1 (15)

with υ1 = − ∫ t
0 e−�1(t−r)φ1f (r)εT

Tf (r)dr being a bounded term
since the regressor φ1f and error εT are all bounded, that is
‖υ1‖ ≤ ευ1 for ευ1 > 0.

From (8) and (15), one can verify

M1 = P1Ŵ1 − P1W1 + υ1 = −P1W̃1 + υ1. (16)

Here, the matrix M1 contains the information of estimation
error W̃1. In this sense, the proposed adaptive law is an
improved gradient algorithm to minimize the estimation error
rather than the observer error used in other ADP schemes.
Given a Lyapunov function V1 = tr(W̃T

1 �
−1
1 W̃1)/2, V̇1 is

obtained along (9) and (16) as

V̇1 = tr
(

W̃T
1 �

−1
1

˙̃W1

)
= −tr

(
W̃T

1 P1W̃1
)+ tr

(
W̃T

1 υ1
)

≤ −∥∥W̃1
∥∥(σ1

∥∥W̃1
∥∥− ευ1

)
. (17)

Based on the Lyapunov Theorem, the error W̃1 converges to
a small set around zero �1 : {W̃1|‖W̃1‖ ≤ ευ1/σ1}, whose
ultimate bound is determined by the NN error εT and σ1.

Moreover, in the ideal case of εT = 0 and thus υ1 = 0, (17)
is reduced to

V̇1 = −tr
(
W̃T

1 P1W̃1
)
< −σ1

∥∥W̃1
∥∥2 ≤ −μ1V1 (18)

with μ1 = 2σ1/λmax(�
−1
1 ) a positive constant. Equation (18)

implies that W̃1 exponentially converges to zero.
Remark 3: As shown in the proof of Theorem 1 [e.g., (16)],

the variable M1 defined in (8) includes the estimation error W̃1
with a bounded residual error υ1. This residual error υ1 will
vanish by using sufficient neurons in the identifier NN (4) as
shown in [22]. Thus, in this article, M1 is adopted to design
the adaptive law (9) to achieve the convergence of Ŵ1 to W1.

IV. OPTIMAL TRACKING CONTROL DESIGN

The optimal tracking control is designed by incorporating
the identified dynamics into the ADP synthesis. Therefore,
system (1) can be rewritten as

ẋ = θ̂ ξ(x)+ ψ̂ς(x)u + εN + εT (19)

where θ̂ and ψ̂ are the estimates of θ and ψ . Here, θ̂ and
ψ̂ can be derived from Ŵ1 given by the adaptive law (9).

Fig. 1. Designed ADP-based control system structure.

εN = W̃1φ1 denotes the identifier error, which is also bounded
as W̃1 is bounded (proved in Theorem 1) and the NN regres-
sor φ1 is bounded. Thus, we have ‖εN‖ ≤ ηN for a positive
constant ηN .

For the purpose of tracking control design, the tracking error
can be defined as e = x − xd, so that

ė = ẋ − ẋd = θ̂ ξ(x)+ ψ̂ς(x)u + εN + εT − ẋd. (20)

The objective of tracking control is to design a controller such
that e → 0 in an optimal manner. Thus, a composite control
action u with two parts [36], [41] can be designed

u = ud + ue (21)

where ud is used to retain the steady-state performance, which
should compensate the undesired system dynamics, and ue is
used to regulate the tracking error by minimizing a given cost
function. The schematic of the proposed identifier-critic-based
optimal control system is shown in Fig. 1.

A. Steady-State Control

As aforementioned, ud should be designed to guarantee an
ideal tracking performance e = x − xd = 0 for (20). Hence,
ud needs to compensate for the effect of ψ̂ς(x), θ̂ξ(x), and it
can be designed as

ud = ĝ+(x)
[
ẋd − θ̂ ξ(x)− Kee

]
(22)

with Ke > 0 the feedback gain, ĝ+(x) =
([ψ̂ς(x)]T ψ̂ς(x))−1[ψ̂ς(x)]T is the Moore–Penrose inverse
of matrix ψ̂ς(x) as used in [37] and [38]. To avoid the
potential singularity in calculating ĝ+(x), the projection
operator in [25] can be applied to the adaptive law (9), such
that ψ̂ς(x) 
= 0 is retained. Clearly, ud can be obtained based
on e, ẋd and ψ̂ς(x), θ̂ ξ(x) from identifier (4).

Then by substituting (22) into (20), the dynamics of tracking
error e are described as

ė = −Kee + ψ̂ς(x)ue + εN + εT . (23)

With the help of steady-state control (22), the tracking error
in (20) is simplified to (23). Consequently, the optimal tracking
control for system (19) is reformulated to the regulation of
system (23) by using an optimal control ue. In comparison
to previous work [41], the imposed assumption on the input
dynamics g(x) is removed and a feedback term Kee is added
in the steady-state control to enhance convergence.
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B. Optimal Control

In this section, a simplified ADP framework with a critic
NN only will be introduced to design ue to stabilize (23).
As explained above, the steady-state control ud can compen-
sate for the undesired dynamics ψ̂ς(x), θ̂ξ(x) and reduce (20)
into (23). Therefore, the cost function (2) can be reformu-
lated as

V(e) =
∫ ∞

t
r(e(τ ), ue(e(τ )))dτ (24)

with r(e, ue) = eTQe+uT
e Rue the utility function of the track-

ing error e and optimal control ue, where Q and R are the
weighting matrices.

To solve the optimal control problem of system (23), the
Hamiltonian is given as

H(e, ue,V) = VT
e

[
−Kee + ψ̂ς(x)ue + εN + εT

]

+ eTQe + uT
e Rue (25)

where Ve � ∂V/∂e is the partial derivative of V .
Then based on the optimality principle in [2], an optimal

cost function V∗ can be denoted by

V∗(e) = min
ue∈�(�)

(∫ ∞

t
r(e(τ ), ue(e(τ )))dτ

)
(26)

which must satisfy the following HJB equation:

0 = min
ue∈�(�)

[
H
(
e, u∗

e ,V∗)]. (27)

The optimal control u∗
e is then derived based on (25)–(27)

by using ∂H(e, u∗
e ,V∗)/∂u∗

e = 0 as

u∗
e = −1

2
R−1

[
ψ̂ς(x)

]T ∂V∗(e)
∂e

. (28)

To implement optimal control (28), the HJB (27) should
be solved to provide V∗. However, it is generally difficult
to solve (27) as it is a nonlinear partial differential equa-
tion (PDE). Inspired by the ADP principle [3], [22]–[25],
a critic NN is used to estimate V∗. Assuming V∗ is a contin-
uous function on the compact set �, V∗ can be approximated
by a critic NN in the following way:

V∗(e) = WT
2 φ2(e)+ εv (29)

where its partial derivative ∂V∗(e)/∂e is given by

∂V∗(e)
∂e

= ∇φT
2 W2 + ∇εv. (30)

Here, W2 ∈ R
land φ2(e) ∈ R

l are the critic NN weights and
regressor vector. εv is the critic NN error. l is the number of
NN nodes. ∇φ2 = ∂φ2/∂e and ∇εv = ∂εv/∂e are the partial
derivatives of φ2 and εv.

By using (28) and (29), u∗
e can be given as

u∗
e = −1

2
R−1

[
ψ̂ς(x)

]T(∇φT
2 W2 + ∇εv

)
. (31)

Assumption 1 [22]: The NN weights W2, regressors φ2(•)
and ∇φ2(•) are bounded by ‖W2‖ ≤ WN, ‖φ2‖ ≤ φN ,
‖∇φ2‖ ≤ φM . The error ∇εv is also bounded by ‖∇εv‖ ≤ φε.

In the control implementation, the regressor vector φ2 can
be selected such that its components {φ2i(e) : i = 1, . . . , l}

provide an independent basis of V∗. Based on the Weierstrass
theorem [22], [24], it is true that the approximation error and
its partial derivative εv,∇εv → 0 in the critic NN (29), (30)
for l → +∞.

Since the critic NN weights W2 in (29) are unknown, the
practical critic NN output V̂(e) to estimate V∗(e) is

V̂(e) = ŴT
2 φ2(e) (32)

where Ŵ2 is the estimated NN weights to be updated via the
online adaptation algorithm to be presented.

Then from (28) and (32), the practical optimal control is
described by

ûe = −1

2
R−1[ψ̂ς(x)]T ∂V̂(e)

∂e

= −1

2
R−1

[
ψ̂ς(x)

]T∇φT
2 (e)Ŵ2 (33)

with ∂V̂(e)/∂e = ∇φT
2 Ŵ2 the derivative of the critic NN

output.
Consequently, the practical composite controller u is

u = ud + ûe (34)

where ud is the steady-state control given in (22) and ûe is the
optimal control defined in (33).

Remark 4: In most of existing ADP control designs for (23)
(e.g., [22]–[25] and references therein), the classical critic–
actor structure is utilized, where a critic NN and an actor
NN are used to approximate the value function and the con-
trol policy, respectively. Hence, they need fairly long transient
to achieve convergence and significant computational costs.
Moreover, most of these approaches either run offline [22],
[23] or assume that the system dynamics are known [24], [25].
In contrary to these approaches, the ADP framework proposed
in this article uses the critic NN only to derive the optimal con-
trol as (33). This could reduce the computational cost since
the actor NN is not needed. Moreover, both the identifier and
critic NNs are updated simultaneously in this article, leading
to a synchronous implementation rather than the sequential
scheme in [3].

C. Updating Critic NN Weights

The final problem to be addressed is to present an online
learning scheme to derive the critic NN weights Ŵ2 for con-
trol (33). For facilitating the following developments, the HJB
equation (25) with (30) is rewritten as:

0 = WT
2 ∇φ2

[
−Kee + ψ̂ς(x)ue

]
+ eTQe + uT

e Rue + εHJB

(35)

where εHJB = WT
2 ∇φ2(εN + εT)+ ∇εv(−Kee + ψ̂ςue + εN +

εT) is the residual HJB equation error, which is bounded and
sufficiently small with sufficient amount of NN nodes in the
critic NN [22], [24]. This is because εN, εT → 0 holds if we
set kθ , kψ → +∞, and ∇εv → 0 is true if we set l → +∞.
It can also be found from (35) that the convergence of W̃1 is
essential for the convergence of Ŵ2 since the identifier error
εN is involved in the residual error term εHJB.
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Define � = ∇φ2[−Kee+ψ̂ς(x)ue] and � = eTQe+uT
e Rue,

so that the HJB (35) is reformulated as

� = −WT
2 �− εHJB. (36)

It can be found from (36) that the weights W2 to be updated
appear in a parameterized formulation. Therefore, the adapta-
tion design proposed in Section III can be further tailored to
estimate W2 rather than to minimize the HJB equation error
εHJB by using the gradient method in [24], [25], and [36]. In
this case, the convergence of Ŵ2 to W2 can be proved.

The auxiliary matrix P2 ∈ R
l×l and vector Q2 ∈ R

l can be
calculated as{

Ṗ2 = −�2P2 +��T , P2(0) = 0
Q̇2 = −�2Q2 +��, Q2(0) = 0

(37)

with �2 > 0 the forgetting factor as used in (7).
The adaptive law for updating Ŵ2 is represented by

˙̂W2 = −�2M2 (38)

with �2 > 0 the learning gain. The vector M2 ∈ R
l is derived

from the variables P2 and Q2 in (37) by

M2 = P2Ŵ2 + Q2. (39)

Similar to Lemma 1, the following lemma is true.
Lemma 2: The PE condition of the regressor � in (36)

implies the positive definiteness of matrix P2 in (37), that is
λmin(P2) > σ2 > 0 for a constant σ2.

The convergence of adaptive law (38) is given as
Theorem 2: Considering adaptive algorithm (38) for critic

NN (32), if the regressor � in (36) is PE, then the weights
error W̃2 = W2 − Ŵ2 converges to a small set around zero.
Moreover, for null NN error εHJB = 0 thus, W̃2 converges to
zero exponentially.

Proof: The solution of (37) can be deduced as{
P2(t) = ∫ t

0 e−�2(t−r)�(r)�T(r)dr
Q2(t) = ∫ t

0 e−�2(t−r)��T(r)dr.
(40)

From (36) and (40), it holds Q2 = −P2W2 + υ2, where υ2 =
− ∫ t

0 e−�2(t−r)εHJB(r)�(r)dr is bounded by a positive constant
ευ2 as ‖υ2‖ ≤ ευ2.

Then, (39) is further derived as

M2 = P2Ŵ2 + Q2 = −P2W̃2 + υ2. (41)

Hence, M2 contains the information of estimation error, and is
used to derive the adaptive law with guaranteed convergence.
Select a Lyapunov function as V2 = W̃T

2 �
−1
2 W̃2/2, then V̇2 is

calculated from (38) and (41) as

V̇2 = W̃T
2 �

−1
2

˙̃W2 = −W̃T
2 P2W̃2 + W̃T

2 υ2

≤ −σ2
∥∥W̃2

∥∥2 + W̃T
2 υ2 ≤ −∥∥W̃2

∥∥(σ2
∥∥W̃2

∥∥− ευ2
)
. (42)

Based on the Lyapunov Theorem, it follows that W̃2 will con-
verge to a small set �2 : {W̃2|‖W̃2‖ ≤ ευ2/σ2}, whose size is
determined by the NN error ευ and the excitation level σ2.

Moreover, in the ideal case of εHJB = 0 (and thus
υ2 = 0), (42) is reduced to

V̇2 = −W̃T
2 P2W̃2 < −σ2

∥∥W̃2
∥∥2 ≤ −μ2V2 (43)

where μ2 = 2σ1/λmax(�
−1
2 ) is a positive constant. Thus, the

NN error W̃2 will converge to zero exponentially.
As shown in Theorem 2, the estimated weights Ŵ2 converge

to a set around W2. Thus, Ŵ2 can be used to directly calculate
optimal control (33), so that the actor NN can be avoided. This
suggests a simplified ADP method with dual approximators.

Remark 5: In the proposed ADP scheme, the filter constant
�i in (7) and (37) is a forgetting factor to retain the bounded-
ness of Pi and Qi. This constant introduces a d.c. gain 1/�i

for the filter 1/(s + �i); hence it cannot be set too small to
retain the convergence response. The constant k in (5) deter-
mines the “bandwidth” of the filter (•)f = (•)/(ks + 1), and
thus it needs to be small for enhancing the convergence speed.
Moreover, as shown in the proof of Theorems 1 and 2, the
learning gain �i, i = 1, 2 determines the convergence rate of
the estimation error W̃i. In practice, it can be set small initially
and then increased gradually to seek for better convergence
via a trial-and-error process.

D. Stability and Convergence Analysis

The controlled system stability and the convergence of
optimal control (33) can be summarized as follows.

Theorem 3: For nonlinear system (1), design the composite
control (34) with the steady-state control (22) and the optimal
control (33), where the adaptive laws (9) and (38) are used. If
the regressors φ1 and � are PE, then:

1) the tracking error e and the NN weights errors W̃1, W̃2
are uniformly ultimately bounded (UUB); the practical
control ûe in (33) will converge to a set around the
optimal solution u∗

e in (31), i.e., ‖ûe − u∗
e‖ ≤ εu holds

for a positive constant εu;
2) if the approximation errors are zero, the tracking error

e and the NN weights errors W̃1, W̃2 converge to zero;
the practical control ûe converges to u∗

e .
Proof: The detailed proof is shown in the Appendix.

V. SIMULATIONS

In this section, two simulation examples are given to
validate the theoretical studies.

Example 1: The following nonlinear system is studied
as [50]:⎧⎨

⎩
ẋ1 = −x1 + x2

ẋ2 = −0.5x1 − 0.5x2
(
1 − (cos(2x1)+ 2)2

)
+(cos(2x1)+ 2)u.

(44)

The purpose of tracking control is to make the system
states x1, x2 track the given demands x1d = sin(t) and
x2d = cos(t) + sin(t). Since the unknown nonlinear-
ities f (x), g(x) can be formulated in a linearly param-
eterized form (3), the regressor of identifier is set as

φ1 =
[

x1 x2 0 0
x1 0 x2(1 − x2(cos(2x1)+ 2)2) u cos(2x1)

0
u

]T

, and

the unknown weights W1 =
[ −1 1 0 0 0

−0.5 0 −0.5 1 2

]T

are esti-

mated using the adaptive law (9) to validate its convergence.
To achieve the tracking control target, the steady-state con-

trol (22) is accomplished with the optimal control (33), aiming
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Fig. 2. Estimated identifier weights Ŵ1.

Fig. 3. Estimation performance of f (x) and g(x).

to minimize the following optimal cost function [50]:

V∗(e) = 1

2
e2

1 + e2
2 (45)

with Q and R in (24) being identity matrices [50]. Hence, the
ideal optimal control is derived by

u∗
e = −1

2
R−1[g(x)]T ∂V∗(e)

∂e
= −(cos(2e1)+ 2)e2. (46)

To approximate the optimal value function (45), the regres-
sor of critic NN is chosen as φ2(e) = [e2

1, e1e2, e2
2]T , such

that the associated weights are W2 = [0.5, 0, 1]T . The sim-
ulation parameters are set as k = 0.001, �1 = �2 = 1,
�1 = �2 = 150, Ke = 1.65. The initial NN weights are
Ŵ1(0) = Ŵ2(0) = 0 and the initial conditions are x1(0) = 3,
x2(0) = −1. Since the tracking control is considered, the
system is forced to track a sinusoidal command in the sim-
ulations. Based on Lemma 1, one can check the condition
λmin(Pi) > σi > 0 and find that the regressors φ2 and � fulfill
the required excitation condition to retain the convergence of
the adaptive laws (9) and (38). Hence, different to the ADP-
based regulation (e.g., [24] and references therein), probing
noise is not needed in this case study.

Fig. 2 shows the profiles of the no-null elements of the
identifier weights Ŵ1, which converge to their ideal values in
around 1 s, showing the merit of the proposed adaptive law (9)
with the estimation error. Fig. 3 gives the estimation perfor-
mances of unknown nonlinearities f (x) and g(x). It shows that

Fig. 4. Estimated critic NN weights Ŵ2.

Fig. 5. State tracking performance (Example 1).

Fig. 6. Tracking errors.

the proposed adaptive identifier can reconstruct the unknown
system dynamics. The estimated critic NN weights Ŵ2 are
depicted in Fig. 4, which also converge closely to the ideal
values W2 = [0.5, 0, 1]T in about 2 s. This implies that the
proposed optimal control (33) approaches to the ideal solu-
tion in (46). Moreover, the system states and the command to
be tracked are depicted in Fig. 5, and the tracking errors are
shown in Fig. 6, which indicate accurate tracking response.
Finally, Fig. 7 illustrates the error between the estimated cost
function V̂(e) = ŴT

2 φ2(e) and the optimal cost function (45),
showing that good approximation response is achieved.

For comparison, an ADP control with a triple approximation
structure (consisting of an identifier NN, a critic NN, and an
actor NN) in [36] is also tested for the system (44) in the same
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Fig. 7. Steady-state cost function error �V = V̂ − V∗.

Fig. 8. Comparative simulation results of [36].

Fig. 9. Estimated identifier weights Ŵ1.

simulation conditions. Fig. 8 provides the profiles of the critic
NN weights and actor NN weights. Since the adaptive laws for
the identifier, critic and actor NNs in [36] are obtained based
on the gradient method, the NN weights shown in Fig. 8 do
not converge to their ideal values though the tracking response
can be retained owing to the steady-state control. In contrast,
the adaptive laws (9) and (38) proposed in this article can
retain a fast convergence performance (Figs. 2 and 4), such
that the actor NN can be avoided. Moreover, differing to our
previous result [41], the input dynamics are unknown here.

Example 2: The following nonlinear system is studied:
{

ẋ1 = p1x1 + p2x2 + p3x1
(
x2

1 + x2
1

)
ẋ2 = p4x1 + p5x2 + p6x2

(
x2

1 + x2
1

)+ p7u
(47)

where p = [1, 1,−1,−1, 1,−1, 1] are the unknown param-
eters to be estimated. The desired trajectory is set as x1d =

Fig. 10. Estimated critic NN weights Ŵ2.

Fig. 11. State tracking performance (Example 2).

sin(t) and x2d = 2 sin3(t)+ cos(t)− sin(t). Simulation param-
eters of the identifier are k = 0.001, �1 = 1, �1 = 1000,
Ŵ1(0) = Ŵ2(0) = 0, x1(0) = −0.15, x2(0) = −0.1. The
unknown dynamics can be formulated as (3) with the identifier
regressor and weights

φ1 =
[

x1 x2 x1(x2
1 + x2

1) 0 0
x1 x2 0 x2(x2

1 + x2
1) u

]T

W1 =
[

1 1 −1 0 0
−1 1 0 −1 1

]T

.

The optimal value function is set as V∗(e) = 0.5e2
1+e2

2. In this
case, the regressor of the critic NN is φ2(e) = [e2

1, e1e2, e2
2]T .

The adaptive law (38) is adopted to update the critic NN
weights. The simulation parameters of control are �2 = 6,
�2 = 700 and Ke = 1.65. Fig. 9 shows the profiles of iden-
tifier weights Ŵ1, which converge to the ideal values. Hence,
the unknown system dynamics can be precisely reconstructed.
The critic NN weights Ŵ2 are depicted in Fig. 10, which
shows the convergence to their ideal values W2 = [0.5, 0, 1]T .
The tracking performance is given in Fig. 11, and the derived
tracking error is indicated in Fig. 12. To prove the neces-
sity of using the optimal control ue to improve the tracking
performance, four indices of error e1 with the composite
control u and the steady-state control ud are considered:

root mean square error (RMSE =
√∫ t0

0 e2
1dt/t0), integral

absolute error (IAE = ∫ |e1|dt), and integrated square error
(ISDE = ∫

(e1 − e1e)
2dt ) with the mean error e1e. The val-

ues of these indices are given in Table I, which indicates that
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Fig. 12. Tracking errors.

TABLE I
COMPARATIVE ERROR PERFORMANCES OF u AND ud

Fig. 13. Control performances with disturbance.

the proposed control u has smaller index values, and a better
control performance than the steady-state control ud.

Finally, to verify the robustness of the proposed optimal
tracking control, a disturbance d = 0.2 sin(5π t) is added to
the system state x2. The corresponding tracking performance
is presented in Fig. 13, which indicates that this control can
effectively eliminate the effect of disturbances, because this
disturbance can be taken as a part of unknown dynamics,
which are identified and compensated for.

In these simulations, it is observed that the proposed iden-
tifier estimates the unknown system dynamics accurately, and
the critic NN can estimate the optimal value function well.
Hence, a satisfactory tracking control response is achieved by
using the suggested composite optimal control.

VI. EXPERIMENTAL VALIDATION

To assess the applicability of the suggested optimal control,
practical experiments were carried out on a helicopter test-rig
(Quanser Company Ltd.) as shown in Fig. 14. The target is
to control the elevation angle x1 and the elevation velocity
x2 to track given references. The two propellers are identical,

Fig. 14. Experimental setup.

and the output thrust-forces of two propellers are linear with
respect to the control voltages. Therefore, the dynamics of
two propellers are taken as the same presentation containing
the gravity mpg and the thrust force Fp = Kf u, where Kf =
0.1188 N/V is the propeller force-thrust constant.

Hence, the elevation dynamics model is derived as
[

ẋ1
ẋ2

]
=
[

0 1
0 0

][
x1
x2

]
+
[

0
2LaKf K

2mpL2
a+mwL2

w

]

×
[

u −
(
2mpLa − mwLw

)
g

LaKf
cos(x1 + θ0)

]
(48)

where mp = 0.575 kg is the mass of propeller, mw =
1.87 kg defines the mass of the counter weight, and g =
9.8 N/kg denotes the gravity factor, La = 0.6604 m is the
distance between the travel axis and the helicopter body,
Lw = 0.4699 m represents the distance from the elevation
axis to the counter weight gravity center, θ0 = −23 deg indi-
cates the initial offset of the elevation (which is determined by
the physical configuration), and K = 10 N/V is the lumped
gain (including the amplifiers gain and motor drive board gain)
from the control output to the propeller motors. Moreover, the
cost function is set as V(e(t)) = ∫∞

t (e2+u2
e)dτ , which is used

to derive the optimal control action ue.
In practice, the original reference signal is a square wave

signal with a step size of 10◦ with a period of 20 s. The
offset is set as 10◦ to avoid contact between the helicopter
body and the test ground. The elevation references xd1, xd2
are calculated by injecting the original reference signal into
a second order model with natural frequency ω = 1 rad/s
and a damping ratio ζ = 0.707. The proposed controller
was then implemented by using Simulink module built in
dSpace. Based on the model (48), it is clear that the unknown
dynamics can be formulated as the linearly parameterized
form (3), such that the regressor of the identifier can be set
as φ1(x, u) = [u, cos(x1 + θ0)]T , where the term x2 will
not be involved. The parameters in the identifier are set as
k = 0.01, �1 = 5 and �1 = diag([0.8, 18]). As shown in
Fig. 15, all the estimated weights rapidly converge to the ideal
values of W1 = [1.72 − 25.59]. Note that the convergence
of one parameter (with true value −25.59) is slightly slower
than the other one since the amplitude of the related regres-
sor cos(x1 + θ0) is smaller. Moreover, due to the unavoidable
uncertainties and measurement noise in practice, the estimated
identifier weights oscillate slightly around the expected val-
ues after a transient period. The regressor for the critic NN
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Fig. 15. Convergence of identifier weights.

Fig. 16. Tracking performance of the proposed controller.

Fig. 17. Critic NN weights.

is φ2(e) = [e2
1, e1e2, e2

2]T , while the learning parameters are
k = 1, �2 = 0.5, and �2 = diag([0.8, 2, 3]). The tracking
response using the proposed composite control is illustrated
in Fig. 16. One may find from Fig. 16 that fairly satisfactory
tracking control responses can be obtained. The oscillations in
the velocity come from numerical differentiator used to calcu-
late the velocity via the measured position signal. Moreover,
the online updated critic NN weights are shown in Fig. 17,
which illustrates the convergences in 100 s.

To show the advantages of the suggested optimal control
action, a nominal feedback controller u = Kxx + Krd with
Kx = [ − 0.97,−1.1] and Kr = 0.97 is also applied to the

Fig. 18. Comparative tracking errors.

TABLE II
COMPARATIVE ERROR PERFORMANCES

experimental setup for comparisons. The tracking errors of
this nominal controller and the proposed composite controller
are shown in Fig. 18, where it is shown that the tracking
errors using the proposed controller are smaller than that of
the nominal controller. This implies that the use of optimal
control leads to a better tracking response. Specifically, the
suggested optimal control achieves a faster convergence rate
than the nominal controller under large initial conditions. In
the steady-state, the optimal controller has less oscillations in
the velocity error compared to the nominal controller. To quan-
tify the control performance, three performance indices: 1) the
integrated absolute error: IAE = ∫ |e(t)|dt; 2) the integrated
square error: ISDE = ∫

(e(t) − e0)
2dt with the mean error

e0; and 3) the integrated absolute control; IAU = ∫ |u(t)|dt
are calculated. Table II provides comparative results of e1 for
both controllers within the time interval t = 0 ∼ 100 s. From
Table II, one may conclude that the proposed optimal control
obtains smaller IAE and ISDE, and thus better performance.
However, this is partially at the expense of a larger control
effort (i.e., IAU).

VII. CONCLUSION

This article proposed and practically validated an optimal
tracking control of nonlinear systems with unknown dynam-
ics. It introduces a new identifier-critic-based ADP framework,
where the unknown dynamics are reconstructed by using the
identifier. Then, an optimal control that minimizes a given cost
function is accomplished with a steady-state control to achieve
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optimal tracking. A critic NN is used to approximate the solu-
tion of the derived HJB equation. In this ADP approach, only
two NNs (i.e., an identifier NN and a critic NN) are needed,
while the widely used actor NN in other ADP schemes is
avoided. Consequently, the computational costs can be reduced
and the convergence speed can be improved. Another salient
feature is that the novel adaptive laws are proposed to update
the weights of the NNs simultaneously to retain the conver-
gence to the ideal values. Simulations and experiments all
illustrate the efficacy of the proposed control scheme. Future
work will focus on the optimal tracking control for nonaffine
systems, and relax the required PE conditions.

APPENDIX

PROOF OF THEOREM 3

Proof: By substituting (33) into (23), if follows:

ė = −Kee + ψ̂ςue + εN + εT

= −Kee + ψ̂ς

{
−1

2
R−1

(
ψ̂ς

)T∇φT
2 Ŵ2

+ 1

2
R−1

(
ψ̂ς

)T(∇φT
2 W2 + ∇εv

)}

+ ψ̂ςu∗
e + εN + εT

= −Kee + 1

2
ψ̂ςR−1

(
ψ̂ς

)T∇φT
2 W̃2 + 1

2
ψ̂ςR−1

(
ψ̂ς

)T∇εv

+ ψ̂ςu∗
e + εN + εT . (49)

Choose the following Lyapunov function:

V = V1 + V2 + V3 + V4 + V5

= 1

2
tr
(

W̃T
1 �

−1
1 W̃1

)
+ 1

2
W̃T

2 �
−2
2 W̃2 + �eTe + KV∗

+ ϒ1υ
T
1 υ1 +ϒ2υ

T
2 υ2 (50)

where V∗ is the value function given in (26); K > 0, � > 0,
ϒ1 > 0, ϒ2 > 0 are all positive constants. Within a com-
pact set �̃ ∈ R

d×n × R
l × R

n × R
d×n × R

l × R
n × R

nof the
coordinates (W̃1, W̃2, e, υ1, υ2, xd, ẋd), which contains the ori-
gin in its interior, i.e., (W̃1, W̃2, e, υ1, υ2, xd, ẋd) ∈ �̃ implies
(e + xd, ud(e + xd, ẋd)+ ue(e)) ∈ �, one can choose x1d and
ẋ1d within the compact set �̃. Then, for any initial condition,
the system state x and control action u will be within �̃ in
finite time, t ∈ [0,T1], guaranteeing that υ1,υ2 are bounded in
all t ∈ [0,T1].

From Young’s inequality ab ≤ a2η/2 + b2/2η for η > 0, it
follows:

V̇1 = −tr
(
W̃T

1 P1W̃1
)+ tr

(
W̃T

1 υ1
) ≤ −σ1

∥∥W̃1
∥∥2 + ∥∥W̃T

1 υ1
∥∥

≤ −
(
σ1 − 1

2ηϒ1

)∥∥W̃1
∥∥2 + ηϒ1‖υ1‖2

2
(51)

and

V̇2 = −W̃T
2 P2W̃2 + W̃T

2 υ2 ≤ −σ2
∥∥W̃2

∥∥2 + ∥∥W̃T
2 υ2

∥∥
≤ −

(
σ2 − 1

2ηϒ2

)∥∥W̃2
∥∥2 + ηϒ2‖υ2‖2

2
. (52)

On the other hand, V̇3 from (26) and (49) is calculated as

V̇3 = 2�eT ė + K
(−eTQe − u∗T

e Ru∗
e

)

= 2�eT
(

−Kee + 1

2
BR−1BT∇φT

2 W̃2 + Bu∗
e

+ 1

2
BR−1BT∇εv + εN + εT

)

+ K
(−eTQe − u∗T

e Ru∗
e

)
≤ −

[
2λmin(Ke)� + Kλmin(Q)

−
(∥∥∥BTR−1B∇φ2

∥∥∥+
∥∥∥BTR−1B

∥∥∥+ 3
)
�
]
‖e‖2

+ 1

4
�

∥∥∥BTR−1B∇φ2

∥∥∥∥∥W̃2
∥∥2 + 1

4
�

∥∥∥BTR−1B
∥∥∥∇εT

v ∇εv

+ �εT
NεN + �εT

T εT

−
(

Kλmin(R)− �‖B‖2
)∥∥u∗

e

∥∥2 (53)

with B = ψ̂ς(x) a bounded variable.
Based on (15), one can know υ̇1 = −�1υ1 +φ1f ε

T
Tf , so that

V̇4 = 2ϒ1υ
T
1 υ̇1 = 2ϒ1υ

T
1

(
−�1υ1 + φ1f ε

T
Tf

)

≤ −ϒ1(2�1 − η)‖υ1‖2 +
∥∥∥φ1f ε

T
Tf

∥∥∥2
/η. (54)

From (40), it holds υ̇2 = −�2υ2 +�εHJB, so that

V̇5 = 2ϒ2υ
T
2 υ̇2

= 2ϒ2υ
T
2

{
− �2‖υ2‖

+ �
[(

WT
2 ∇φ2 + ∇εv

)
(εN + εT)

+ ∇εvB
(
−R−1BT∇φT

2 Ŵ2/2
)

− ∇εvKee
]}

≤ −ϒ2(2�2 − 4η)‖υ2‖2

+ 1

η
ϒ2
∥∥�(WT

2 ∇φ2 + ∇εv
)∥∥2‖εN‖2

+ 1

η
ϒ2
∥∥�(WT

2 ∇φ2 + ∇εv
)∥∥2‖εT‖2

+ 1

4η
ϒ2

∥∥∥�∇εvBR−1BT∇φT
2 Ŵ2

∥∥∥2

+ ϒ2

η
‖�∇εVKe‖2‖e‖2. (55)

Consequently, substitute εN = W̃1φ1 into (55) and have

V̇ = V̇1 + V̇2 + V̇3 + V̇4 + V̇5

≤ −
[
σ1 − 1

2ηϒ1

−
(
� + 1

η
ϒ2
∥∥�(WT

2 ∇φ2 + ∇εv
)∥∥2
)

‖φ1‖2
]∥∥W̃1

∥∥2

−
(
σ2 − 1

2ηϒ2
− 1

4
�

∥∥∥BTR−1B∇φ2

∥∥∥
)∥∥W̃2

∥∥2

−
[

2λmin(Ke)� + Kλmin(Q)

−
(∥∥∥BTR−1B∇φ2

∥∥∥+
∥∥∥BTR−1B

∥∥∥+ 3
)
�

− ϒ2

η
‖�∇εVKe‖2

]
‖e‖2
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−
(

Kλmin(R)− �‖B‖2
)∥∥u∗

e

∥∥2

− ϒ1(2�1 − 1.5η)‖υ1‖2 − ϒ2(2�2 − 4.5η)‖υ2‖2

+
(
� + 1

η
ϒ2
∥∥�(WT

2 ∇φ2 + ∇εv
)∥∥2
)

‖εT‖2

+ 1

4
�

∥∥∥BTR−1B
∥∥∥∇εT

v ∇εv

+ 1

η

∥∥∥φ1f ε
T
Tf

∥∥∥2 + 1

4η
ϒ2

∥∥∥�∇εvBR−1BT∇φT
2 Ŵ2

∥∥∥2
. (56)

Hence, it allows to represent (56) as

V̇ ≤ −a1
∥∥W̃1

∥∥2 − a2
∥∥W̃2

∥∥2 − a3‖e‖2 − a4‖υ1‖2

− a5‖υ2‖2 + γ (57)

with

a1 = σ1 − 1

2ηϒ1
−
(
� + ϒ2

∥∥�(WT
2 ∇φ2 + ∇εv

)∥∥2
/η
)
‖φ1‖2

a2 = σ2 − 1

2ηϒ2
− 1

4
�

∥∥∥BTR−1B∇φ2

∥∥∥
a3 = 2λmin(Ke)� + Kλmin(Q)− 1

η
ϒ2‖�∇εVKe‖2

−
(∥∥∥BTR−1B∇φ2

∥∥∥+
∥∥∥BTR−1B

∥∥∥+ 3
)
�

a4 = ϒ1(2�1 − 1.5η)

a5 = ϒ2(2�2 − 4.5η)

γ =
(
� + 1

η
ϒ2
∥∥�(WT

2 ∇φ2 + ∇εv
)∥∥2
)

‖εT‖2

+ 1

4
�

∥∥∥BTR−1B
∥∥∥∇εT

v ∇εv + 1

η

∥∥∥φ1f ε
T
Tf

∥∥∥2

+ 1

4η
ϒ2

∥∥∥�∇εvBR−1BT∇φT
2 Ŵ2

∥∥∥2
.

It is clear that γ is a positive constant, which represents the
effects of the identifier and critic NN errors εT ,∇εv. Moreover,
to guarantee the stability of (57), a1, a2, a3, a4, a5 should
be positive. For this purpose, the design parameters K, �,
ϒ1, ϒ2, η, �i, i = 1, 2, and Ke need to be configured properly.
In detail, they are selected to fulfill the following condition:

� < min

{
σ1

‖φ1‖2
,

4σ2∥∥BT R−1B∇φ2
∥∥
}

η > max(
1/2ϒ1 + ϒ2

∥∥�(WT
2 ∇φ2 + ∇εv

)∥∥2

σ1 − �‖φ1‖2
,

1

ϒ2

(
2σ2 − − 1

2�
∥∥BT R−1B∇φ2

∥∥) ,
ϒ2‖�∇εV Ke‖2

2λmin(Ke)�

⎞
⎠

K > max(
2λmin(Ke)�+− 1

η
ϒ2‖�∇εV Ke‖2−(∥∥BT R−1B∇φ2

∥∥+∥∥BT R−1B
∥∥+3

)
�

λmin(Q)
,

�‖B‖2

λmin(R)

)

λmin(Ke) >

∥∥BT R−1B∇φ2
∥∥+ ∥∥BT R−1B

∥∥+ 3

2
�i > 4.5η/2, ϒ1 > 0, ϒ2 > 0.

Thus, the constants a1, a2, a3, a4, and a5 are all positive.
1) When both the identifier and critic NN errors are

nonzero, we know γ 
= 0. Then, for any∥∥W̃1
∥∥ > √

γ /a1,
∥∥W̃2

∥∥ > √
γ /a2, ‖e‖ > √

γ /a3,

‖υ1‖ >
√
γ /a4‖υ2‖ >

√
γ /a5 (58)

it can be verified from (57) that V̇ is negative. This
together with the Lyapunov theorem illustrates that the
control error e, the NN weights errors W̃1 and W̃2
are UUB.
To prove ‖ûe − u∗

e‖ ≤ εu, we recall the definition of u∗
e

in (31) and ûe in (33), and then have

ûe − u∗
e = 1

2
R−1BT � φT

2 W̃2 + 1

2
R−1BT∇εv. (59)

Then for t → ∞, the upper bound of (59) fulfills

lim
t→+∞

∥∥ûe − u∗
e

∥∥ ≤ 1

2

∥∥∥R−1BT
∥∥∥(φM

∥∥W̃2
∥∥+ φε

) ≤ εu (60)

with εu > 0 a constant.
2) In the ideal case where both the identifier and critic NNs

errors are null, i.e., εT = ∇εv = 0, we can verify that
γ = 0, such that (57) can be rewritten as

V̇ = −a1
∥∥W̃1

∥∥2 − a2
∥∥W̃2

∥∥2 − a3‖e‖2 − a4‖υ2‖2 ≤ 0. (61)

Then, there exists a set �̂ ⊂ �̃ in (W̃1, W̃2, e, υ1, υ2)

with (0, 0, 0, 0, 0) in its interior. From the Lyapunov
Theorem, we know V → 0 within �̂ as t → +∞ and
thus W̃1, W̃2, and e all converge to zero. Finally, to show
the convergence of the proposed control under ∇εv=0,
we can obtain

ûe − u∗
e = −1

2
R−1BT∇φT

2 Ŵ2 + 1

2
R−1BT∇φT

2 W2

= 1

2
R−1BT∇φT

2 W̃2 (62)

so that

lim
t→+∞

∥∥ûe − u∗
e

∥∥ ≤ 1

2
φM

∥∥∥R−1BT
∥∥∥∥∥W̃2

∥∥ = 0. (63)

The proof is finished.
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