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Abstract: For robotic systems involved in challenging environments it is crucial to be able to1

identify faults as early as possible. In challenging environments it is not always possible to explore2

all of the fault space, thus anomalous data can act as a broader surrogate, where a anomaly3

may represent a fault or a predecessor to a fault. This paper proposes a method for identifying4

anomalous data from a robot, whilst using minimal nominal data for training. A Monte-Carlo5

ensemble sampled Variational Autoencoder is utilised to determine nominal and anomalous6

data through reconstructing live data. This has been tested on simulated anomalies on real data,7

demonstrating the technique being capable of reliable identifying anomaly, with no pre-knowledge8

of the system. With the proposed system getting an F1-score of 0.85 in testing.9

Keywords: Condition monitoring, robot, VAE, anomaly detection10

1. Introduction11

In robotic systems involved in nuclear operations, it is crucial to be able to identify12

anomalies as early as possible. In radiation environments, where human access is not13

possible, being able to identify a problem in early stages can allow the operator to stop14

operations and relocate the robot to a place where it is possible to perform necessary15

maintenance. Moreover, in such environments, robots suffer early ageing due to the16

radiation dose they are exposed to. Effects of radiations can develop in a gradual17

degradation of robot performance as well as a sudden failures. Radiation can have18

diverse effects on a range of components of the robot including those that would be19

considered robust in normal operations. It is clear then, in a radiation environment20

the appearance of a fault can be a dramatic event. A robot unable to move can have21

a dramatic impact on safety. Moreover, such conditions can have serious impact on22

operational costs as it may be highly difficult to recover the robot for repair. It is worth23

noting, in fact, that often robotic systems for nuclear operations require bespoke solutions24

difficult to be replaced.25

A good example of a challenging environment is given by nuclear gloveboxes. They26

provide to the operator a very limited workspace, prone to clutter, with a vision from the27

outside not always optimal. Moreover, an operator is equipped with personal protective28

equipment such as coveralls and masks which reduce the ability to move and see. Also,29

the processed object can contain hazardous material difficult to assess in such conditions.30

In typical glovebox operations, objects that need processing are inserted inside the31

glovebox through a sealed door, once the objects are secured inside the glovebox, the32

operator executes all the required tasks; at the end of them, the processed objects are33

posted out and the glovebox is prepared for the subsequent task. In this work sequence34

is extremely important that the operator can complete all the tasks assigned without35

interruptions. It is clear then, in a robotic glovebox, information on the status of the36

robot and its ability to complete the tasks without occurring in faults is of paramount37

importance.38
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The purpose of a Condition Monitoring System (CMS) is to monitor measurements39

taken from the robotic system, and infer the health of the device, including possibility of40

unusual behaviour or degrading performance and report these findings to the robot’s41

operator. Traditional CMS uses dedicated sensors to identify a fault in components,42

for example a vibration sensor to identify faults on a motor. In our work, we make43

use of already existing data provided by the robot hardware to the operator and to the44

control system. As it will be more clear later, an anomaly in this data is not necessarily45

related to a fault in a robot component, but represents an unexpected event in a wider46

sense. Differences in measurements like position and velocity can be noted by an expert47

operator without any additional system. Other measurements, like motor current, torque48

and temperature are usually hidden to the operator to avoid distractions. Moreover, the49

wealth of information available to operators during a complex robot operation may be50

overwhelming. Variations in such measurements are therefore impossible to be noted51

by an operator, even the most experienced one. From the operator point of view, it is52

important to remain focused on performing the task and be able to be informed only53

with the most relevant information in case a fault is developing.54

In our work we use Variational AutoEncoder to identify anomalies in our robotic55

glovebox setup. This choice is motivated by the highly complex and structured nature of56

the relationship between the measured signals and the robot’s health. We use real data57

to train the Variational AutoEncoder and then test it using simulated faults. We score58

samples by using loss function scoring and we make use of F1 score and ROC score to59

sensitivity in to discriminate anomalies.60

This paper is organized as follow. In next section we give a background of anomaly61

detection and Variational AutoEncoder. In Section 3 we introduce a technique to use62

them anomaly detection. In subsequent section (section 4) we introduce our experimental63

setup. In sections 5 and 6 we respectively report and discuss our results. In final section64

we report our conclusions and outline future works.65

2. Background66

2.1. Anomaly Detection67

Traditional fault detection techniques require a detailed a priori knowledge of all68

the possible faults that a robot may encounter. However, this is not always possible69

in challenging environments, as access to extensive characterisation is rarely feasible.70

This leads to many faults occurring in a nuclear environment (for example) being novel.71

However, the existence of a fault can be inferred by a discrepancy with respect to the72

usual behaviour in the robot’s data. Such discrepancy, or anomaly, in data can represent73

different type of data anomaly. In [1] the authors classify anomalies in the following74

three categories:75

• Point anomalies – where a single instance of the data is anomalous with respect to76

all the rest of the data.77

• Contextual anomalies – where an instance of the data is anomalous with respect to78

the specific context of the data; i.e. data that would be nominal in context a robot79

linear motion would be anomalous when the robot is doing an accelerating motion.80

• Collective anomalies – where a collection of the data is anomalous with respect to81

the data set; e.g. data from the current sensor and thermometer are individually82

nominal, but not both at the same time.83

2.2. Variational AutoEncoder84

In the last few years, deep learning based generative models have gained more and85

more interest due to (and implying) some amazing improvements [2] in the field. One86

such technique is the Variational AutoEncoder (VAE). In probability model terms, the87

VAE refers to approximate inference in a latent Gaussian model where the approximate88

posterior and model likelihood are parametrized by neural networks (the inference and89
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generative networks). In neural network language, a VAE consists of an encoder, a90

decoder, and a loss function.91

The purpose of the encoder is to map the information included in the sample into a92

reduced dimension space, called latent space. This space is meant to contain the main93

characteristics of the samples. The decoder, on the other hand, maps a sample from94

its latent space representation back to the original form. The peculiarity of the VAE is95

that each dimension of the latent space consists of a Gaussian distribution, each of them96

characterised by a mean and a logarithmic variance value. This implies that, once a97

sample is mapped into the latent space, it is possible to draw multiple times to obtain98

multiple reconstructions of the original sample. In a VAE the loss function is the sum99

of two parts: reconstruction loss and latent loss. The reconstruction loss is a metric100

of the VAE ability to reproduce the desired output; for example, such loss can be the101

mean square error (MSE) or the mean absolute percentage error (MAPE). The latent loss102

encourages the latent space to have a form of Gaussian distribution; an example of latent103

loss is the KL divergence loss.104

In recent years VAE have been used in anomaly or fault detection in a wide range105

of applications, from images to bank transactions. In [3] the authors combine VAE and106

Long Short-Term Memory (LSTM) to detect anomalies in time series. In [4], the authors107

use VAE model in detecting anomalies in videos. It is interesting to note that in the paper108

the latent space is modelled as Gaussian Mixture Model (GMM) rather than a single109

Gaussian distribution. In [5], the authors take advantage of multiple draws from the110

latent space to map the reconstruction error, i.e. the difference between input sample111

and its reconstruction, into Gaussian distribution. We do not think it is possible to apply112

the same techniques to our data and therefore, as it will be clearer later in the paper, we113

adopt a different method to identify anomalies. In [6] the authors discriminate anomalies114

by clustering the latent space. Also in this case, we do not believe it is possible to apply115

this technique to our data.116

3. VAE for Anomaly recognition117

3.1. Reconstruction118

We train the VAE to reproduce in output the sample presented in input. The main119

idea is that the VAE will be able to reproduce a sample that already appeared during120

training, while it will fail if a sample contains any kind of anomaly. A VAE sample is121

made by measurements collected from all the joints. In case of an anomaly in a joint,122

only some of the measurements will be affected.123

Figures 1a, 1b illustrates a simplification of the reconstruction concept. In particular,124

in normal conditions represented by Figure 1a, measurements collected from the robot125

are collectively known, therefore the VAE is able to reproduce all of them correctly. In126

case of measurements not collectively already presented during training, Figure 1b, the127

VAE will not be able to correctly reproduce them.128

It is important to note that in 1b, the anomalous measurement not necessary must129

be novel or containing values never seen before. The VAE will not be able to reproduce130

all of them as long as they are not collectively the same.131

One way of seeing this is that the state of the machine is then encoded in the latent132

space. If the encoder, encodes a region of the latent space that hasn’t been trained, the133

decoder will not be able to decode and thus reproduce the values coherently/correctly.134

Following this analogy, using a VAE allows the system to account for sensor noise, the135

latent space can encode a covariance to the probability of values based on the region.136

3.2. Monte-carlo Reconstruction137

As already stated, having a stochastic process as part of the latent space permits to138

generate multiple reconstructions of the predicted signal starting from a single point in139

the latent space. By separating the encoder and the decoder components of a trained140

VAE, it is possible to use the encoder to obtain a latent space representation of a sample.141
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(a) Normal condition behaviour

(b) Anomalous condition behaviour
Figure 1. Simplified schema of VAE reproducing data in normal condition and anomalies.

From there it is then possible to sample the decoder multiple times, in a Monte-carlo142

fashion, to collect a statistic of the expected reconstruction behaviour. The reconstruction143

of any sample which is not compliant with this statistic can be interpreted as an anomaly.144

This would enable the system to be tolerant to sensor noise. It is inevitable that they will145

be a base level of noise on any sensor reading, as this entropy-like, it will not be possible146

for the decoder to reproduce this signal component exactly. However, the level of noise147

compared to the signal could be encoded into the covariance of the VAE.148

It is assumed that the noise can be approximated as a Gaussian in the latent space.149

As the latent space would approximate to underlying parameters of the system. A150

Monte-Carlo ensemble decoded from the latent space can then approximate a nominal151

stochastic distribution.152

For example, it is possible to generate a zone around each signal showing nominal153

behaviour. This zone can be calculated as the convex hull of all the expected recon-154

structed measurements. Each signal reconstructed within this zone can be considered as155

nominal behaviour. A Gaussian mixture model was investigated but deemed unneces-156

sary.157

In particular, it is possible to use samples of the training set to obtain the worst pos-158

sible nominal reconstruction cases over multiple draws. This effectively creates a band159

around each measurement in which we expect the VAE to reconstruct it. Reconstructed160

samples from the testing set outside this band can be considered anomalies.161

4. Experimental setup162

4.1. Glovebox use-case163

The setup consists of two Kinova Gen 3, seven degrees of freedom [7] robotic164

arms, installed in the glovebox demonstrator [8]. The two robotic arms are identical,165

but the end effectors attached to them differ considerably in dimensions and weights.166

The experiment will perform a series of CMS dedicated moves that are executed at the167

beginning and at the end of operations. There are many advantages in using dedicated168

moves, but the main one is that they provide a solid and reliable base of data not affected169

by any external factor, such as human error. Moreover, in a robotic glovebox context and170

from the operational point of view, it is convenient to have "warm-up" and “cool-down”171
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Figure 2. An example of time-windowed data sampled from a single joint for one glovebox robot.

phases at the beginning and the end of operations, in which make sure the system is172

respectively ready to operate or has not been damaged during operations.173

The glovebox system is controlled using the ROS framework [9,10]. The Kinova174

ROS package provides a large amount of real-time data for each joint. In particular, in175

our work we use joint position, joint velocity, motor current and motor torque of each176

joint.177

It is very important to note that the measurements in use are very different from178

each other and their range of extension is very diverse. This makes very difficult to scale179

them to a common range, i.e. between 0.0 and 1.0. Scaling each individual measurement180

with a common scaling factor would have made features disappear; on the other hand,181

scaling them with a measurement’s specific factor would have modified the relationship182

between measurements; unless all data was scaled equally, which would potentially183

suppress some values.184

Not having all the input normalised between 0.0 and 1.0, creates a constraint in185

the definition of the reconstruction loss. In fact, the same mean square error in two186

different measurements can have different effects. For this reason, this work evaluates187

the reconstruction error using mean absolute percentage error (MAPE). Using MAPE188

reconstruction loss the same error in two different measurements is considered differently189

according to the measurement magnitude.190

As previously explained, the data consists of a set of time series measurements191

coming from each joint. To be able to capture the dynamic behaviour of the system, it192

has been chosen to consider, as a single sample in input or in output of the VAE, data193

collected during a configurable time-window. A sample is therefore a matrix where each194

row represents a measurement and columns represent acquisition times. In Figure 2 is195

presented an example of data coming from joint 3 sectioned in time-window.196

It is important to note that this choice does not affect in any way the capability of197

the system to identify anomalies while working online as the current sample at time198

tnow should be the set of data collected during time-window [tnow − twindow, tnow). It is199

also important to note that the longer the time-window, the highest is the amount of200

information each sample contains. On the other hand, using a long time-window, the201

system becomes less sensitive to short time perturbations. As will be explained later, the202

length of the time-window changes the behaviour of the system in identifying different203

types of faults.204
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Figure 3. Example of data reconstructed by VAE. In black are reported original measurements not
used during training. In red are reported different samples of output reproduced by the trained
VAE.

4.2. Implementation205

Our VAE layout consists of a fully connected multiple layers neural network.206

Through testing, an optimal number of layers and their size have been determined.207

Good results in reproducing the input samples have been obtained with encoder’s layers208

dimensioned respectively [512, 256, 128, 64, 32] and with a latent space with dimension209

of 6. As sample’s values are not bonded between 0.0 and 1.0, a Leaky ReLu activation210

function has been used. The decoder has been implemented in a symmetric way. For211

operational reasons, the VAE has been trained using data coming from only one of the212

two robots installed in the glovebox, from now on the training robot. Data collected from213

the other robot, from now on the testing robot, have been used for comparison purposes.214

In Figure 3 it is reported data reconstructed by the trained VAE. In particular, in215

the figure are reported reconstructed measurements of Joint 3 using data collected from216

the training robot, but not used during VAE training. Black lines represent original217

measurements, while red lines represent reconstructed measurement. To increase the218

readability of the figure, it has been reported reconstructed data only during some time219

windows.220

5. Results221

We have used the Monte-carlo technique explain in section 3.2 to generate a zone in222

which expect signal with nominal behaviour.223

In figure 4a is shown in red the calculated zone in which the motor current of joint224

3 is expected to be reconstructed, while the black line represents the actual measure. As225

it is possible to note, the zone of expected nominal behaviour is very narrow.226

In figure 4b multiple draws of samples collected from the testing robot are reported227

in blue and are compared to the expected behaviour zone. Data from the testing robot are228

clearly different from nominal and definitively outside the zone of expected behaviour.229

This is because the two robots are equipped with two different end effectors.230

To improve the identification of anomalies we have opted to use the VAE loss231

function to score a sample. We focused on the training robot only as data coming from232

the testing robot have been already proved as anomalous. As we did not experience any233

anomaly in the training robot over time, we modified our data to generate simulated234

anomalies. In particular, we modified our data in two different ways:235
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Figure 4. Example of calculated nominal behaviour zone and its comparison against multiple
reconstruction of same same in case of testing robot data.

a) variation perturbation - a variation of 20% in some of a joint’s measurements.236

b) swap perturbation - a swap between two time windows of some of the joint’s237

measurements.238

The first type of data perturbation is intended to reproduce a “point anomaly”,239

where the perturbed data is anomalous with respect to all the rest of the data. In this240

sense, we can imagine this anomaly as data that assumes values never seen before during241

the training.242

The second type of data perturbation is intended to reproduce a “contextual243

anomaly”, where the perturbed data is anomalous in its context. In this sense, we244

can imagine this anomaly as data that is not new, but anomalous because in the wrong245

context.246

We consider an anomaly as a sample for which the loss score is higher than a247

predefined threshold. We calculate the threshold as the value that provides the maximum248

F1 score. It is important to note that this is possible because we are generating simulated249

faults and therefore we have ground truth information on data.250

In Figure 5a and Figure 5b it is reported different values of F1 score and ROC score251

for different values of the time-windows in case data are modified using a “variation252

perturbation”.253

Our results show that for this type of anomaly the best F1 score is 0.80 and it is254

obtained with a time-window of 2 samples. Small time-windows (2, 64, 128, 256) do255

have similar good performances, while longer time-windows (1024 and 2048) have256

worst performances. This results are confirmed also by the ROC score, in which small257

time-windows curves are closer to the top left corner. Intuitively this is equivalent to258

say that as point anomalies are data never seen before, they are easier to recognise using259

short time-windows.260

Similarly, in Figure 6a and Figure 6b, it is reported different values of F1 score and261

ROC score for different values of the time windows in case data are modified using a262

"swap perturbation".263

Our results show that for this type of anomaly the best F1 score is 0.85 and it is264

obtained with a time-window of 2048, which corresponds to about 2 seconds. Also265

in this case it is possible to observe how long time-windows and short time-windows266

perform in opposite way. Intuitively long time-windows perform better with “swap267

perturbation” anomaly because data are not novel in value, but in context, therefore the268

system needs more information to identify the anomalies.269

Overall these results show that the VAE provides very good accuracy in both types270

of simulated anomalies.271
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(a) F1 scores (b) ROC scores
Figure 5. Trends of F1 score (a) and ROC score (b) curves for different values of time-windows in
case of variation perturbation simulated anomalies.

(a) F1 scores (b) ROC scores
Figure 6. Trends of F1 score (a) and ROC score (b) curves for different values of time-windows in
case of swap perturbation simulated anomalies.
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6. Discussion272

The stochastic process in the latent space allowed us to encode a sample into a latent273

space and then draws multiple times from it, to obtain a statistic of the VAE ability to274

reconstruct that sample. Contrary to [5] we decided to do not assume the reconstruction275

error was Gaussian. Instead, we decided to use these statistics differently. Unfortunately,276

the zone we obtained was too narrow to be practically useful. However, this may not be277

true for less stable, more fault-prone systems.278

As alternative we opted to use the VAE score to assess whether the sample was279

an anomaly or not. To calculate the threshold to discriminate normal from anomalous280

behaviour we made use of F1 and ROC scores. Interestingly the length of the time281

window influenced the ability to identify different types of simulated anomalies. In282

particular, in simulated context anomalies, obtained by swapping values of different283

instant in time for some measurements, long time windows performed better. This is284

expected as in this type of anomaly values have been presented during training, but285

not collectively at the same time. This required more information to be available in the286

sample. On the other hand, in simulated point anomalies, obtained by increasing by 20%287

values of some measurements, VAE did not need much information to identify values288

never been presented before. In this case short time windows performed better.289

7. Conclusions290

In this paper we have investigated the use of VAE in identifying anomalous data291

collected from our robotic glovebox setup. We defined a Monte-carlo based technique292

to produce a statistic of expected nominal behaviour results. We have applied this293

technique to data collected from two identical robots equipped with different end294

effector. To improve our results, we used loss function score against simulated anomalies295

in data. We proved both techniques can be used in detection of anomalies in data.296

One of the weaknesses of the study is the lack of real anomaly data vs actual297

anomaly data. During our time with the Kinovas we have only witnessed one anomaly298

in 100s of hours of operations, that was identified by the proposed system. For future299

studies it proposed to use a more anomaly prone system, rather than an industrial robot,300

which are known for their robustness.301

In future works we will investigate more the possibility of using statistics from302

multiple reconstructions of the same sample to identify anomalies.303
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