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Abstract— Present inspection techniques in place at the Joint
European Torus (JET), as well as some of those planned for
ITER make use of robotically deployed inspection systems,
which typically collect data for offline analysis. This can be a
slow, laborious process with subjective or error-prone results.
There are significant benefits to be gained through automation
or user assistance, for example through prioritisation of samples
for analysis.

Automated visual anomaly detection is a highly challenging
problem due to high dimensionality of the input data, meaning
that the normal statistical distribution cannot be directly
modeled. We provide a robotic and algorithmic framework that
utilizes Generative Adversarial Networks (GANs) to indirectly
model this distribution, and hence provide a mechanism to
quantify the anomalousness of given image data samples from
a tokamak environment.

This paper presents an approach to visual anomaly detection
that combines multiple deep neural network architectures
in order to extract individual components and then classify
anomalies. An overview of the architecture and algorithms
employed as well as quantitative and qualitative assessments of
the performance against data from both a benchmark dataset,
and real data gathered from JET components is provided.

I. INTRODUCTION

Visual anomaly detection is a task which is of significant
relevance to quality control processes and inspection tasks
in various domains. Anomaly detection can be described
as the identification of the presence of out-of-the-ordinary
content in a given data sample. In visual anomaly detection,
data samples are typically images, and anomalies typically
represent features present in the scene which are not normally
expected or occur with relatively low frequency.

In industrial applications, anomaly detection is important
for detecting defects in products, machines, and infrastruc-
ture such as cracks in concrete, delamination in steels, or
corrosion on metal surfaces.

A common application of computer vision techniques in
industrial inspection is in quality control through the auto-
mated detection of surface defects. Surface defect detection
is, however, not only invaluable for manufacturing quality
control, but also in inspection of equipment in operation.
Surface defect detection has been applied to wood surfaces
[1], metallic surfaces [2], [3]. Common techniques include
frequency analysis methods, Gabor filters [4], and more
recently, methods based on deep learning techniques [5].
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Fig. 1. The GAN is first trained in a standard configuration (top), to
simultaneously discriminate real from generated samples whilst predicting
z through a latent regressor. At runtime, the network is inverted (bottom),
the discriminator becoming an encoder, predicting the latent representation
which is then used to regenerate the sample image based on the learned
generative model.

A large volume of research has been directed towards
techniques for detection of cracks in concrete [6], [7], steel,
and other structures [8]. This is of obvious importance for a
wide range of civil infrastructure inspection tasks, including
bridges, tunnels [9], [10], and pipelines [11].

One machine inspection task that is of particular impor-
tance to regulatory aspects of machine build and operation
is that of weld inspection. Pressure vessels and pipelines
are usually required to conform to codes and standards such
as ASME B31 [12], which involve inspection prior to first
use as well as routine inspection during the lifetime of the
equipment. Elements of the problem include detection of the
weld bead [13], and detection of weld seam profiles [14],
as well as the subsequent characterisation of weld quality.
Sometimes these tasks are required to be carried out in
confined spaces with limited scope for access. As such there
is an active interest in development of robotic systems that
can deploy sensors into challenging environments for weld
inspection [15], [16] and development of crawlers for in-pipe
inspection [17]. Other work has looked at inspection of vari-
ous types of machines and components such as storage tanks
[18], solar power plant equipment [19], railway equipment
[20], and ship structures [21]. In the world of nuclear fusion
inspection, although there have been several experimental
studies in automated inspection, e.g. [22], the large majority
of in-vessel inspections are conducted manually which can
be extremely slow, laborious, and error-prone.

Numerous examples can be found in the literature of
industrial inspection and visual anomaly detection for iden-
tification of specific defects, however the identification of
unspecified, general defects is somewhat more challenging.
Anomaly detection in other domains often relies on modeling



Fig. 2. Common types of damage that occur in tokamak (Images taken from the Joint European Torus, JET).

the probability distribution of normal data samples, and
detecting where query samples fall outside this normal distri-
bution. With visual data, directly modeling this distribution
is computationally intractable, however deep learning tech-
niques such as GANs [23] may allow us to indirectly model
this distribution by providing a mapping from a simple,
uniform random distribution, into the complex structured
domain of real-world images [24].

This work looks at applying GAN-based techniques to
general visual anomaly detection, and enhancing the tech-
niques through a novel workflow. This is illustrated with both
a reproducible dataset and an example industrial datasets.

II. GAN-BASED ANOMALY DETECTION

GANs [23] are a recent approach to training generative
models based on an unsupervised, adversarial approach.
They have been demonstrated to have capability in gener-
ating complex natural images [25].

GANs consist of two main elements, the Generator G, and
a Discriminator D. The role of the discriminator is to estimate
the probability that a given data sample (e.g. an image) is
a natural image as opposed to an artificial generated image.
The role of the generator is to attempt to randomly generate
realistic data samples that are able to fool the discriminator.
As such, the Generator and the Discriminator are playing
adversarial roles in a 2-player game, which can be described
in the minimax function:

min
G

max
D

V (D,G) = Ex∼Pdata [log(D(x))]

+Ez∼Pz(z) [log(1−D(G(z)))]
(1)

The Generator G operates on a simple random prior, z∼
pz, and implicitly defines a probability distribution pg of
generated samples G(z). In order for the generated samples
to match the real-world data, it is desirable for pg to converge
to pdata, the distribution of natural training samples.

With D(x), the output of the Discriminator being defined
as the probability that sample x came from the data (as

opposed to being generated), the optimisation problem can
be defined as backpropagation by ascending the gradient:

∇θd
1
m

m

∑
i=1

[log(D(x(i)))+ log(1−D(G(z(i))))] (2)

and descending the gradient:

∇θg
1
m

m

∑
i=1

log(1−D(G(z(i)))) (3)

In other words, maximising the log probability that x(i) is
marked as coming from the training data plus the log proba-
bility that z(i) is flagged as being generated by adjusting the
Discriminator parameters, whilst simultaneously minimising
the log probability that z(i) is marked as being artificially
generated by adjusting the Generator parameters.

GAN-based anomaly detection can be considered as di-
rectly equivalent to standard probability distribution-based
anomaly detection methods, where low-probability samples
represent likely anomalies. With natural images, the dimen-
sionality of the data is so high that directly modeling the
distribution is computationally intractable, however GANs
provide a means for indirectly modeling the complex struc-
tured distribution as a highly nonlinear function, which maps
from a smaller, simple, latent distribution, into the target
domain.

GANs have been used in [24] for anomaly detection in
medical imaging data. A GAN was first trained on healthy
samples, and then used to predict anomalies based on meth-
ods in [26] for finding the closest Generated data to the real,
query data.

Anomalies are then detected by adapting the coefficients
of the latent distribution from which images are generated
(z) by backpropagation [26], and an anomaly score A(x) is
produced, which can be used for detection of anomalous
regions within an image. The final residual image can be used
to identify anomalous regions. The backpropagation process,
however requires many iterations and is extremely slow.



Fig. 3. Architecture of the combined object detector and anomaly detector. Firstly, individual components are identified by the object detector (top). These
object detections are then used to make a new set of sub-images, each of which corresponds to an individual component. The component sub-images are
then fed into the discriminator network, which operated in Encoder mode in order to estimate the latent space representation. The generator is subsequently
used to regenerate the component image based on the learned semantic model of typical component images, in order that anomalies can be identified by
comparison between the query (component) sub-image, and its regeneration. Regenerated images are further improved by backpropagation.

Our work applies GAN models, with the capability of
predicting latent representations for the task of image regen-
eration, giving a much closer starting point for backprop-
agation than a random initial starting point. Regenerations
are compared with original images in a number of different
ways, assessing the resulting anomaly detection performance.
Methods of comparison include a residual score, summing
absolute differences in pixel values between the two images,
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM) score, and the AnoGAN metric.

Previous attempts [27] at using GANs for industrial
anomaly detection have tried using randomly cropped and
centered images to avoid the computational or operational
complexity associated with finding components of interest
and then automatically performing these operations. How-
ever, historic work involving GANs, for example in gen-
eration of new realistic images have focused on datasets
containing relatively well-structured images, centered about
the object of interest, and cropped to the region containing
that object in a consistent manner. Typical datasets such
as MNIST [28] and CelebA Celebrity Faces [29] comprise
images which are centered and cropped about the object or
type of object in question.

In order to simplify the visual problem, this work simi-
larly operates on data which is centered and cropped about
individual objects, in our case, individual components from
within the JET tokamak. To facilitate the use of this in real-
world scenarios, a method is presented for automatically
centering and cropping query images such that they are
suitable for this process.

Additionally, previous work in GAN-based anomaly de-
tection has made use of either backpropagation to find a
close approximation to z, or alternatively used some kind
of encoder or latent regressor. Our work combines the two

methods in order to seed the optimisation process with a very
good starting point.

In summary, the novel contribution of this work are
twofold:
• Combining object detection with GAN-based anomaly

detection for effective in-component anomaly detection.
• Combining latent space prediction using an encoder or

latent regressor with backpropagation for refinement.

III. OBJECT DETECTION OF IN-VESSEL COMPONENT IN
FUSION FACILITIES

In order to identify sub-images relating to individual
components, an object detector network is employed as the
first stage of the in-component anomaly detection pipeline. In
this work we used the YOLO [30], [31] network as the object
detector, which is used to create multiple proposed object
bounding boxes within each given query image relating
to individual components. Our YOLO network was trained
on an annotated dataset taken from a collection of high
resolution full vessel survey images, taken in 2014.

The training data consists of an augmented set of 969
images, containing 7372 annotated components in 25 classes.
The classes were selected from some of the more common
component types that are visible in the JET vessel including
7 types of divertor tile, 9 other types of tile, various antennas,
and other components.

Training was conducted over 22 epochs of the dataset.
Average time for regression of bounding boxes at run time
on CPU was 0.23 seconds per image, or 4.44 images per
second.

IV. COMBINING OBJECT DETECTION WITH ANOMALY
DETECTION

The automated centering and cropping process makes
use of the object detection pipeline described above in



Fig. 4. Anomaly detection example results for images containing anoma-
lies. From left-to-right, the columns show: 1. the original query image, 2.
The GAN regeneration, 3. The resulting residual image, 4. A Thresholded
residual image overlaid over the original query image in red. The images
clearly show successful detection of the anomalies at pixel-level. Note, in
row 3, the component that has been detected (a camera) is itself an anomaly
as it is not part of the in-vessel component set. It is successfully detected
as such by the GAN system.

order to identify components of interest in new images,
and provide bounding boxes for each detected component in
the image. The object detector is used to propose multiple
component bounding boxes within each given query image.
The bounding boxes are then used to create multiple sub-
images which each correspond to a detected object, in our
case, tokamak components. Each sub-image is created by
taking the x, y coordinates of the bounding box, sampling
a new image centered about these coordinates, with width
and height as detected, and then reshaping this sub-image
to a 128x128 square image compatible with the GAN re-
generator This entire pipeline is illustrated in Figure 3.

The GAN is used firstly in latent encoder-regenerator
mode, and then regenerated images are subsequently refined
using 1000 iterations of backpropagation. The entire process
for optimising the estimate of the latent space representation
is provided in Algorithm 1.

Once the query image has been regenerated, three methods
are used to compare the original component sub-image with
the regenerated version. These include taking the direct
residual between the two images, taking the Peak Signal-
to-Noise Ratio (PSNR), and using the Structural Similarity
index (SSIM). An optimal threshold is then applied to this
anomalousness score, based on the highest validation set f1
score, which is used to classify components into anomalous
or not-anomalous categories. The scores can similarly be
used to rank or prioritise components.

Algorithm 1 Latent space optimisation using contextual and
perceptual losses and backpropagation, give a trained generator, G,
and query image x.

Estimate initial latent space representation ẑ(0) using En-
coder ẑ(0) = E(x) pg(ẑ).
for i = 1 .. k steps do

Calculate loss for current estimate:

L i
c (z|x,M)+Lp(z)

Update z estimate by backpropagating loss:

ẑi+1 = ẑi +
∂L i

c (z|x,M)+Lp(z)
∂ z

end for
Transform the optimised latent representation into the data
space:

x̂(∗) = G
(

ẑ(k)
)

The gradient-based updates can use any standard gradient-
based learning rule.

V. PERFORMANCE EVALUATION AND RESULTS

The component-centric GAN-based anomaly detector was
trained on a dataset which simulates outputs of the compo-
nent detector subsystem. Bounding boxes from the object
detection training set were extracted from the training set
annotations, and used to automatically generate sub-images
corresponding to components within the system. This pro-
vided a simple and effective method for generating training
data in a fully automated way. Training data consisted
entirely of non-anomalous samples (in this case, samples
that did not include any maintenance equipment or other
non-native objects).

Once the GAN was trained, 64 non-anomalous test sam-
ples and 28 anomalous test samples were regenerated using
the above described process, and compared with the original
query test samples using each of the three metrics in order to
produce anomalousness scores for each component image.

Anomaly detection performance is evaluated using stan-
dard classification metrics, including the classification accu-
racy, precision and recall, and associated F1 score, speci-
ficity, and areas under the ROC curve and Precision-Recall
curves. The scores for each of the three comparison methods
is provided in Table I.

If accuracy scores for the residual, PSNR, and SSIM
metrics are compared with those of the previous work, where
randomly cropped and centered images have been used, the
accuracy improvement through use of object detection is sig-
nificant, indicating that the centering and cropping of query
images about detected components plays a significant role in
the GANs ability to distinguish anomalous components from
non-anomalous components.

One interesting observation from the results is that the
highest scoring metric has actually changed from residual
score to SSIM, between previous results and the present
work. This could perhaps be explained by the inability of



Fig. 5. Precision-Recall curves for each of the three methods.

TABLE I
RESULTS FOR ANOMALY DETECTION ON COMPONENTS AT THRESHOLD VALUE WITH HIGHEST F1 SCORE.

Comparison Method Accuracy Accuracy (previous work) Precision Recall F1 Score Specificity ROC AUC PR AUC
Residual 79% 63% 0.50 0.86 0.63 0.63 0.81 0.66
PSNR 77% 53% 0.57 0.75 0.65 0.75 0.81 0.66
SSIM 80% 52% 0.64 0.75 0.69 0.81 0.84 0.65

the Generator to find a suitable representation resulting in
a bias towards the numerical optimisation process in the
regeneration stage. This would lead to regenerations being
closer in terms of pixel-wise distance to the query image
than in terms of semantic distance. As this new method
is able to better leverage the GANs generative capability,
resulting regenerations are more structurally representative,
and therefore the SSIM metric is more appropriate.

A. Example failure cases

Fig. 6. Some example failure cases. The left-hand two columns show origi-
nal images that contain no anomalies, and their corresponding regenerations,
where the images have been misclassified (I.e. are false positives). The right-
hand two columns show original images that contain anomalies, and their
corresponding regenerations, where the images have been misclassified (i.e.
are false negatives).

A small selection of noteworthy failure cases including
both false-positives, and false-negatives can be seen in Figure
6. In the case of false positives, or incorrectly classified non-

anomalous images, the examples can be seen to indicate
that the high anomalousness score results from a failure to
regenerate the original image. This may be as a result of
the optimisation algorithm reaching a local minimum, or a
failure of the Generator to learn generalisable mappings (e.g.
through mode collapse, or biased training data).

In the case of the three examples of false negatives, or
incorrectly classified images containing anomalies, it can
clearly be seen that the regeneration process has worked
well. As expected, the generator has successfully regenerated
the component image elements, without the anomalous items
in the foreground. One clear limitation of this work is that
the anomalousness scores for images are all based on the
sums of pixel-wise scores. This means that the size of the
anomaly within the image will directly impact the likelihood
of detection. Further work is required in order to determine
better methods of decoupling the anomalousness scoring of
the image from the pixel-size of the anomaly.

B. Pixel-wise anomaly segmentation

Although not quantitatively assessed here, the various
anomalousness scores can be used to classify individual
pixels within the image using the same method as for entire
sub-images. This results in a pixel-wise delineation of the
anomalous element. Figure 4 shows some examples of this
being applied with the residual score.

VI. CONCLUSIONS

It has been shown, not only that GANs are a powerful
tool for visual inspection and anomaly detection in machine
components, but also that this can be greatly enhanced
by using component-centric, cropped data to reinforce the
statistical strengths of the GAN. This can be achieved in run-
time practice through the combination of an object detector



network with the regenerative GAN in order to produce a
real-time automated process for doing so.

It is worth noting that whilst there is still room for
improvement and optimisation of the presented techniques,
this work can already add value in terms of automatically
scoring and prioritising test cases for human examination.
In this case, we are not so concerned about false-positives,
and so the F1 score is suitable. When considering a more
fully automated anomaly detection and alert system, there is
clearly a trade-off to be considered between false positives
and false negatives. In this case, different threshold values
(e.g. highest F0.5 score) may be more appropriate. This is
clearly a topic for further studies involving human experts.

The GAN-based method employed in this work made use
of a single network trained across all sub-images. A possible
future direction of this work might be to investigate the
performance differences between per-class regenerators and
across-all-class regenerators.
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