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ABSTRACT

Supervising and controlling remote robot systems currently requires many specialised operators to have
knowledge of the internal state of the system in addition to the environment. For applications such as
remote maintenance of future nuclear fusion reactors, the number of robots (and hence supervisors)
required to maintain or decommission a facility is too large to be financially feasible. To address this
issue, this work explores the idea of intelligently filtering information so that a single user can supervise
multiple robots safely. We gathered feedback from participants using five methods for teleoperating
a semi-autonomous multi-robot system via Virtual Reality (VR). We present a novel 3D interaction
method to filter the displayed information to allow the user to read information from the environment
without being overwhelmed. We conducted a user study including a cohort of expert robot teleoperators
comparing these methods; highlighting the significant effects of 3D interface design on the performance
and perceived workload of a user teleoperating many robot agents in complex environments. The results
from this experiment and subjective user feedback will inform future investigations that build upon this
initial work.

Keywords: Virtual Reality, Human-Robot Interaction, Multi-Robot Systems, Interface Design, Robot
Supervision, Information Display, User Study

1 INTRODUCTION
As the scale and complexity of engineering structures around the world increase, the need for multiple
robots carrying out complex maintenance or decommissioning tasks is growing. In many use cases such
as nuclear, space, and disaster recovery, it is not practical for humans to enter these operational areas in
person due to physical inaccessibility, environmental hazards, or simply due to the large monetary and
temporal cost of training, employing and equipping humans for these tasks. As a result, these use cases
require remote robotic systems which can range from fully teleoperated to fully autonomous. Traditional
fusion remote maintenance systems such as the one which can be found at JET, the Joint European
Torus1 involves a person-in-the-loop telerobotic manipulator with Haptic feedback, called the MASCOT
(Hamilton et al. (1995), Murcutt et al. (2011)). Whilst capable and adaptable, this type of maintenance
system suffers from the fundamental limitation of requiring one person to operate the manipulator and
several more people in the supporting team, operating some of the functionality of the MASCOT as
well as supporting equipment (Boessenkool et al. (2014)). This is in part due to the fundamental human
limitation of how much information any one person can perceive and process at any one time, as well as
the lack of built-in assistive low-level control of the MASCOT.

Supervision and control of multiple robots in a remote maintenance and inspection task creates
requirements for the interface. The task involves supporting robots to move large, extremely heavy

1JET is operated and maintained by the UK Atomic Energy Authority (UKAEA) on behalf of the EUROfusion consortium and
located at the Culham Science Centre in Oxfordshire, UK.



Figure 1. A representative example of the interface. Three layers of information can be seen here:
internal text labels (e.g. task status), banner icons (robot category, battery level) and path plans (white
lines representing the planned motion of the robot).

objects. For example, replacing lithium breeding blankets ( 12.5m long, 80 tonnes) requires positioning
of ±10mm Buckingham and Loving (2016). This leads to the requirement that structures be inspected
with high accuracy to avoid neutron leakage. An assessment of remote maintenance requirements for
DEMO (DEMOnstration Power Plant) determined that priority should be given to designing maintenance
systems to be as quick as possible as the cost of electricity is inversely proportional to the availability of
the reactor Loving et al. (2014) Ward et al. (2000).

The future success of alternative cleaner sources of power generation such as Nuclear Fusion will
depend heavily on the price-performance of commercial power stations. In turn, the price-performance
of Fusion is heavily dependent on the efficiency and capability of the remote maintenance systems
(Petkov et al. (2020)). Maintenance operations usually require shutting down the reactor. The duration
of reactor shut down needs to be minimised to maintain the financial feasibility of the reactor (Petkov
et al. (2020)). Maintenance carried out in hot cells will need to use multi-robot systems instead of single
robot systems to minimise the time taken for maintenance tasks (Farquhar et al. (2019)). Historically,
the limitations of these legacy maintenance systems have simply been tolerated due to the limitations of
practical technological solutions, however the development of completely remotely maintained hot-cells
required for future reactors such as ITER, EU-DEMO or STEP indicates a need for the development of
disruptive methods and technologies to simplify these challenges.

Hence, one method for future fusion experiments and commercial reactors to improve their commercial
viability would be to reduce the number of operators required to operate the maintenance equipment
through automation of certain tasks, and to improve the methods of presenting information to the
remaining operators/supervisors. A promising way to reduce the reliance on human operators is to
increase the autonomy of the robotic system. The use cases of nuclear, space and disaster recovery have
high requirements for safety due to the potential risk to human life and monetary cost of malfunctions.
Current state of the art fully autonomous robots cannot operate safely in all situations and environments.
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Multiple surveys (Kunze et al. (2018), Guiochet et al. (2017), Wong et al. (2018)) describe the current
and future technical challenges that need to be solved before autonomous systems can guarantee that
they will meet all safety requirements without human intervention. Therefore, even in the case of a fully
autonomous robotic system, there is a need for some level of human supervision to satisfy the necessary
safety requirements.

In order to contribute to these goals, this study aims to explore and investigate different information
filtering methods that aid the teleoperation and supervision of multiple robots in complex environments. In
doing so, we will find out whether information filtering can affect task performance or affect the cognitive
demands of tasks. Figure 1 shows a representative image of the interface as seen by the user in Virtual
Reality. This experiment uses Virtual Reality as the display and input method primarily because VR can
offer new ways to display information that could be advantageous.

To compare these methods, we conducted a user study with 26 participants to assess their potential
for supervising and directing multiple robots to perform a series of cognitively demanding tasks. In
these tasks, nine robots with different roles (Explorer, Support, and Inspector) are directed around a
semi-known environment. Explorer robots can explore unknown areas of the environment, Support robots
can charge/repair other robots, and Inspector robots can inspect objects in the environment. The user
must direct the robots to explore the environment for any robots/hazards, repair any broken robots and
inspect all objects within the environment. The tasks in this experiment are designed to be similar to the
use case of operators supervising multiple semi-autonomous robots in order to perform maintenance in
an inaccessible environment, such as areas surrounding a fusion reactor. Participants reported that the
interface was easy to use and could be applied to a more demanding task. The significant findings from
the user study include that the spatial filtering of information was disfavoured by users and semantic
filtering produced no significant difference to the baseline case. In addition, valuable knowledge was
gained regarding the experimental design needed to evaluate the performance of these new disruptive
interfaces such as VR. The main change needed for future experiments will be to design tasks such that
users are overwhelmed with information in the case with no filtering. We conclude with a discussion
about the trade-offs in each design and the future areas that can build upon this work.

2 RELATED WORK

2.1 Interface Design for Complex Systems
Ecological interface design (Vicente and Rasmussen (1992)) is a framework for human-machine interface
design based on cognitive processing being separated into Skills, Rules and Knowledge. The framework
aims to enable the operator to complete tasks without requiring a higher level of cognitive processing
than the task demands. Sawaragi et. al. investigated the ecological interface design framework for the
use case of robot teleoperation (Sawaragi et al. (2000)). They found that a shared 3D virtual space that
displayed obstacles around a robot allowed “naturalistic collaboration between a human and a robot’s
autonomy at the skill level”. Anokhin et. al. proposed an ecological interface design (Anokhin et al.
(2018)) for monitoring the processes of a nuclear power plant. Their findings were that the ecological
interface reduced the error rate, reaction time and operator load. The ecological interface framework is an
example of information being divided in a hierarchy of the level of reasoning required to deal with it.

Hedeyati et. al. investigated the use of AR for display of sensor information close to the real location
of the robot (Hedayati et al. (2018)). The authors experimented with superimposed camera feeds and other
information for teleoperation of a UAV. They conclude that the interface design improved performance
over existing systems, as their system does not require users to divide attention between the robot and
a separate camera feed. This experiment has informed the decision to superimpose labels upon robots
within our own investigation.

2.2 Information Filtering and Clustering
3D interfaces where the user is able to move around can use a combination of spatial and semantic
filtering, as shown in Julier et al. (2002). The authors present a method for spatially filtering data with AR.
Objects have a region of interest, with more interesting objects having a larger region. When a user enters
the region of interest, information about the object is displayed. This method has potential applications in
robot supervision, but may not offer enough fine control to access relevant information quickly for this
use case. T. Butkiewicz investigated the design principle for an AR system to aid in marine navigation
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(Butkiewicz (2017)). The authors used spatial filtering to fade out the marine navigation overlay elements
based on both their importance and their distance from the user.

Clustering of information can help to avoid visual clutter when displaying a set of information in AR.
Tatzgern et al. propose a method for clustering information labels in AR. Individual pieces of information
are leaf nodes in a tree structure (Tatzgern et al. (2016)). An algorithm clusters information based on their
similarity or spacial proximity and displays a level of detail corresponding to the amount of space in the
field of view of the AR. This method could be useful for robotic supervision, however it is not yet clear
how it could be applied to types of information which are not aggregated or averaged easily, such as task
status or robot sensor data.

2.3 View Management
View management is a method for maximising legibility (the degree to which text can be read easily)
and information visibility (the degree to which information can be seen easily) when displaying a set of
information labels in 2D or 3D interfaces. Madsen et al. proposed a method for view management which
uses 3D geometric constraints to maintain legibility and temporal coherence for labels attached to objects
(Madsen et al. (2016)). This allows labels to move in one dimension along a 3D pole constraint attached
to the subject of the label. This could be used for textual or pictorial labels in the context of multi-robot
supervision, but is not suitable for all types of information being displayed, and does not account for cases
where the density of information causes labels to overlap.

A 2D force based view management technique is proposed in (Hartmann et al. (2004)). This uses
attraction to the object being labelled, repulsion from the edge of the object, repulsion from other labels,
repulsion from the edge of the display and repulsion from all other elements to dynamically place labels
in a legible manner. This is a temporally coherent way to determine label placement, and a similar method
has been extended to 3 dimensions in this paper.

2.4 Multi-Scale Virtual Environments
Multi-Scale Virtual Environments (MSVEs) are useful for displaying any type of hierarchical data.
Hierarchical data has multiple levels of information, with smaller levels residing inside larger ones. For
example, galaxies contain solar systems, solar systems contain planets and so on. MSVEs have been used
in VR experiences in order to educate about subjects such as the human body (Bacim et al. (2009)) and
objects in space (Deyang Song and Norman (1994)). They have also been evaluated in the context of
human-human interaction through a giant and miniature person collaboration in VR (Piumsomboon et al.
(2019)).

Kouril et al. proposed a method to apply labels to multi-scale environments where there are multiple
instances of the same object (Kouril et al. (2019)). They apply labels to groups of objects instead of
single objects if it is appropriate to do so (clustering) and implement a strategy to only label representative
instances of objects in order to reduce clutter. This strategy takes advantage of the fact that objects in the
environment are repeated and only need representative labels. In robot supervision, information types
are often similar across different robots. However, it is not always suitable to only show representative
examples because a particular piece of information could be needed from any of the robots being
supervised. The concept of hierarchical information display is applied in this paper to the levels of scope
for each layer of information.

2.5 VR for Teleoperation
Since VR technology has increased in fidelity and reduced in cost over recent years, it has been investigated
as a medium for interfaces for robot supervision and control. Jang et al. use VR for virtual kinesthetic
teaching of a robot arm (Jang et al. (2019)), (Jang et al. (2021)) and discuss the advantages of a system
that integrates ROS, Unity and Virtual Reality. Whitney et al. describe an interface for connecting two
ROS controlled robot arms in VR and remotely operating them with sensor data (Whitney et al. (2018)).
The authors demonstrate that it is possible to display high fidelity sensor data in VR from ROS and
use it to operate a dual arm robot. This type of interface has potential to be extended to a system with
larger numbers of robots. High fidelity sensor data is outside the scope of our work but is planned to be
investigated in future works.

Four variants of a multi-robot interface were proposed and evaluated in (Roldan et al. (2017)). These
interfaces included a conventional 2D interface, a VR interface, and predictive versions of these interfaces.
They found that the VR interface improves the operator situational awareness without increasing workload,
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and the predictive interface did not significantly affect the operators. The scope of this study did not
include interfaces where there are more than three robots or the effect of information filtering on user
perception and performance.

3 DESIGN REQUIREMENTS
Design requirements are highlighted in bold in this section. For the anticipated use case of remote
maintenance of a fusion reactor, the human supervisor is there to direct robots and prevent any actions that
may be undesirable. In this future scenario, the robots will not be directly teleoperated, but directed to
complete a task autonomously, with human interventions and verification when necessary. To support this,
the supervisor should be able to quickly read information from the interface to support quick decision
making. Therefore, the interface should be easy to read and understand. Additionally, time delay
should be minimised.

The amount of information that fully describes a multi-robot system can be very large. Any type
of information could be needed, ranging from the sensor readings, to the state of the internal operating
system, to the interactions between robots, to information about the surrounding environment. It is
possible for a large amount of information to overwhelm users when the density of information presented
to them is too high. Azuma et al. explain this data density problem in the context of Augmented Reality
(AR) (Azuma et al. (2001)). To prevent the user from being overwhelmed, the information management
system should limit the amount of information exposed to the supervisor at a given time.

Finally, supervisors may need to make decisions based on their general situational awareness of the
environment and objects within it. Therefore all information contained within the environment must
be accessible by the user through the interface.

Classical methods for information management in AR when representing data in an egocentric
view of the environment include Spatial and Semantic filtering (Julier et al. (2002)). Spatial filtering
uses the distance from the user’s eye to a given augmented reality label’s location to determine which
information is displayed. Information density can be changed manually or autonomously by adjusting the
cut off distances for each piece of information. Spatial filtering of information is selective rendering of
information based on the assumption that the importance of the subject relates to the physical distance
between the subject and the observer. When this assumption holds true, this type of filtering can remove
irrelevant information, allowing useful information to be more easily ingested by the observer.

Semantic filtering uses the type of information to choose whether to display information or not.
Information density can be adjusted through manipulating which types of information are displayed at a
given time. Semantic filtering traditionally requires users to manually select the information that should
be displayed, which can slow down the process of accessing relevant information. Semantic filtering of
information is selective rendering based on the assumption that the importance of the information relates
to the type. View management is a process where information is moved around to maximise legibility.
This approach can help with legibility but does not limit the amount of information exposed to a user at
a given time. In this work, view management is used in all experiments to aid legibility. Semantic and
Spatial filtering are evaluated separately and in combination with each other.

4 OBJECTIVES
This study will investigate variations of Semantic and Spatial filtering that are linked to the layers of
information about the multi-robot system. Both the type of information displayed and the distance at
which information is displayed on each layer can be coupled to the scale of the user. The information
related to each object will be located close to the object in a 3D environment. This allows users to
search physically through an environment for an object, mimicking how people search through real 3D
environments, instead of finding the relevant information in a more traditional 2D interface. Information
about an object is located close to or in the same position as the object, which is a more natural way to
view information than referring to a separate database of information.

The information contained in the state of a multi-robot system and environment can be divided into
different levels. Each layer of information can be classified as one of three levels:

• Individual - The information pertains to a single robot. For example, the battery level of a robot or
the type of robot.
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• Multiple - The information pertains to multiple robots. For example, the planned trajectory of a
robot that could cross the path of another robot, or a set of robots that are grouped together.

• Overview - The information pertains to the entire environment. For example, the density of robots
in a given area, or areas in the environment that are contaminated.

A virtual reality headset was chosen as the medium for this interface to be built around. VR is an
appropriate interface (with potential to be disruptive to the field) because it is immersive, gives depth cues
through stereo display, and enables intuitive input systems to be designed. VR places the user within
a 3D environment, which allows them to search for information based on its 3D position or proximity.
VR is capability of combining traditional 2D UI elements and 3D environment elements to richly render
information.

We believe the proposed interface design is a novel way to supervise and control multiple robots.
The interface extends information filtering techniques by coupling them to the low, medium and high
level information relevant to a robot system. The 3D interface implements intuitive gestures in order to
both control how the user is receiving information and how the user responds to it. This interface design
takes advantage of the fact that information about robotic systems and their environment are inherently
associated with a given location, so the user can search through data by directly navigating within the
virtual environment. We will evaluate the potential of this interface and the different levels of information
filtering in this work.

5 INTERFACE DESIGN
5.1 System Overview

Figure 2. An overview of the setup that contains the ROS simulation (Ubuntu, left) and the Unity VR
program (Windows, right). The communication between the computers used the Rosbridge Websocket.

Figure 2 shows the System Overview for this experiment. There is a VR environment running in
Unity connected over a websocket to a ROS simulation of the robots. The simulated robots are small
non-holonomic ground robots called Turtlebot3. These robots are well integrated with ROS, both for
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simulations and hardware, allowing for the same information to be transferred in either case. In a real
world remote maintenance and inspection task, it is likely that larger, heavier duty AGV (automated
guided vehicle) robots with similar motion protocols would be used. For each task, 9 robots are simulated
within the same environment using the Gazebo simulator, an open source software that is packaged with
ROS. This software is capable of simulating hard body collisions, friction, sensors and robot dynamics,
enabling the same control signal to be sent to a simulated or real robot, with the interface receiving the
same types of sensor feedback. In many future scenarios such as nuclear maintenance, purpose-built
facilities are being specifically designed to support accurate localisation for robotic maintenance systems
within a well defined environment. Jonasson et. al. (Jonasson et al. (2021)) compare three key current
technologies for their effectiveness in robot localization in nuclear facilities. For this experiment it is
assumed that the underlying structure of the environment and robot positions are accurately known, though
the Inspector bot is used to validate this information and reveal any differences between the pre-known
environment model and the actual situation.

The communication between the simulation in ROS and the VR system used the Rosbridge Websocket.
This allows systems outside of ROS to send and receive messages using JSON serialisation. In Unity, the
JSON messages are interpreted using the Siemens ROS-Sharp package (Bischoff (2017)).

The simulated robots use two wheel differential drive to control angle (yaw) and speed. For this
experiment, the control of each robot was simplified to a point to point controller. When the controller is
supplied a target pose, the robot turns on the spot to face towards that position, moves forward until it is
within a 2.5cm radius of that position and stops. All robot simulation and control was carried out in ROS
Kinetic. A ROS node receives messages from Unity when the user instructs a robot to move.

The VR headset used was the HTC Vive (Niehorster et al. (2017)) and the 3D interface was built using
the Unity game engine (Bartneck et al. (2015)). The robot models were displayed in Unity with the same
position as in the simulation. The user can set the target position of robots, move around the environment,
interact with a slider and change the scale of the user relative to the environment. These capabilities are
shown in Figure 3.

To virtually move around the environment, the user can press a side button and move the controller.
The user’s perspective is translated along the vector of the difference between the controller position and
the position when the button was initially pressed. This allows the user to move around the environment
without physically moving around using their feet.

To change the scale of the user relative to the environment, the user could hold a side button down on
each controller and perform a pinching gesture. This gesture made the user bigger if they moved their
hands apart, and smaller if they moved their hands closer together. This gesture was designed to be a 3D
analog to the ”pinch to zoom” gesture that is common in touch screen interfaces. When a user changes
scale, the ground plane of the user is kept the same, so the user increases in height relative to the ground
plane. This interaction method is shown in Figure 3 (centre).

The user selects a robot to control by moving close to the robot. The robot closest to the user’s right
hand is then selected. When the user holds down the right trigger button, the target position of the robot is
mapped to the position of the right hand relative to the position when the trigger was originally pressed.
When the user releases the trigger, the target position is set and the robot attempts to move to that position.
This interaction method is shown in Figure 3 (right).

5.2 Information Layers
The layers of information used in this experiment are used to provide a complex set of information for the
participant to interact with. In order to access information relevant to the task, the participant must use the
interface to change the filtering of information.

Internal robot information (referred to as L1) includes robot number (each robot is assigned a unique
number), task status (textual and numerical data) and battery percentage. This layer is comprised of
textual information and could include other types of information if desired. Information for L1 is stored
within the Unity (C#) scripts that implement the VR interface, and is relayed directly to the user.

Elements in this layer are displayed in Unity using a TextMeshPro object. Each label has its rotation
set to face the player camera and its position is set by the result of three forces. The first force attracts
the label towards the robot that it is labelling. The second force repels labels away from each other. The
third force attracts the labels to a plane that is perpendicular to the direction of the player camera. The
resulting 3D force is applied to each text label attached to the robots in order to minimise overlapping and
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Figure 3. The four interaction methods used to control robots and manipulate the information displayed.
The slider method (left) is used for the interface variant V2. The scaling method (centre) is used for V3,
V4 and V5. All variants use the same method to command the robots to move (right).

maximise legibility of labels. This layer is shown in Figure 5 (L1).
The second layer (referred to as L2) is a set of two icons that are attached to a point above each robot.

These icons display battery status (low, medium or high level of charge) and robot category. Robots can
be one of three categories: Explorer, Support and Inspector. This layer is shown in Figure 5 (L2).
Information within L2 is stored within C# scripts that run the experiment.

Explorer robots are able to explore the environment, looking for obstacles and other robots. In many
practical maintenance, decommissioning or disaster recovery situations, this “exploration” is really a
verification that the environment observed by the robot is unchanged from an initial digital model or
as-built drawings. For example, future nuclear fusion facilities will have accurate digital models of the
environment, which the robots can autonomously verify by observing the environment directly.

The state of exploration is represented in the Virtual Environment as a “fog of war” type system.
Opaque grey blocks obscure regions of the environment that have not been verified by an Explorer robot.
This is shown in Figure 4. When an Explorer robot moves to within 1.5m of an unexplored region, the
region is marked as explored. This means that the opaque block disappears, allowing that part of the
environment to be seen by the operator. The explored portions of the map are updated through a C# script
in the Unity environment. This system enforces the idea that, while the state of the environment is known
to some degree at the start of the work being carried out, it must be verified before any robots can safely
operate in that area.

Support robots are able to charge the battery of other robots. When a user moves a Support robot to
within 0.5m of another robot, it charges their battery at a constant rate. The charge of a robot battery is
displayed on the internal labels or the battery icon above a robot. The task status of the Support robots
will change from “Charging” to “Finished Charging” when the other robot has been fully charged. In
every task in the experiment, at least 3 robots will start off with zero percent battery and will need to be
charged. This charging robot is a simplification of expected recovery tasks that might need to take place
in future robotic maintenance deployment scenarios.

Inspector robots are able to inspect objects in the environment. In every task, there are two objects
that need to be inspected. A user can view the inspection progress by looking at the internal label of the
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Figure 4. “Fog of war” is displayed as the dark grey opaque blocks. These areas represent the parts of
the map that have not been verified by an Explorer robot.

object that is being inspected. The Inspector robot’s task status will also change from “Inspecting” to
“Finished Inspecting” when the inspection has been completed.

The third layer (referred to as L3) displays the planned path of each robot. It is displayed as a line
which extends from the robot to the target position. This allows users to plan robot motions that will not
interfere with the motion of another robot. This layer is shown in Figure 5 (L3).

The fourth layer (referred to as L4) displays the “contamination” of the environment. In this study,
it is possible for a robot to become contaminated by entering a contaminated area, and decontaminated
by entering the decontamination zone. This layer displays contaminated areas with a transparent red
square. This layer is shown in Figure 5 (L4). In many nuclear applications, areas of the facility can
have contaminated material (radioactive or chemical) in them, so anything leaving those areas (including
robotic maintenance equipment) needs to be decontaminated or cleaned before safe removal is possible.
In these experiments, a simplified implementation of this provides more complexity and information for
the user to deal with.

5.3 Interface Variants
There are five variants of the interface and each participant tried all variants in a randomised order. The
participant was able to scale themselves up or down in every variant.

• V1 is the Baseline variant. All information is displayed and unfiltered.

• V2 is the Slider variant. This allows the user to control the Semantic filtering (toggling layers on or
off) using a slider on their left hand (shown in Figure 3 left).

• V3 changes the Semantic filtering based on the scale of the user. This allows the user to control the
Semantic filtering by changing their scale (small scale corresponds to L1, large scale corresponds
to L4).

• V4 changes the Spatial filtering based on the scale of the user (small scale corresponds to only
seeing information close to the user, large scale corresponds to also seeing far away information).

• V5 uses both Semantic and Spatial filtering controlled by the scale of the user.
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Figure 5. The four layers of information displayed. L1 is textual labels displaying internal information
about the robot (e.g. task being performed). L2 has banners displaying external information about the
robot (e.g. type of robot). L3 displays lines that represent the planned paths of each robot. L4 displays
”contaminated” areas within the environment.

All variants including the baseline case (V1) were in virtual reality as the focus of this work was on
the effect of the information filtering when coupled with the scale of the user. Task performance with
a 2D display variant would not be comparable because the task would have to be adapted to a mouse
and keyboard interface. Changing the scale of the user in a 2D interface would have different effects
to virtual reality as the depth cues in a stereoscopic display inform the user of their size, and in a 2D
interface these depth cues are not there. In addition, the scope of the work is limited to the effect of these
information filtering methods within virtual reality. Comparisons between VR and 2D interfaces have
been investigated for robot teleoperation (Lager and Topp (2019), Roldan et al. (2017)).

5.4 Filtering of Information
In this study, there are two ways used to filter information and two input methods for controlling them.
Semantic filtering is implemented by toggling layers on and off in order to only display a subset of layers.
The toggles are linked to either the scale of the user, or the user controlled slider. When the scale (or
slider) is small, the “Individual” information layers are shown. As the user (or slider value) gets larger,
the “Multiple” level information is shown and then the “Overview” level information.

Spatial filtering is achieved by modifying the draw distance of components in each layer. This means
that if the object is further away from the player camera than the maximum draw distance, it is not
rendered. The draw distance for each layer is linked to the scale of the user or the manually controlled
slider.

To control the filtering, a conventional input method can be used. This uses a gesture where the user
holds down the left trigger button and can move their hand up or down. This method is shown in Figure
3 (left). A slider displays their corresponding position on a line. This slider is used in one experiment
variant (V2) to control the semantic filter by mapping the layer selections to the position on the slider.

Another input method for controlling the filters is to couple the filtering to the scale of the user. In this
case, the scale of the user relative to “life size” scale is used to input a value to the filtering system. The
scaling gesture is shown in Figure 3 (centre). A side button on each controller is held down, then the user
can move their hands apart to get bigger or move their hands closer to get smaller.
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6 EXPERIMENT DESIGN
The user study had 26 participants (19 male and 7 female) with ages ranging from 21-54 and a mean
age of 30.04 (with standard deviation of 9.20). Half of the participants were professionals involved with
robots, with varying levels of expert knowledge of teleoperating the MASCOT system described in the
introduction. Seven participants were students involved with robotics and six were professionals not
involved with robotics. Each participant trial took around 45 minutes to complete.

For each variant of the interface evaluated in the experiment, the same task is set for the user. The
user must (1) Use the Explorer robots to find all three Inspector robots that need charging. (2) Use
Support robots to charge three Inspector robots. (3) Use the Inspector robots to inspect two objects. (4)
Decontaminate any robot that has become contaminated by moving these robots to the start area.

6.1 Experiment Procedure
At the start of the experiment, each participant was given an introductory page of information that told
them what the work is about and the motivations behind the work (including completion of a consent
form if they decide to do the experiment).

Participants were then given a tutorial on the controls for changing scale, controlling robots and use
the slider. The tutorial made sure that the participants could use the controls, and set a minimum skill level
for the experiment. The tutorial consisted of going through each subtask that is required for the main task.

For the main task, there were three Inspector robots in the environment that need to be found and
have their batteries charged by Support robots. These robots change position randomly between trials to
reduce learning effects. A robot that needs to be rescued could potentially be in any pose within its own
workspace. These robots are in unknown positions within the environment to increase the difficulty of
the task. In addition to this, in the anticipated use case of remote maintenance of a fusion reactor, it is
possible for the localisation of a robot to fail, in which case it cannot be assumed that the failed robot’s
position is known.

Each repeat of the scenario has two objects that need to be inspected by Inspector robots. These
objects stay in the same position over all experimental trials, and their positions are initially shown to the
participant in the tutorial. This was based on the idea of a remote maintenance task with static objects that
need to be inspected routinely.

Each participant completed the task five times, with the variants presented in a randomised order. The
set of interface variants are described in the Interface Design section. After each repeat, the user filled out
a survey described in the next subsection.

At the end of the experiment, the user was asked to rank all of the interface variants, and asked open
ended questions as a prompt for qualitative feedback.

6.2 Measurements
All participants were asked to provide initial information about their age, gender, professional background,
familiarity with robotics and familiarity with VR.

To measure the perceived difficulty of the task with each variant, the NASA TLX survey was filled
out after each task. This survey measures the mental demand, physical demand, temporal demand, overall
performance, effort and frustration perceived by the user when completing the task. Three additional
factors were also rated on a 7 point rating scale: “How easy was it to control which information was
displayed?”, “How easy was it to find relevant information?” and “How easy was it to understand the
information?”. For these questions, an answer can range from 1 to 7, representing “Very Easy” and “Very
Hard” respectively.

At the end of the experiment, the participant was asked to give feedback from an open ended prompt:
“Please provide any comments you have about the different interfaces”. They were also asked to rank the
five interfaces, with 1 being the best and 5 being the worst.

The performance of the participant in each task was recorded. This metric was derived from the
components of each task that they managed to complete, and the time taken to do so. Each task was
stopped after 240 seconds, unless the task was completed sooner. The participants were informed that
performance was measured by how many of the tasks they completed in the time given. The performance
metrics were: (A) Number of Robots Charged (0-3), (B) Number of Objects Inspected (0-2), (C) Number
of Robots Contaminated (0-9), (D) Time Taken (seconds). P (performance) was then calculated using this
formula:
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P =
100
120

∗
(

20∗ (A+B)−10∗C+20∗ 240−D
240

)
Performance is formulated so that the value is greater when more subtasks have been completed, and

smaller when more robots have been “contaminated”. The performance value increases if the tasks are all
completed before the cut off time of 240 seconds.

7 RESULTS
7.1 NASA TLX and User Feedback

Figure 6. Box and whisker graphs showing user feedback for the Interface Variants (V1 - V5) over 9
factors (a - f).

Figure 6 shows box and whisker graphs for the 9 factors users rated between 1 and 7. We performed
ANOVA one way statistical analysis (significant threshold = 0.05) on all factors in the experiment, with
the independent variable being the variant of the interface (V1 - V5). One-way ANOVA determined
no significant difference between groups (F(4,125) = 2.1692, p = 0.0763) for the ’Finding Information’
category (shown in Figure 6 (h)), however a Tukey post hoc test (p = 0.0399) revealed that V1 (2.3462±
1.1981) was significantly rated better than V5 (3.4231±1.3616). The effect size corrected for sample
size was Cohen’s d = 1.4827. Users found it significantly easier to find information with Interface Variant
V1 (where all information was available to them independent of scale, and no filtering occurred) than with
Interface Variant V5 (where Semantic filtering and Spatial filtering were linked to the scale of the user).
This indicated that the combination of spatial and semantic filtering made the act of finding information

12/18



be perceived as more difficult than in the baseline case. Other factors had no significant effects between
interfaces.

7.2 Performance and Interface Rankings

Figure 7. Box and whisker graphs showing (a) User rankings of each interface (1 is best, 5 is worst) and
(b) Task completion percentage over the Interface Variants (V1 - V5).

After completing all of the tasks, the participants were asked to rank the interfaces from 1 to 5, with 1
being the best. A box and whisker plot of these rankings are shown in Figure 7 (a). The participants also
had their completion of each task measured for each interface variant. This metric corresponds to how
much of the task the participant was able to complete and time for completion. The formula to determine
this metric is explained in the Experiment Design section. A box and whisker plot for this data is shown
in Figure 7 (b).

Task performance for each interface and interface rankings were evaluated with ANOVA One Way
analysis. This analysis found two significant effects on the rankings of the interfaces, finding a significant
difference between groups (F(4,125) = 3.3018, p = 0.0131). When comparing all of the interfaces,
variant V1 (2.2308±1.3945) was ranked significantly better than V2 (3.3077±1.4905) with Tukey post
hoc test = 0.0374 and corrected Cohen’s d = 1.6395. V1 was also ranked significantly better than V5
(3.4231±1.5013 with Tukey post hoc test p = 0.0149 and corrected Cohen’s d = 1.7524. This indicated
that the slider input, and the combination of spatial and semantic filtering were not preferred when
compared to the baseline case. This could indicate that users prefer information filtering coupled to
scale rather than using the manual control of the slider. These results may also suggest a preference for
interfaces where less information is hidden from the user.
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Topic Majority like/agree
with the topic

Proportion that
like/agree with topic

Seeing as much information
as possible at the same time Yes 10 out of 11

Scaling as a method of
changing information Mixed 5 out of 9

Interfaces where fewer actions
are needed to access information Yes 9 out of 9

Spatial filtering No 1 out of 5

Using the slider as a method
for controlling information Mixed 3 out of 5

The interface was easy to use
or understand Yes 4 out of 5

The symbols used in the
experiment were easy to
understand

Yes 4 out of 4

The interface could be effective
for more complex scenarios Yes 3 out of 3

A more customisable interface Yes 3 out of 3

Table 1. Topics that were most commonly talked about in written feedback from participants. Each
comment was determined by the authors to be positive or negative about a subject. The numbers
determined to be positive/negative are shown here. Not all topics were mentioned by all participants, so
the total number of comments for each topic varies.

Variants with spatial filtering (V4, V5) were compared to variants without spatial filtering (V1, V2,
V3) and ANOVA One way determined that the groups were significantly different (F(1,128) = 4.7286, p =
0.0315). Variants without spatial filtering (2.7692±1.5290) were ranked significantly better than variants
with spatial filtering (3.1519±1.3213) with Tukey post hoc test p = 0.0297 and Cohen’s d = 1.2139. This
result indicates that the participants perceived that the spatial filtering hindered them when completing
tasks with this interface. There were no significant differences in task completion found within the data.

8 DISCUSSION
After completing the experiment, participants were asked to submit written feedback about the interfaces
and the experiment in general. Topics that were mentioned most frequently within the comments were
noted. Not all participants commented on all aspects of the experiment, so the total number of comments
about a topic vary. Each comment was then analysed to determine whether the participant expresses
positive or negative feelings about it. Table 1 shows this data.

The qualitative survey results can provide some insight into the preferences of people using these
types of interface. These preferences may be used as guidelines for future design work.

One aim of this study was to determine if the initial interface design was easy to use for the task of
multi-robot control and supervision. Participants in general found the interfaces easy to use, with 16 out
of 26 participants able to complete the entire task within the time limit and 4 out of 5 comments saying
that the interface was easy to use. Participant P8 commented: “The interfaces as a group were very easy
to use and to understand what information was being displayed”.

The quantitative results indicated that the main factor that affected user experience was the difficulty
of finding information. The data suggests that the combination of Spatial and Semantic filtering increased
the difficulty. For this variant (V5), in order to access the internal text labels, the user would also have to
be close to the label they want to access in order to read it. This means that two commands (scaling and
moving) are required to access this information, whereas the other interface variants only require one.
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The participants expressed a strong preference for fewer actions to access information, with 9 out of 9
comments supporting this idea. For example: P17 “Spatial meant that a large amount of movement of
the virtual camera was required to keep track of the status of the various robots. This meant that a quick
survey wasn’t possible.”.

The rankings of each interface suggested that the spatial filter in particular is not preferred by the users,
with 4 out of 5 comments expressing negative feelings towards spacial filtering. One user commented:
P16 “The range limit was unhelpful for the icons as it prevented me from getting a wide-scale view though
I may have preferred it for the text.” This could suggest that a different filtering approach can be used for
different modes of displaying information such as symbols and text information.

3 out of 5 comments indicated positive feelings about the slider input method, so there is no clear
consensus. An example of a positive comment: P14 “I preferred the slider version as it meant i didn’t
have to change the overall view i.e. I didn’t have to make myself bigger in order to see it.” However, others
preferred controlling information by changing the scale of the user P16 “I actually found the semantic
task easiest as it forced me to zoom in rather than keeping a bird’s-eye view which actually made some of
the task feel more manageable.”

Having explored the initial feasibility of the interface, the effects of information filtering and input
methods (the main goal of this work), the results have highlighted some future directions to take this
research further. Firstly, some users reported difficulty with selecting which robot to control: P13

“Selecting individual robots could be tricky if they were close together and relied on a lot more user activity
to get the right one.”. This could be improved with a finer control system which allows users to scroll
through robots based on their proximity.

Users have also suggested that the Slider input method is useful when they want to see different
information while maintaining the same viewpoint, and the Scaling input method is useful when they
want to focus on a particular robot. These comments suggest that individual users may prefer different
input methods for different situations, and could lead to future investigations into customisable interfaces
that can be modified as the situation demands. This is also supported by the 3 out of 3 comments that
suggested positive opinions of a future customisable interface.

Another result from this work is that the users did not find the amount of information presented even
in the V1 interface to be enough to require finer filtering. This is supported by the comments, with 10
out of 11 saying that they preferred seeing as much information as possible at once. One participant
commented: P18 “I think that the slider control would be more suited to tasks more complicated than
this test where it is useful to filter out information.” This suggests that this interface has not reached the
limit for the amount of information it could display, and could be applied to a more demanding task,
with greater amounts of information. This more challenging scenario would be likely to yield clearer
preferences for differing types of filtering.

The methods explored in this work can be further investigated as potential solutions to the problems
anticipated within the areas of future fusion reactors, including maintenance, nuclear decommissioning,
disaster recovery and space operations, allowing fewer supervisors to supervise greater numbers of robots.

Additional strategies for controlling the information could be evaluated such as clustering information,
filtering based on relevance to the task and machine learning to predict what information is needed at a
given time. Future work could also evaluate the performance of this design when compared to a more
traditional 2D interface used to control multiple robots. Another avenue to explore would be ways to filter
high fidelity sensor data as well as the textual and numerical information shown here. Sensor data such as
laser scans and point clouds are inherently multi dimensional, and so will need new strategies for filtering
of information.

9 CONCLUSION
In this study, a novel virtual reality interface to supervise and control multiple semi-autonomous robots
during a remote maintenance and inspection task was developed. In order to meet task requirements,
we proposed a novel design for an interface where users were able to scale themselves relative to the
environment, while supervising and controlling multiple robots to complete a complex task. We have
verified the initial feasibility of this design and explored how information filtering can affect the user
experience. We also compared interaction methods for controlling the information in the environment. The
results from this experiment indicate that in the particular scenario modelled, the filtering of information
did not significantly improve the user experience or performance, and that spatial filtering was experienced
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as being detrimental. However, this is likely to be caused by the information provided to the users not
being sufficient to overwhelm them. Due to this factor, showing all information at once was the most
beneficial since it did not require the users to take any action to see further information. This result
indicates that future experimental designs should ensure that the tasks are demanding enough to create
a difficult challenge for the participants in the base case. In this experiment, the challenges could have
been adapted to be more difficult to overcome. Despite this, we gathered useful user feedback which
will influence the design of future interfaces and experiments. Future work will build upon the initial
exploration in this study by measuring the effects of information filtering in tasks with greater information
density. Additional works will include comparing this interface to a more traditional 2D interface, and
exploring additional strategies to improve interaction with the robots and the display of information.
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