
UKAEA-RACE-PR(22)02

S. Pacheco-Gutierrez, H. Niu, I. Caliskanelli, R. Skilton

A Multiple Level-of-Detail 3D Data
Transmission Approach for Low-
Latency Remote Visualisation in

Teleoperation Tasks



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/


A Multiple Level-of-Detail 3D Data
Transmission Approach for Low-
Latency Remote Visualisation in

Teleoperation Tasks

S. Pacheco-Gutierrez, H. Niu, I. Caliskanelli, R. Skilton

This is a preprint of a paper submitted for publication in
Robotics





robotics

Article

A Multiple Level-of-Detail 3D Data Transmission Approach for
Low-Latency Remote Visualisation in Teleoperation Tasks

Salvador Pacheco-Gutierrez 1,* , Hanlin Niu 2 , Ipek Caliskanelli 1 and Robert Skilton 1

����������
�������

Citation: Pacheco-Gutierrez, S.;

Niu, H.; Caliskanelli, I.; Skilton, R. A

Multiple Level-of-Detail 3D Data

Transmission Approach for

Low-Latency Remote Visualisation in

Teleoperation Tasks. Robotics 2021, 10,

89. https://doi.org/10.3390/

robotics10030089

Academic Editor: Abhilash Pandya

Received: 31 May 2021

Accepted: 13 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Remote Applications in Challenging Environments (RACE), United Kingdom Atomic Energy Authority,
Culham Science Centre, Abingdon OX14 3DB, UK; ipek.caliskanelli@ukaea.uk (I.C.);
robert.skilton@ukaea.uk (R.S.)

2 Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
hanlin.niu@manchester.ac.uk

* Correspondence: salvador.pacheco-gutierrez@ukaea.uk

Abstract: In robotic teleoperation, the knowledge of the state of the remote environment in real
time is paramount. Advances in the development of highly accurate 3D cameras able to provide
high-quality point clouds appear to be a feasible solution for generating live, up-to-date virtual
environments. Unfortunately, the exceptional accuracy and high density of these data represent a
burden for communications requiring a large bandwidth affecting setups where the local and remote
systems are particularly geographically distant. This paper presents a multiple level-of-detail (LoD)
compression strategy for 3D data based on tree-like codification structures capable of compressing
a single data frame at multiple resolutions using dynamically configured parameters. The level of
compression (resolution) of objects is prioritised based on: (i) placement on the scene; and (ii) the type
of object. For the former, classical point cloud fitting and segmentation techniques are implemented;
for the latter, user-defined prioritisation is considered. The results obtained are compared using
a single LoD (whole-scene) compression technique previously proposed by the authors. Results
showed a considerable improvement to the transmitted data size and updated frame rate while
maintaining low distortion after decompression.

Keywords: 3D data compression; viewing system; 3D camera; point cloud transmission; teleopera-
tion; ROS

1. Introduction

Since the invention of the first telemanipulator system in the 1940s [1], teleoperation
has played an important role in the nuclear industry for tasks such as handling, main-
tenance and decommissioning [2,3]. Teleoperation enables a user to manipulate objects
remotely, and an increased level of immersion (i.e., as if the operator is located at the remote
site) can increase the safety and reliability of the operations. A typical teleoperation system
has the means (e.g., an interface between the operator and the manipulated in situ objects
such as a joystick or haptic pen) to allow the operator to provide motion commands to
the robotic system performing the actual task in situ, as shown in Figure 1. This inter-
face may be a replica of the device that is deployed in the remote environment [4]. Such
interface devices can be controlled in a unilateral or bilateral fashion. On the one hand,
unilateral control refers to a situation where one side follows the position or forces of the
other. On the other hand, bilateral control is a scheme where both the interface and robotic
systems feed-back to each other in a closed-loop architecture.

The main aspects of teleoperation are: stability and telepresence [4]. The former relates
to the stability of the closed-loop system and its capability to cope with undesired user
behaviour and external disturbances. The latter consists of providing the user with an
adequate sense of immersion in the remote environment. In fact, the knowledge of the
environment surrounding the remote manipulator is of utmost importance to carry out

Robotics 2021, 10, 89. https://doi.org/10.3390/robotics10030089 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-6575-1348
https://orcid.org/0000-0003-0457-0871
https://orcid.org/0000-0002-2641-3570
https://orcid.org/0000-0003-1076-906X
https://doi.org/10.3390/robotics10030089
https://doi.org/10.3390/robotics10030089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10030089
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics10030089?type=check_update&version=1


Robotics 2021, 10, 89 2 of 20

manipulation tasks and especially to avoid collisions. Although stability and telepresence
are equally important and necessary, in this paper, we primarily focus on the latter by
enhancing the operator’s viewing system with up-to-date physical models located in the
remote environment.

Figure 1. Remote teleoperation in a bilateral fashion.

In teleoperation, the feeling of being there is achieved by enhancing the user experience
with sensory stimuli provided by sensors located on the remote side. Studies have shown
that such a feeling is highly dependent on the capability of the system to provide a
detailed visualisation of the remote environment, while alleviating the effects of field
of view, reference frame, frame rates and system latency [5]. Particularly for viewing
systems, video cameras have been the first choice for remote visualisation for decades [6,7].
Given the amount of research and development already conducted on the optimisation
of image/video transmission over the Internet, video cameras can easily be identified as
a mature and reliable technology. Working group alliances such as the Moving Picture
Experts Group (MPEG) have set the solid grounds for the standardisation of compression
codecs for this type of information [8].

Although video cameras are practical and easy to use, there are still multiple and
important challenges associated with the viewing experience of the user. To exemplify this,
we can consider the remote handling system of the Joint European Torus (JET) shown in
Figure 2. The robotic device shown in Figure 2a called MASCOT (Italian: MAnipulatore
Servo COntrollato Transistorizzato) [9] is a teleoperated dual-arm robotic manipulator with
seven degrees-of-freedom (DOF), built in the 1960s and currently used for maintenance and
handling tasks inside JET’s vacuum vessel. More information about the remote handling
system of JET can be found in [2]. The onboard viewing system of MASCOT consists of
two high-definition (HD) and two ancillary cameras. The HD cameras, highlighted in red
in Figure 2, are mounted above and behind the operative area. The ancillary cameras are
mounted on each one of the arms, aiding the operator with closer views. This viewing
system transmits real-time image/video information to the remote operators located in the
control room, as shown in Figure 2b.

(a) (b)

Figure 2. JET’s remote handling system: (a) MASCOT manipulator (robotic system) inside the JET
vacuum vessel; and (b) operator, interface and viewing system. Red and blue squares represent the
HD and ancillary cameras, respectively, mounted on MASCOT.



Robotics 2021, 10, 89 3 of 20

Remote handling using the aforementioned (teleoperation and viewing system) setup
is a long, slow process that requires extensive training for operators to become compe-
tent and long hours to accomplish tasks associated with maintenance and inspection.
Among others, it is possible to highlight three main causes related to the viewing system:
lack of depth perception, inadequate camera location and/or placement limitations, and oc-
clusions [10]. The perception of depth is related to the ability to perceive the environment
in 3D, providing the operator with a better understanding of the environment and its
constraints; this is crucial when handling highly sophisticated and expensive pieces of
equipment. In addition, due to mechanical constraints, it is not always possible to ade-
quately position the cameras. Even when possible, the spatial orientation perceived by
the operator may be difficult to relate with regards to the actual positioning of the remote
handling equipment. Furthermore, occlusions of target objects may forbid the user safely
conducting certain tasks. Having said this, it appears obvious that there is a need for a 3D
virtually enhanced viewing system to counteract the aforementioned issues.

Recent developments in computer graphics have allowed to replace or improve video-
based systems with virtual reality augmented ones [6,11]. A virtual reality (VR) system
consists of an interactive computer simulation capable of enhancing the human sensory
system, particularly the viewing system, providing feedback in such a way that the operator
can perceive the feeling of being immersed in the simulation [12]. The applications of
VR in the industry are diverse [13], e.g., the simulation of mechatronic systems, training,
prototyping assembly tasks and design assessment, to mention a few. Moreover, VR
has been used in JET as an approach trying to solve the lack of depth perception when
performing remote operations and training. A real-time VR replica of the teleoperated
system interacting within JET’s inner vessel (environment) has been used as part of the
viewing system for operators to benefit from the depth perception [6] in addition to its
other uses (e.g., simulate and validate positional info), as shown in Figure 3. Moreover,
several studies and developments are being conducted for the integration of VR on the
next generation viewing system for ITER [14,15].

Figure 3. VR real-time visualisation of the two robotic booms and MASCOT operating inside the
JET’s vacuum vessel.

The models of objects in VR systems are required to enclose a description of its
behaviour which can be static or Newtonian [12]. The former relates to motionless objects
lacking interaction and used for visualisation purposes only; the latter to objects that are
governed by physics laws present in the real world. What is more, these objects are required
to be known in advance, meaning that any unforeseen changes on the real scenario may
not be captured in the virtual replica causing unexpected behaviours which can lead to



Robotics 2021, 10, 89 4 of 20

disastrous collisions. It is then necessary to utilise live 3D feedback information to update
or augment the virtual world accordingly.

Modern developments on 3D cameras, commonly addressed as RGB-D sensors (which
stands for red, green, blue and depth), allow the gathering of point cloud frames (a point
cloud is a collection of points in the Euclidean space R3 often consisting of multiple at-
tributes such as colour, texture and normal) consisting of millions of high-density points
with a high-precision of ∼0.06 mm at fast acquisition rates capable of providing an out-
standing insight of the environment. Unfortunately, this vast amount of data represents a
significant burden for communications (e.g., a point cloud with ∼700 k points per frame at
30 frames per second (fps) would require a bandwidth of approximately 500 MB/s [16])
and becomes a problem when minimum specifications in teleoperation require updates no
more than 100 ms [5,11]. Moreover, the adverse effects on the transmission time escalate for
worse in scenarios where the operator and the telemanipulator are located at geographically
distant locations.

Having said this, the aim of this work was to develop a novel technique for transmit-
ting dense data such as point clouds data across remote locations for teleoperation. This
technique is built upon tree-like structures for codification and decodification enhanced
with a novel hierarchical, multiple level-of-detail compression which allows varying the
resolution of sections of a single frame. Furthermore, a comparison against raw point
cloud data transmission and a codification strategy previously proposed by the authors is
provided. This paper is organised as follows: in Section 2, current developments on 3D
data compression and transmission are discussed; Section 3 provides the theoretical back-
ground related to tree-based codification structures. In Section 4, our proposed multiple
level-of-detail compression approach is presented, while the analysis and assessment of
the results is covered in Section 6. Finally, the conclusions and future work are discussed in
Section 7.

2. Related Work

Depending on the type of sensor and the application, point clouds can be classified
as static or dynamic. Static point clouds do not change over time and they are commonly
used for the preservation of 3D information and on-demand visualisation. A point cloud is
considered dynamic when it can change at every frame without necessarily maintaining a
direct relationship from one frame to the other. Dynamic point clouds are commonly used
for real-time visualisation, mapping, recognition, etc. Due to our application, we focus on
dynamic point clouds rather than on static ones.

The need for the integration of dynamic real-time point clouds in virtual and aug-
mented reality applications have increased in recent years. However, the main drawback
for real-time visualisation is the large amount of data that is required to be transmitted.
An average of 500 MBps are required to transmit an average of 800 k points in colour at a
relatively visually acceptable rate [16].

Although several point cloud compression (PCC) techniques have been investigated,
we focused our research on those that relate the most to our application. Existing tech-
niques can be classified into either deep-learning- and geometrical-based. Deep learning
techniques are relatively recent and aim to identify salience attributes on point clouds to
generate a codified latent space representation. Geometrical approaches aim to explore the
spatial relationship of the points for further codification (e.g., serialised, projected, etc.).

2.1. Deep-Learning Approach

In recent years, several deep-learning techniques have been developed for point cloud
codification in latent space. According to [17], one of the main techniques consists of the
usage of autoencoders (AE) based on 3D convolutional neural networks to compress point
cloud geometry [18–20]. Some of these techniques combined autoencoders with octrees by
exploding the characteristics of tree structures during codification [21,22].



Robotics 2021, 10, 89 5 of 20

Most of these techniques take the early MPEG’s implementations of V-PCC and G-
PCC as grounds for comparison, taking into consideration parameters such as compression
rates, algorithm complexity, distortion (point-to-point and point-to-plane), codification
size, time, etc. Although experiments showed an improved reconstruction accuracy, due to
the low distortion rates and high compression ratios, the computational time is far from
being applicable in teleoperation scenarios. Moreover, some methodologies require highly
specialised processing units to perform training and provide reasonable inference times.

2.2. Geometrical Approach

The vast amount of PCC research and the need for standardisation were brought to
the attention of the Moving Picture Experts Group (MPEG), which in 2017, launched a
call for PCC proposals to define the ISO/IEC 23090-5 and -9 standards [23]. The proposal
defined two main approaches: video-based compression (V-PCC) and geometry-based
compression (G-PCC) [24].

V-PCC consists of the projection of 3D point clouds into 2D images, therefore taking ad-
vantage of the well-developed video compression techniques. Schwarz et al. [25] proposed
a methodology for decomposing a point cloud in patches by grouping points with similar
normal directions. These groups were then mapped onto the local planar surface defined
by the mean of the calculated normals. Similar approaches consisted in the projection of
point clouds onto a grid for further clustering (patching) and parameterisation [26]. In [27],
projection was based on the 2D plane obtained through principal component analysis and
in [28], multiple synthetic camera views were considered to build the projected image.

G-PCC encodes geometrical information associated with the location of each point in
the 3D space using data structures, such as octrees (discussed in more detail in Section 3.1),
kd-trees and binary trees. Investigations presented in [24] showed that G-PCC is more
suitable for sparse point clouds in comparison with V-PCC, which applies to most real-time
data acquisition applications. At the time of this writing, both V-PCC and G-PCC standards
are still under development [29,30].

However, octree structures are the primer technology used for the codification of
point clouds in a geometrical fashion, and multiple case-dependent adaptations have been
proposed for a variety of applications. In [31], a local 2D parameterisation approach that
considers incrementally acquired data compression is proposed, even though this approach
is mainly aimed at the codification of large data sets for sites scan preservation, the authors
provided validation data for smaller scenarios which show promising results. A similar
approach based on progressive encoding and decoding can be found in [32]. In terms of
mapping and collision detection, a statistical sensor data integration approach based on
octrees is presented in [33]. Research has focused not only on the structure of the tree but
also on the improvement of the bit-level tree codification by exploring relationships between
neighbouring leaves [34], which may result as beneficial for reducing the compressed point
cloud size; however, this technique is still under revision and consideration for the G-PCC
MPEG standard.

The level of detail used by the PCC has also been investigated in [35–37]. In these
approaches, the LoD corresponds to the depth of the octree generated from the whole
point cloud. Other attributes such as normals and colour are obtained by averaging the
values that fall within a certain leaf at a determined level. Although this variation in LoD is
beneficial for real-time transmission, the LoD is homogeneously applied to the point cloud,
hence the resolution of important elements of the scene may lack in detail. In this sense,
our approach outperforms these methods by increasing the resolution of those elements
that are more relevant. A comprehensive comparison and schematic grouping of other
geometrical methods for PCC can be found in [16] for further reading.

In summary, it is well known that the construction of octree structures using high
levels of detail may be resource and time consuming, particularly on sparse, dynamic
point clouds where real-time data transmission is required. Although multiple variations
and improvements for codification using octrees have been proposed, our implementation



Robotics 2021, 10, 89 6 of 20

for application in remote handling scenarios focuses on prioritising the parts of the scene
that are considered more relevant than others. This is reflected in the smaller sizes of
transmitted message, which signify lower transmission times allowing higher update
frame rates. This in comparison with the transmission size of raw point clouds or even
compressed ones. However, in this work, we built on the octree implementation described
in Section 3, and it is worth mentioning that our proposed technique is not necessarily tied
to a particular octree implementation. Hence, there is potential for adaptation to other
application scenarios.

It is important to highlight that our approach stems from the viewing needs of op-
erators in real nuclear facilities, where visualising up-to-date information of the remote
environment is mandatory.

3. 3D Data Compression

As mentioned before, the remote teleoperation of sophisticated and potentially haz-
ardous equipment demands fast and accurate visualisation, hence requiring prioritisation
on computation and transmissions time. Furthermore, it is important to consider that in
real teleoperation scenarios, there may not be enough information about in situ objects (e.g.,
CAD, pose, type, geometry, etc.). A good 3D viewing system should be able to support the
operator’s decision process by projecting and enhancing the available information.

The compression strategy proposed in this paper builds upon the codification via
tree-like structures, more specifically, octrees. Therefore, before going into the implemen-
tation details, it is important to provide the basic foundations of the backbone of our
compression strategy.

3.1. Octrees

An octree allows the partition of a set of unordered, sparse points into a tree-like
data structure. The construction of an octree consists of dividing the space defined by the
minimum enclosing box, known as the root node, into eight equally sized boxes. Each
of these boxes is then subdivided into other eight boxes, etc., until a certain resolution is
reached. From this point, it is necessary to orderly traverse the tree from lower to higher
depth levels, assigning the corresponding child leaf to every branch, as shown in Figure 4.
The eight-element node subdivision has the advantage that each of these nodes can be
represented with 8 bits, hence a byte. For colour codification, the colour of all points
contained within each one of the smallest nodes (highest level) is normalised with respect
to the colour band present within the node. Then, each point is normalised with respect to
this band, and this value is codified together with the binary tree. Other information such
as three depth and traversing order can be added to the header of the serialised stream of
bytes, hence providing the decoder with information on how to handle and decode the
information received.

Figure 4. Octree schematic representation.

For this work, we used the octree implementation in [38], which also performs the
codification of colour, normal vectors and other texture values.

Similar to octrees, kd-trees are a tree-like structure for data partitioning. In con-
trast to octrees, the partition of the boxes is not evenly performed along the three axes.



Robotics 2021, 10, 89 7 of 20

The partition, by means of hyperplanes, is computed along each axis considering statistical
distribution values such as the median using algorithms such as quick sort [39]. A compar-
ison between octrees and the kd-tree for fast codification applications can be found in [37],
where experimental results showed that octrees provide a better performance in terms of
compression ratio and serialised message size than its kd-tree counterpart.

3.2. Single Level-of-Detail Compression

In [37], the corresponding author proposed an octree-based, whole-scene PCC, able to
vary the level of compression during run time based on user requirements. In this paper,
we refer to this approach as single LoD compression due to the fact that codification is
performed over the whole point cloud frame with no distinction between sets or subsets of
points. A schematic diagram of this approach is shown in Figure 5.

Figure 5. Schematic diagram of the acquisition, compression, transmission, decompression and
visualisation of point cloud data using a single LoD approach.

The implementation was conducted within the robot operating system (ROS) mid-
dleware framework using a local area network. Comparisons were made using two 3D
cameras with a different number of points, resolution, density and quality. Moreover,
a kd-tree compression using the implementation in [40] was compared against the octree
implementation. Results showed that the octree codification strategy offered faster compu-
tational times at a cost of lossy data codification. Moreover, it was possible to conclude that
for the static, storage or partial query of point clouds, the kd-tree implementation offered
better performance.

The nature of our application regarding the real-time data transmission and the trade-
off between quality and computation time led us to continue our research using octree
structures. For the experiments conducted in this paper, we used a subset of the most
relevant compression profiles analysed in [37], which are listed in Table 1.

Table 1. Octree pre-defined compression profiles.

Compression Profile
Compression Parameters

Point Resolution Octree Resolution Downsample? Colour Coding Colour Bit Resolution

LR-C 0.01 0.01 Yes Yes 4
LR-NC 0.01 0.01 Yes No 4
MR-C 0.005 0.01 No Yes 5
MR-NC 0.005 0.01 No No 5
HR-C 0.0001 0.01 No Yes 7
HR-NC 0.0001 0.01 No No 7

L—low; M—medium; H—high; R—resolution; C—colour; NC—no colour.

4. Multiple Level-of-Detail Compression

Although experiments conducted in [37] demonstrated a good performance in com-
pression size and transmission time, we identified opportunities for the improvement
of the compression algorithm. To begin with, not all the information has the same level
of relevance within the scene. For instance, objects located on the surface of interaction
are more important than the surface itself or the walls. Moreover, some objects may be



Robotics 2021, 10, 89 8 of 20

considered more important than others due to their hazardous or fragile nature. Assuming
some objects have a higher level of importance than the others, bandwidth usage could be
optimised by exploring the compression of the scene in a heterogeneous fashion. This can
provide a higher resolution to specific objects in the scene, whilst reducing resolution to
others that may be less relevant.

The general overview of the multiple level-of-detail point cloud compression is shown
in Figure 6. The pipeline consists of five main blocks: A. point cloud acquisition; B.
geometrical clustering; C. compression and packaging; D. decompression; and E. rendering
and visualisation. An extra block, labelled as F., is also shown and represents the parameter
configuration interface.

Figure 6. Multiple LoD compression and transmission pipeline.

4.1. Point Cloud Acquisition

First, the raw point cloud data are obtained using a 3D sensor at the remote location.
It is worth noticing that no data pre-processing is considered in order to prevent any extra
delays in the processing pipeline. However, if ultra-high-resolution cameras are used
(e.g., >2 M points) pre-processing is recommended. Most of the currently available 3D
cameras provide on-board pre-processing capabilities such as down-sampling, attenuation,
cropping and outlier removal. Some devices even provide an intermediate layer between
the camera and the output using field-programmable gate arrays (FPGAs) for high frame
rate pre-processing stages; an example of this can be found in the SceneScan Stereo Vision
Sensor System by Nerian.

Another element to consider is the merging of point clouds coming from multiple
cameras. This is possible and even recommended in most scenarios. However, the output of
fusion information coming from two or more cameras with different acquisition capabilities
may result in an unevenly distributed point cloud, i.e., variations in density. Unfortunately,
the analysis of the effects of sensor fusion for this algorithm of compression is out of the
scope of this work. For the sake of simplicity, this work considers the use of a single 3D
camera on the experiments.

4.2. Cluster Segmentation

The point cloud undergoes an Euclidean clustering phase during which the point
cloud is geometrically analysed and separated in multiple individual clusters, merely
selected on the basis of the distance between the points. To accomplish this, we used the
implementation proposed in [41]. Due to the nature of this algorithm, clusters are expected
to be physically separated from each other, therefore it is necessary to identify the set of
points corresponding to the surface on which the objects are lying on.

Ground segmentation is achieved by performing a sample consensus fitting algorithm,
which consists of iteratively proposing and evaluating a hypothesis of the parameters
describing a specific mathematical model, in this case a plane. This is recursively done
until the squared error of the distance from the model to a subset of the points satisfies
a defined threshold. In this work, we use the progressive sample consensus (PROSAC)
algorithm [42], a variation of its predecessor random sample consensus (RANSAC). In most
conditions, PROSAC has proven to be up to a hundred times faster than RANSAC. In the



Robotics 2021, 10, 89 9 of 20

situation where the algorithm fails to find a plane that suits the desired conditions, e.g.,
the minimum number of points given a certain point-to-plane distance threshold, the whole
point cloud is analysed in the search for clusters.

Once the ground has been identified, we proceed to perform the Euclidean cluster
segmentation. In simple terms, the algorithm consists of analysing each point and find
its nearest neighbours, this is, all the points located at a distance defined by a minimum
distance threshold dth as shown in Figure 7. If a point lies within the neighbourhood
of another point, this is flagged as processed and skipped in subsequent iterations. This
is performed until all points are processed and grouped within a specific cluster. Other
parameters such as the minimum and maximum cluster size, and minimum cluster-to-
cluster distance can be specified by the user during runtime.

During the clustering stage, individual clusters are labelled based on its location
on the scene, and if known, with its type, e.g., robot, box, container, or surface. At this
point, an intermediate object classification stage could be integrated for automated object
prioritisation. This is currently under development and assessment.

Figure 7. Euclidean clustering example in 2D.

4.3. Cluster Compression and Packaging

The output of the geometrical clustering is a set of clusters Ci ∈ {1, 2, . . . n} corre-
sponding to different objects located on the scene where, by default, cluster C1 correspond
to the largest plane, typically the ground or surface where the objects are located. The indi-
vidual clusters are then individually compressed at a level of detail defined by the user
via the user interface for the parameter configuration shown in block F in Figure 6. This
interface is displayed on the operator side and is communicates in real time with all the
other blocks, allowing the adjustment of parameters during runtime based on the user
needs. The actual graphical user interface (GUI) is shown in Figure 8.

Figure 8. User interface for parameter configuration.

In terms of compression, five different pre-defined levels were defined as default:
where level 1 corresponds to a low compression, hence higher resolution; whereas level
5 corresponds to high compression, and hence lower resolution. The five levels, ranging
from 1 to 5 correspond to a subset of the compression profiles shown in Table 1 and are
HR-C, HR-NC, MR-C, MR-NC, and LR-NC, respectively. It is worth noting that these levels
can be adjusted in runtime and according to the user requirements.



Robotics 2021, 10, 89 10 of 20

The label assigned to each cluster during the clustering stage was then used to assign
a compression level. The ground was assigned to the highest level of compression, level
5, while the objects located on the scene were assigned to level 3. This can be observed in
Figure 6, block E.

For the transmission of the compressed information, a customised ROS message was
created. The structure of this message is shown in Figure 9. As can be observed, the custom
message consists of a unique identified cloud (frame) as well as a vector of individually
compressed clusters. Each of these clusters is provided with its own header, cluster ID,
compression level, encoded data, and if existing, coefficients of an identified primitive
geometrical model.

Figure 9. Structure of the custom message for transmission of codified clusters.

4.4. Decompression

The packaged clustered information is transmitted via a virtual private network (VPN)
which tunnels the data transmitted from one end to the other over the Internet. The infor-
mation is then received on the local side and processed for decodification. As mentioned in
Section 4.3, each individually codified cluster contains information about its compression
level, which is particularly useful at this stage to select the adequate level of decompression.
Moreover, the flexibility of this message is such that any other compression implementation
can be easily added and tested for transmission.

4.5. Rendering and Visualisation

The visualisation of the remote data is the primer of this work. For this, we integrated
a viewing interface in Unity. This allows the incorporation of a variety of VR headset
devices and other external input devices for remote manipulation, such as leap motion
sensors and joysticks.

The native programming language of Unity is C#, hence we used ROS#, which is a set
of open source libraries for interfacing the standard ROS middle-ware structure with .NET
applications, such as Unity [43]. For rendering, we used the VFX particle renderer plug-in
for Unity, which allows rendering millions of points as particles on-screen at the same time,
as shown in Figure 10.



Robotics 2021, 10, 89 11 of 20

Figure 10. Unity engine using VFX to render the decompressed point cloud clusters.

5. Experimental Setup

To conduct our experiments, we considered the teleoperation system developed at
The University of Manchester. In terms of hardware, this system consists of a Universal
Robot UR5 as teleoperation device, and a set of HTC VR glasses together with leap motion
sensors for controlling the robot motion. The control strategy and communications are
based on ROS. For more information on this, the reader can refer to [44].

System Description

For reference, the system schematic diagram is presented in Figure 11. The remote
desktop machine is equipped with an Intel Core i5-9600@3.7 GHz with 16 GB of memory.
We relied on containerisation using Docker in order to prevent the vision system interfering
with any of the libraries and drivers related to the robot operation. Moreover, the operative
system (OS) requirements for vision and teleoperation are different. The robotic system
works with ROS Kinetic under Ubuntu 16.04 whereas the vision system was developed
under ROS Melodic under Ubuntu 18.04. Containers proved to be an excellent tool for
isolating systems within the same machine while preserving the advantages of native pro-
cessing hardware such as the central and graphical processing units (CPU and GPU) and
random access memory (RAM). Our docker container was built using as base the image
nvidia/opencl:runtime-ubuntu18.04 from https://hub.docker.com/r/nvidia/opencl
(accessed on 12 July 2021). Within our container, the vision package is deployed and the
clustering and compression nodes integrated, as described in Sections 4.2 and 4.3. In terms
of network, we used a virtual private network hosted on an Amazon Web Services (AWS)
server using a Layer 2 Tunneling Protocol. This allowed us to establish secure communica-
tion as well as transmit and receive data as if connected to the same private network.

Figure 11. System schematic diagram.

https://hub.docker.com/r/nvidia/opencl


Robotics 2021, 10, 89 12 of 20

On the operator side, we used a laptop machine equipped with an Intel Core i7@2.60 GHz
and 16 GB of memory with a native installation of Windows 10 OS. The usage of Windows
OS is mainly due to the VR and leap motion sensor OS specification requirements. This
represented a drawback since our decodification runs directly on Linux. To overcome
this issue, we created a virtual machine (VM) with Ubuntu 18.04 running using Oracle
Virtual Box, on which the vision and robot control packages were deployed. The VM was
configured to use 8 GB of the PC’s memory. The VM communicates with the host machine
via a virtual network adapter allowing communication with Unity using ROSBRIDGE.
This network adapter is labelled as ETH1 in Figure 11. At the same time, the VM connects
directly to the VPN by means of a virtual bridge adapter which bypasses the connection
with the host machine and directly accesses the Ethernet port, labelled as ETH 2 in Figure 11.
The ROS_MASTER environment variable is set to the VM on all the machines and containers
in the network.

Time synchronisation plays an important role in assessing the latency of our system.
For this reason, the Network Time Protocol (NTP) was used. NTP is used to synchronise
time across devices with Internet standard reference clocks by means of hierarchically
arranged NTP servers [45], the primary servers (online servers) being set at stratum zero.
Subsequently, the devices connected to these servers belong to stratum 1, etc. Some of the
advantages of NTP synchronisation are: the ability to compensate clock frequencies, the
handling of intermittent network connections and bandwidth saturation, auto-adjustment
on network delays and latency, to mention a few. In our application, the operator machine
connects to the online NTP server, which makes our VM belong to stratum 1. At the same
time, the VM is configured as a server to the local network, in this case, our VPN, and the
rest of the machines adopt it as their time server, thus belonging to stratum 2.

6. Results

Since the primary objective of this work is to assess the time and quality of the 3D
data being transferred and its visualisation, any aspect related to the control of the robot
and/or any other aspect related to other parts of the system is left out of the scope.

For 3D data acquisition, the low-cost 3D camera Kinect2 was used. This device is
capable of acquiring data at three different resolutions: standard definition (SD) 512 × 424
@ 29.5 Hz, quarter high definition (QHD) 960 × 540 @ 13 Hz and high definition (HD)
1920 × 1080 @ 3.5 Hz. The SD resolution was used since it provides the fastest acquisition
with a relatively good resolution. During the tests, buffering is not considered, that is, any
frame not used or processed immediately is dropped by the system. This was in the aim of
reducing overall latency and delayed user reaction.

For our tests, we considered a conservative Internet connection of 50 MBps for cal-
culating the transmission time. For comparison purposes, we analysed our multiple LoD
method against other four approaches considered relevant to our application. These are
listed below:

1. Raw data, no compression;
2. Single LoD [37];
3. An octree-based codification proposed in [38];
4. A 2D surface parameter parameterisation approach proposed in [31].

The comparison with methods 3 and 4 was conducted on the basis of the data pro-
vided by their corresponding authors with the aims of assessing their total compression,
decompression and transmission time, as discussed in Section 6.3. Due to the nature of its
implementation, the comparison against single LoD was performed more in depth and
considered the following aspects:

• Number of points before and after transmission, i.e., data loss ratio;
• Size of the codified point cloud, i.e., compress ratio;
• Compression and decompression time;
• Transmission time 50 Mbps;
• Distortion of decompressed cloud.



Robotics 2021, 10, 89 13 of 20

Figures 12–14 graphically show the comparative results obtained for single and multi-
ple LoD. It is worth mentioning that connecting (dotted) lines do not represent a continuous
plot, and should only be considered for visual differentiation and trend appreciation pur-
poses. These results are discussed in the following sub-sections.

(a) (b)

Figure 12. Comparison for (a) single and (b) multiple level-of-detail compression. The total time is
the sum of the execution time, compression and decompression, and the transmission time. In the
case of multiple LoD, this also includes the clustering time.

(a) (b)

Figure 13. Compression ratio comparison for (a) single and (b) multiple level-of-detail.

(a) (b)

Figure 14. Loss ratio comparison for (a) single and (b) multiple level-of-detail.



Robotics 2021, 10, 89 14 of 20

6.1. Raw Data

As a baseline for comparison, we analysed the transmission of raw data gathered from
the 3D sensor remote system and directly transmitted, with no processing, to the operator’s
viewing system. For this, we considered a point cloud with 217,088 points (X,Y,Z) with
colour information (R,G,B), totalling a size of 6946.82 kB. The results are shown in Table 2.

Table 2. Transmission information for raw XYZRGB data gathered using Kinect2 in SD mode.

Number of Points Message Size (kB) Transmission Time @ 50 Mbps (ms) Apparent fps

217,088 6946.82 1111.49 0.9

The data are retrieved at the frame rate provided by the sensor, approximately 29.5 fps;
however, the frame rate perceived by the operator dropped to approximately 0.9 fps.
This represents a drop of approximately 97% of the camera frame rate. The transmission
time of 1.11 s between frames and the delay this causes to the visualisation is far from
being appropriate for teleoperation minimum requirements. In this sense, this simple test
demonstrated the requirements for an adequate compression strategy.

6.2. Single LoD

For comparison purposes, all the compression profiles shown in Table 1 were consid-
ered. As expected, the profiles that discard colour during compression, which are LR-NC,
MR-NC and HR-NC, deliver the highest compression ratio, resulting in smaller codified
point clouds with regard to its coloured counterparts. Particularly, the LR-C and LR-NC
profiles offer the fastest computation and transmission times. For the LR-NC, it is possible
to achieve frame rates of up to ∼17.44 fps (see Table 3). However, the loss-ratio rounds to
∼0.8, as shown in Figure 14a). Regardless of the compression profile used, the performance
of raw 3D data transmission is surpassed by being able to provide update rates ranging
from 3.25 fps, in highest coloured resolution to 17.44 colourless lowest resolution.

It is important to highlight that the necessity for coloured information is, in most
cases, as important as a good frame rate. Hence, although non-coloured profiles offer an
exceptional frame rate, they are not suitable in most practical scenarios.

6.3. Multiple LoD

In order to compare the single and multiple LoD compression approaches, we con-
sidered a simple test scenario: having segmented the objects on the scene as explained
in Section 4.2, the lowest resolution compression profile (LR-NC) is only assigned to the
surface on which the objects lie. The rest of the objects are individually compressed using
all the other compression profiles listed in Table 1. The results are shown in Figure 12b.
The execution time as well as the total time shown in Figure 12b consider all the time
required for all the individual objects compressed on the scene. This scenario is realistically
practical since, in most cases, the operator is handling the objects on the scene requiring the
minimum knowledge of the surfaces enclosing the environment. Moreover, this considera-
tion implies that, in most cases, approximately 45% of the point cloud will be compressed
at the lowest resolution.

Although the multiple LoD approach delivers a higher loss ratio (see Figure 14b),
this mostly relates to the surface on which the objects lie, hence optimising the prioritised
objects. As explained in Section 4, the overall codified cloud size could further reduce if not
only the surface but other objects on the scene are codified with a lower resolution as well.
It is worth noticing that the required time for clustering shown in Figure 12b represents
approximately 68% of the overall processing time. Faster clustering techniques would have
a beneficial impact on the total processing time.

In general terms, the codified point cloud size using multiple LoD only represents
a fraction in comparison with the single LoD approach. This directly reflects upon the
transmission time, which is drastically reduced.



Robotics 2021, 10, 89 15 of 20

A comparative table of results obtained is shown in Table 3. For the single and
multiple LoD approaches, a visual comparison is presented in Appendix A, Table A1.
Results demonstrate that it is possible to reach frame rates of up to 13.5 fps when using the
highest resolution compression profile HR-C on the objects. Furthermore, our approach was
compared against the single level of detail octree-based compression approach presented
in [38] and the 2D surface parameterisation approach proposed in [31]. For the former,
a 1 mm resolution octree was considered, and for the latter, we used the evaluation using
the room data set (provided in their paper) to generate an estimation of the compression
size and transmission time of a point cloud with the same characteristics as that used in
our tests. We would like to reiterate that the fps was estimated considering a connection
speed of 50 Mbps and taking into consideration the compression, decompression and
transmission time.

Table 3. Comparison of perceived fps using the different compression approaches.

Compression Profile
Compression Approach

Raw a (fps) Single LoD (fps) Multiple LoD b (fps) Kammerl a,c et al. [38] Golla a,c et al. [31]

LR-C

0.9

12.34 15.13

7.9 9.5

LR-NC 17.44 15.60
MR-C 5.47 14.28
MR-NC 8.22 14.89
HR-C 3.26 13.47
HR-NC 4.85 14.03

a Compression profile is not applicable; b LR-NC is assigned to the surface on which the objects lie.; c values estimated based on the
results provided in its corresponding paper for a point cloud with the same characteristic as ours.

Using Tables 3 and A1, it is possible to analytically and visually compare the results.
The methods proposed in [31,38] provide a good frame rate suitable for real-time visuali-
sation, however, our multiple LoD approach clearly surpasses them both. For the single
LoD approach, the best viewing quality is obtained when using the HR-C profile, however,
this does not suit the frame rate required. In contrast, with the multiple LoD approach,
the user can visualise the objects using high-resolution while maintaining a reasonably
high frame rate.

What is more, a general improvement in frame rate is observed over most of the
compression profiles utilised for single and multiple LoD. It is worth noticing that a
multiple LoD approach is more beneficial for medium and high-resolution profiles rather
than low ones, which is mainly due to the added computational time required for clustering.

6.4. Distortion of Decompressed Data

In order to provide an estimation of the distortion or differences of the decompressed
point cloud with respect to the original point cloud, a point-to-model (P2M) comparison
analysis was conducted [46]. For clarity, let us define the original (raw) point cloud as the
reference and the decompressed point cloud as the target, these are represented with blue
and red dots in Figure 15, respectively. For each point P in the target cloud, the closest point
P′ on the reference cloud is computed. Then, a local plane model is estimated utilising the
neighbouring points to P′. With this information, it is then possible to estimate h. In this
way, the mean of all h’s and its standard deviation can provide an intuitive estimation of
the overall distortion after compression.

The P2M comparison was utilised since the density of both the reference and target
clouds is likely to be different, hence a point-to-point (P2P) comparison may not be suitable.
The direct comparison of the distances between the closest points will not necessarily
represent the shortest distance between the surfaces they lie on.



Robotics 2021, 10, 89 16 of 20

Figure 15. A schematic diagram of the point-to-model comparison.

Figure 16 shows the mean P2M distance and standard deviation for each compression
profile using single and multiple LoD compression. As can be observed, the mean remains
fairly similar in both approaches. The main difference occurs on the high-resolution profiles
were the single LoD approach exhibits less distortion.

Figure 16. Point-to-model distance mean for each compression profile using single and multiple LoD
compression. The shaded area represents the standard deviation.

However, by visually analysing the source of such differences in Figure 17, it was
demonstrated that these relate to the low resolution at which the surface was compressed,
hence this distortion is acceptable.

(a) (b)

Figure 17. Visual comparison of the point-to-model distance mean for the HR-C profile using: (a)
single; and (b) multiple LoD. The greener the points, the lower the P2M distance, and the opposite
occurs for red dots.

7. Conclusions

This paper presented a novel approach for fast 3D data transmission for remote view-
ing in teleoperation applications. The proposed methodology utilises tree-like structures
with multiple depth levels to codify sections of the scene at different resolutions according
to the user viewing requirements. Our technique was integrated and tested in a teleopera-



Robotics 2021, 10, 89 17 of 20

tion system consisting of a serial telemanipulator, and a digital replica controlled using VR
glasses and leap motion sensors on the operator side.

Our technique was compared against raw data transmission, single LoD compression
and two state-of-the-art techniques based on pure octree codification and 2D surface
parameterisation encoding. The results show a remarkable improvement in 3D compression
data size, transmission time and hence update rate. The experiments conducted considered
the simplest test scenario: compressing at the lowest resolution only the surface on which
the objects lie while varying the resolution of the rest of the objects. Since the configuration
in terms of variable resolution across the scene are endless and entirely dependent on
the setup and user needs, the results in other scenarios could potentially exceed the ones
presented herein. Moreover, the analysis of the distortion of the decompressed point cloud
with respect to the original point cloud was conducted. This showed a deviation ranging
from 0.5 to 3 mm using a point-to-plane comparison approach, this being acceptable in
most teleoperation applications.

Further investigation is to be conducted on how to automatically identify high-priority
objects on the scene for a more optimal LoD compression. This will require the integration
of sophisticated model fitting and/or deep-learning techniques within our pipeline. To do
so, it is required to evaluate the computational cost vs. benefit derived from such techniques.
Moreover, the exploring of parallelisation processing within our computational framework
could have a beneficial impact on the overall performance.

Author Contributions: Conceptualisation, S.P.-G., I.C. and R.S.; methodology, S.P.-G.; software,
S.P.-G. and H.N.; validation, S.P.-G. and H.N.; formal analysis, S.P.-G.; investigation, S.P.-G. and H.N.;
resources, R.S.; writing—original draft preparation, S.P.-G.; writing—review and editing, I.C. and
R.S.; supervision, R.S.; project administration, R.S.; funding acquisition, R.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the UK Engineering & Physical Sciences Research Council
(EPSRC) Grant No. EP/S03286X/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Michael Hellebrand and National Nuclear
User Facility for Hot Robotics project (Grant No. EP/T011432/1) for leasing hardware to support
this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Table A1, a visual comparison of single and multiple level of detail compression is
presented. For the multiple LoD approach, the LR-NC compression profile (see Table 1)
was assigned to the surface on which the objects lie, whereas the objects located on top
were varied in resolution according to the different compression profiles.



Robotics 2021, 10, 89 18 of 20

Table A1. Visual comparison of single and multiple level of detail compression.

Compression Profile
Compression Approach

Single LoD Multiple LoD a

LR-C

LR-NC

MR-C

MR-NC

HR-C



Robotics 2021, 10, 89 19 of 20

Table A1. Cont.

Compression Profile
Compression Approach

Single LoD Multiple LoD a

HR-NC
a LR-NC is assigned to the surface on which the objects lie.

References
1. Goertz, R.C. Mechanical Master-Slave Manipulator. Nucleon. (U.S.) Ceased Publ. 1954, 12.
2. Haist, B.; Mills, S.; Loving, A. Remote handling preparations for JET EP2 shutdown. Fusion Eng. Des. 2009, 84, 875–879.

[CrossRef]
3. Buckingham, R.; Loving, A. Remote-handling challenges in fusion research and beyond. Nat. Phys. 2016, 12, 391–393. [CrossRef]
4. Hokayem, P.F.; Spong, M.W. Bilateral teleoperation: An historical survey. Automatica 2006. 42, 2035–2057. [CrossRef]
5. Almeida, L.; Menezes, P.; Dias, J. Interface Transparency Issues in Teleoperation. Appl. Sci. 2020, 10, 6232. [CrossRef]
6. Sanders, S.; Rolfe, A.C. The use of virtual reality for preparation and implementation of JET remote handling operations. Fusion

Eng. Des. 2003. 69, 157–161. [CrossRef]
7. Kofman, J.; Wu, X.; Luu, T.J.; Verma, S. Teleoperation of a robot manipulator using a vision-based human–robot interface. IEEE

Trans. Ind. Electron. 2005, 52, 1206–1219. [CrossRef]
8. MPEG. The Moving Picture Experts Group (MPEG). Available online: https://mpeg.chiariglione.org/ (accessed on 12 July 2021).
9. Raimondi, T.; Galbiati, L. Manipulators Mascot IV Used in Jet and Prospects of Enhancement. In Teleoperation: Numerical

Simulation and Experimental Validation; Springer: Dordrecht, The Netherlands, 1992; pp. 139–161. [CrossRef]
10. Heemskerk, C. Synthetic Viewing Helps to Reduce Maintenance Costs. Available online: https://heemskerk-innovative.nl/

news/synthetic-viewing-helps-to-reduce-maintenance-costs (accessed on 12 July 2021).
11. Arnoux, R. The Promises of Synthetic Vieweing. Available online: https://www.iter.org/newsline/273/1613 (accessed on 12

July 2021).
12. Mihelj, M. Haptics for Virtual Reality and Teleoperation; Podobnik, J., Ed.; Springer: Dordrecht, The Netherlands, 2012.
13. Virtual Reality & Augmented Reality in Industry; Ma, D., Fan, X., Gausemeier, J., Grafe, M., Eds.; Shanghai Jiao Tong University

Press: Shanghai, China; Springer: Berlin/Heidelberg, Germany, 2011.
14. ITER Newsline Augmented Reality—Assessing the Future Work Environment. Available online: https://www.iter.org/

newsline/-/3509 (accessed on 12 July 2021).
15. Heemskerk, C.J.M.; de Baar, M.R.; Boessenkool, H.; Graafland, B.; Haye, M.J.; Koning, J.F.; Vahedi, M.; Visser, M. Extending

Virtual Reality simulation of ITER maintenance operations with dynamic effects. Fusion Eng. Des. 2011, 86, 2082–2086. [CrossRef]
16. Cao, C.; Preda, M.; Zaharia, T.B. 3D Point Cloud Compression: A Survey. In Proceedings of the The 24th International Conference

on 3D Web Technology, Web3D, Los Angeles, CA, USA, 26–28 July 2019; Polys, N.F., McCann, M., Liu, F., Plesch, A., Eds.; ACM:
Angeles, CA, USA, 2019; pp. 1–9. [CrossRef]

17. Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale Point Cloud Geometry Compression; IEEE: Snowbird, UT, USA, 2021; pp. 73–82.
[CrossRef]

18. Quach, M.; Valenzise, G.; Dufaux, F. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression.
In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019.
[CrossRef]

19. Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Point Cloud Coding: Adopting a Deep Learning-based Approach. In Proceedings
of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5. [CrossRef]

20. Yan, W.; Shao, Y.; Liu, S.; Li, T.H.; Li, Z.; Li, G. Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds. arXiv
2019, arXiv:1905.03691.

21. Chen, Y.; Shao, Y.; Wang, J.; Li, G. Point Cloud Attribute Compression via Successive Subspace Graph Transform. In Pro-
ceedings of the 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China,
1–4 December 2020.

22. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Multiscale deep context modeling for lossless point cloud geometry
compression. In Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen,
China, 5–9 July 2021.

http://doi.org/10.1016/j.fusengdes.2009.01.050
http://dx.doi.org/10.1038/nphys3755
http://dx.doi.org/10.1016/j.automatica.2006.06.027
http://dx.doi.org/10.3390/app10186232
http://dx.doi.org/10.1016/S0920-3796(03)00307-7
http://dx.doi.org/10.1109/TIE.2005.855696
https://mpeg.chiariglione.org/
http://dx.doi.org/10.1007/978-94-011-2648-9_10
https://heemskerk-innovative.nl/news/synthetic-viewing-helps-to-reduce-maintenance-costs
https://heemskerk-innovative.nl/news/synthetic-viewing-helps-to-reduce-maintenance-costs
https://www.iter.org/newsline/273/1613
https://www.iter.org/newsline/-/3509
https://www.iter.org/newsline/-/3509
http://dx.doi.org/10.1016/j.fusengdes.2011.04.066
http://dx.doi.org/10.1145/3329714.3338130
http://dx.doi.org/10.1109/DCC50243.2021.00015
http://dx.doi.org/10.1109/icip.2019.8803413
http://dx.doi.org/10.1109/PCS48520.2019.8954537


Robotics 2021, 10, 89 20 of 20

23. Motion Picture Experts Group Call for Proposals for Point Cloud Compression. 2017. Available online: https://mpeg.chiariglione.
org/standards/mpeg-i/point-cloud-compression/call-proposals-point-cloud-compression (accessed on 12 July 2021).

24. Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression
standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 2020, 9, e13.
[CrossRef]

25. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al.
Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [CrossRef]

26. Ochotta, T.; Saupe, D. Compression of Point-Based 3D Models by Shape-Adaptive Wavelet Coding of Multi-Height Fields.
In Proceedings of the 1st Symposium on Point Based Graphics, PBG 2004, Zurich, Switzerland, 2–4 June 2004; Gross, M.H., Pfister,
H., Alexa, M., Rusinkiewicz, S., Eds.; Eurographics Association: Zurich, Switzerland, 2004; pp. 103–112. [CrossRef]

27. Ainala, K.; Mekuria, R.N.; Khathariya, B.; Li, Z.; Wang, Y.K.; Joshi, R. An improved enhancement layer for octree based point
cloud compression with plane projection approximation. In Applications of Digital Image Processing XXXIX; Tescher, A.G., Ed.;
International Society for Optics and Photonics SPIE: San Diego, CA, USA, 2016; Volume 9971, pp. 223–231. [CrossRef]

28. Daribo, I.; Furukawa, R.; Sagawa, R.; Kawasaki, H.; Hiura, S.; Asada, N. Efficient rate-distortion compression of dynamic point
cloud for grid-pattern-based 3D scanning systems. 3D Res. 2012, 3. [CrossRef]

29. ISO/IEC 23090-5. Information Technology—Coded Representation of Immersive Media—Part 5: Visual Volumetric Video-Based
Coding (V3C) and Video-Based Point CLOUD compression (V-PCC). 2021. Available online: https://www.iso.org/standard/73
025.html (accessed on 12 July 2021).

30. ISO/IEC DIS 23090-9. Information Technology—Coded Representation of Immersive Media—Part 9: Geometry-Based Point
Cloud Compression. 2021. Available online: https://www.iso.org/standard/78990.html (accessed on 12 July 2021).

31. Golla, T.; Reinhard, K. Real-time Point Cloud Compression. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015.

32. Smith, J.; Petrova, G.; Schaefer, S. Progressive encoding and compression of surfaces generated from point cloud data. Comput.
Graph. 2012, 36, 341–348. [CrossRef]

33. Hornung, A.; Wurm, K.A.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees. Auton. Robots 2013. [CrossRef]

34. Lasserre, S.; Flynn, D.; Shouxing, Q. Using Neighbouring Nodes for the Compression of Octrees Representing the Geometry of
Point Clouds. In Proceedings of the 10th ACM Multimedia Systems Conference, Amherst, MA, USA, 18–21 June 2019; Association
for Computing Machinery: New York, NY, USA, 2019; pp. 145–153. [CrossRef]

35. Kathariya, B.; Li, L.; Li, Z.; Alvarez, J.; Chen; J. Scalable Point Cloud Geometry Coding with Binary Tree Embedded Quadtree.
In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July
2018; pp. 1–6. [CrossRef]

36. Huang, Y.; Peng, J.; Kuo, J.; Gopi, M. Octree-Based Progressive Geometry Coding of Point Clouds. In Symposium on Point-Based
Graphics; The Eurographics Association: Vienna, Austria, 2006. [CrossRef]

37. Pacheco-Gutierrez, S.; Caliskanelli, I.; Skilton, R. Point Cloud Compression and Transmission for Remote Handling Applications.
J. Softw. 2021, 16, 14–23. [CrossRef]

38. Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012.
[CrossRef]

39. Hoare, C.A.R. Algorithm 64: Quicksort. Commun. Assoc. Comput. Mach. 2012, 4, 321. [CrossRef]
40. Google Inc. Draco: 3d Data Compression. Library for Compressing and Decompressing 3D Geometric Meshes and Point Clouds.

Available online: https://google.github.io/draco/ (accessed on 8 May 2012).
41. Rusu, R.B. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Ph.D. Thesis, Computer

Science Department, Technische Universitaet Muenchen, Muenchen, Germany, 2009.
42. Chum, O.; Matas, J. Matching with PROSAC—Progressive Sample Consensus. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–26 June 2005; pp. 220–226.
[CrossRef]

43. Bischoff, M. ROS#. 2019. Available online: https://github.com/siemens/ros-sharp (accessed on 12 July 2021).
44. Jang, I.; Niu, H.; Collins, E.C.; Weightman, A.; Carrasco, J.; Lennox, B. Virtual Kinesthetic Teaching for Bimanual Telemanipulation.

In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Iwaki, Fukushima, Japan, 11–14
January 2021; pp. 120–125. [CrossRef]

45. Both, D. Manage NTP with Chrony. 2018. Available online: https://opensource.com/article/18/12/manage-ntp-chrony
(accessed on 12 July 2021).

46. Helmholz, P.; Belton, D.; Oliver, N.; Hollick, J.; Woods, A. The Influence of the Point Cloud Comparison Methods on the
Verification of Point Clouds Using the Batavia Reconstruction as a Case Study. In IKUWA6 Shared Heritage: Proceedings of the Sixth
International Congress for Underwater Archaeology; Archaeopress Publishing Limited: Oxford, UK, 2020; pp. 370–381.

https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression/call-proposals-point- cloud-compression
https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression/call-proposals-point- cloud-compression
http://dx.doi.org/10.1017/ATSIP.2020.12
http://dx.doi.org/10.1109/JETCAS.2018.2885981
http://dx.doi.org/10.2312/SPBG/SPBG04/103-112
http://dx.doi.org/10.1117/12.2237753
http://dx.doi.org/10.1007/3DRes.01(2012)2
https://www.iso.org/standard/73025.html
https://www.iso.org/standard/73025.html
https://www.iso.org/standard/78990.html
http://dx.doi.org/10.1016/j.cag.2012.03.032
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1145/3304109.3306224
http://dx.doi.org/10.1109/ICME.2018.8486481
http://dx.doi.org/10.2312/SPBG/SPBG06/103-110
http://dx.doi.org/10.17706/jsw.16.1.14-23
http://dx.doi.org/10.1109/icra.2012.6224647
http://dx.doi.org/10.1145/366622.366644
https://google.github.io/draco/
http://dx.doi.org/10.1109/CVPR.2005.221
https://github.com/siemens/ros-sharp
http://dx.doi.org/10.1109/IEEECONF49454.2021.9382763
https://opensource.com/article/18/12/manage-ntp-chrony

