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Abstract: The nuclear industry has some of the most extreme environments in the world, with1

radiation levels and extremely harsh conditions restraining human access to many facilities. One2

method for enabling minimal human exposure to hazards under these conditions is through3

the use of gloveboxes which are sealed volumes with controlled access for performing handling.4

While gloveboxes allow operators to perform complex handling tasks, they put operators at5

considerable risk from breaking the confinement and, historically, serious examples including6

punctured gloves leading to lifetime doses have occurred. To date, robotic systems have had7

relatively little impact on the industry, even though it is clear that they offer major opportunities8

for improving productivity and significantly reducing risks to human health. This work presents9

the challenges of robotic and AI solutions for nuclear gloveboxes, and introduces an integrated10

demonstrator proposed for robotic handling in nuclear gloveboxes for nuclear material handling.11

The proposed approach spans from tele-manipulation to shared autonomy, computer vision12

solutions for robotic manipulation to machine learning solution for condition monitoring.13

Keywords: nuclear robotics; tele-operation; machine learning; glovebox14

1. Introduction15

Robots are indispensable tools for manipulation in challenging environments such16

as nuclear applications. Robotics in the nuclear industry can not only ensure the safety of17

the operators from the unsafe levels of radiation; but also provide cost-effective solutions18

for manipulation, inspection and maintenance of nuclear sites.19

The extreme conditions encountered in the nuclear industry leads to a conservative20

attitude towards cutting-edge robotics technology which has a high potential for solving21

the problems that the industry faces. In order to bridge the gap between state-of-the-art22

robotics research and the nuclear industry, the Robotics and AI in Nuclear (RAIN) Hub23

was/has been established where various problems encountered on nuclear sites are24

investigated and solutions are being developed.25

One of the problems considered in the RAIN Hub is introducing the modern26

robotics and AI technology into the existing gloveboxes and paving the path for the27

next-generation glovebox designs. Our approach covers a wide range of technologies28

from computer vision to teleoperated robotics, assistive technologies to machine learning29

and we are aiming for safer and efficient operations with nuclear gloveboxes.30

Nuclear gloveboxes are contained environments for safe handling of hazardous31

objects and materials. As for all nuclear applications, the safety of the operator using32

the glovebox is the primary goal for every operation inside the glovebox. To establish33

safe operational conditions, operators are equipped with personal protective equipment34

(PPE) and required to closely follow operational rules. However, glovebox operations35

do not fully mitigate all hazards, and remain high risk activities for the operators [1].36
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Figure 1. A nuclear glovebox where the access to the interior is through the glove ports. The
operator is wearing the specially designed gloves to protect himself from the contamination.
Source: Wikimedia Commons

Using PPE and working in a confined space with additional safety procedures37

lowers the manipulation capabilities of the operators. Gloves severely reduces the tactile38

feedback from the hands. Moreover, working through glove ports which limits the39

arm movements of the operator introduces further challenges during handling high40

risk objects inside the glovebox. As a result, a simple task of opening a screw lid of a41

container becomes a strenuous and challenging task for the operator.42

Gloveboxes, such as in Figure 1, may be cluttered, dynamic environments, and43

the tasks executed within can be complex, numerous, safety-critical, and often one-44

of-a-kind; therefore, a stand-alone autonomous robotic system cannot be expected to45

out-perform a human operator with the current technology. Moreover, due to safety46

concerns, human-in-the-loop solutions are deemed to be more desirable at least in early47

phases of deployment.48

Novel technologies in robotics and artificial intelligence can be exploited to increase49

the safety in the legacy glovebox or to design new robotic gloveboxes; in both cases, dex-50

terous robotic manipulators, sensors and control algorithms can avoid the direct contact51

between the operator and hazardous material. Inside the unstructured environment of52

gloveboxes, the robots could be controlled by the operator via teleoperation while more53

autonomous control strategies could be exploited in more standard tasks. Robot arms54

could be profitably used to accomplish operations that are performed by the operator in55

order to reduce the workload and the risks of accident or contamination.56

The following presents the problem of nuclear glovebox robotics, and an integrated57

demonstrator into a proposed robotic handling system for Nuclear Gloveboxes, spanning58

teleoperation to autonomy. The paper is organised as follows. In Section 2.1 nuclear59

gloveboxes are introduces and the challenges for robotics and AI is presented. Section 360

presents the previous work on the use of robotics technology in nuclear gloveboxes. In61

Section 4, the hardware and the simulator build based on this hardware is presented.62

Section 5 defines the individual research areas and describes how they address the63

challenges. Finally, Section 6 concludes the paper.64

2. Challenge Statement65

2.1. Glovebox Challenges66

The majority of robotic application that achieve success enjoy structured, known,67

open environments where obstructions to motion and sensing is minimal. Morevoer, the68

operational conditions are expected to be clean and suitable to the mechatronic systems69

as to not cause damage to the mechanisms and electronics. On the contrary, the working70

conditions inside the nuclear gloveboxes are considered to be dirty, dark, dull, dangerous71
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Figure 2. Glovebox illustration. (1) Hull, (2) Posting in/out port, (3) Glove ports, (4) environmental
monitoring/maintenance equipment, (5) glovebox window, and (6) Glovebox internals.

and cluttered. Therefore, a thorough understanding of gloveboxes is the key for the72

success of the robotic solution.73

Gloveboxes are broken into 6 major components, which is illustrated in Figure74

2: hull, windows, glove ports, posting ports, monitoring equipment and the glovebox75

internal.76

2.1.1. Hull77

The hull is the primary component of the glovebox which separates the glovebox internal78

from the external environment. In some glovebox solutions, the encloses a vacuum79

or a pressurised inert gas to ensure containment of the radiation hazard. The hull is80

often lead lined for improved shielding. Due to the hazards inside the glovebox, it is81

imperative that the hull is not damaged or containment breached.82

2.1.2. Windows83

The windows allow for operators to see within the glovebox. The glass is often doped84

with lead to increase its nuclear shielding; however, over time it is common for this85

glass to become yellowed (with lower visibility) and brittle from radiation damage. It86

is not uncommon for the glass to become crazed, further weakening integrity of the87

containment, and reducing visibility.88

2.1.3. Glove Ports89

These are fixed holes in the hull that allow for the gloves, and hence the operators, to90

penetrate the hull. They are normally of a standard fixed dimension (eg. 11 cm in radius),91

and most gloveboxes have multiple ports dotted around the hull to enable operators to92

reach anywhere in the glovebox interior. These ports have a fixed method for replacing93

them without losing containment and can house ports for non-gloves, such as cable94

routing. The gloves used by the operators are often thick, heavy, leaded, and when under95

pressure require the operator to hook their hands into them with their last 2 fingers to96

stop their hands being forced out. Overall, the glove design significantly increases the97
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operator safety while sacrificing the dexterity and reducing the manipulation capability98

of the operator.99

2.1.4. Posting in/out ports100

These ports allow operators to post items in or out of the hull through an airlock, which101

maintains the containment. Before posting out the items, they must be ensured that they102

are appropriately decontaminated. The posted out items are double bagged, and they103

are of a limited fixed size.104

2.1.5. Environment monitoring and maintenance equipment105

These are the equipment for monitoring the glovebox internal, maintain any containment106

requirements (e.g. vacuum, temperature), and, also, performing containment testing107

(e.g. leak tests).108

2.1.6. Glovebox internals109

The glovebox internals include the operational equipment used by the operators, this is110

a wide and diverse set of objects, from chemical processing equipment to powered hand111

tools (e.g. Dremels). Any operation for handling nuclear material/objects is performed112

in the glovebox internal.113

As an example of a nuclear application consider post-operational clean-out opera-114

tions (POCO), this requires nuclear gloveboxes that have been in service for decades to115

be dismantled and decontaminated from the inside-out, surveying, separating waste and116

radio-logical wastes, reducing size of elements through deconstruction or cutting, drain-117

ing liquids from process plant equipment, sweeping, and posting contained elements118

out.119

Beyond this it is common for operators to require additional complex PPE, or other120

equipment such as ladders to be able to access the gloveboxes, whilst exposing them to121

a reduced amount of contamination.122

2.2. Challenges of Robots in Gloveboxes123

Whilst reducing the amount of time human arms are required in gloves reduces124

the risk to operators, new challenges are posed to the robots. POCO shall be used as the125

primary use case as it covers a wide range of complex tasks in nuclear gloveboxes.126

Mechatronics Challenges127

First issue robots must enter the area, in a new glovebox they can be built into the128

internal of the hull, but this causes issues for maintenance of the robot, as they then129

must be maintained in location. Alternatively, the robot can access the area through the130

glovebox ports. This then requires the robot to be able to fit through the glovebox port,131

whilst also having a long reach and a payload capability similar to a human. It is worth132

noting this pushes the robots towards an inline joint configuration, rather than offset133

approach such as used by Universal Robots, for example.134

Another consideration is whether the robot should be in the glove or affix directly135

to the port. The environments are filled with dust and detritus, that can damage joints.136

Moreover, it preferred that robots do not become contaminated to simplify maintenance.137

This then pushes robot designs to being in the gloves. Manipulating from inside the138

glove will apply pressure to the robot and limit rotations and dexterity. It is worth139

noting that the end-effectors may be on the inside of environment, connected to the robot140

through a modified glove that can dock a robot and end-effector.141

In a similar fashion, the glove may have a window modified into it to allow the robot142

to have a wrist camera. External sensors may be challenging to install as their cabling,143

and themselves will have to be posted in, or they have to be able to cope with the reduced144

visibility glass interfering with their functioning. In the case of posting in, that will145

require the sensor to have be able withstand the environment, a mechanism for power146
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and data to be connected without breaking containment, and affixing method to be147

determined. Moreover, it increases secondary waste generated in the decommissioning148

process. Secondary waste, is waste generated in the process of decommissioning primary149

waste.150

Other things to note, that while robots that replicate human physiology will have151

an advantage in being able to replicate operations. But other robot kinematics will have152

their advantages, such as slender continuum robots, which will have advantages in153

inspecting complex shapes and internals such as pipes.154

Another significant challenge is radiation, which will degrade many parts of the155

robot.Gamma radiation is the most challenging type of radiation to protect a robotic156

system from in nuclear gloveboxes, due to its penetrating power. Standard robotic157

components and materials such as semiconductors (used in sensors, local motor drive158

electronics, etc.), plastics, optical components and lubricants are degraded or rendered159

unusable after certain levels of accumulated Total Integrated Dose (TID) of Gamma160

radiation.161

Because the damage is done over time as a consequence of the accumulating dose,162

limiting the amount of time the robot is in the glovebox to active operations is a good163

first step to extending its useful lifetime, but this then requires a reliable method for164

insertion and removal which reduces human intervention.165

There are different approaches for dealing with this issue. One method is to utilise166

standard COTS components which are replaced on a regular basis and/or as they stop167

functioning. This has the advantage of being achievable with commercially available168

technologies but puts requirements on the glovebox/robot design such that all "per-169

ishable" components are easy to remove and replace and that a robust safety system170

is in place to handle any unexpected robot failures at inconvenient times - the time to171

failure due to radiation cannot be easily predicted in COTS devices which have not172

been designed with this environment in mind. There is also the risk of creating further173

secondary waste from this process.174

A better long-term approach to this challenge is to use radiation hardened com-175

ponents which are designed, manufactured and certified to withstand a particular TID176

before failing. Historically, such technology has mainly been developed for use in the177

space sector, but electronics designed for spaceflight are often prohibitively expensive,178

and the space environment is more concerned with protecting devices from the effects179

of charged particles and high-energy electrons than gamma radiation [citation?]. Tradi-180

tionally, the nuclear sector has been able to work around the lack of radiation-sensitive181

equipment through the extensive use of shielding and simple electro-mechanical so-182

lutions, but the maturing field of Nuclear Fusion has created a strong research push183

towards radiation tolerant sensors and electronics. For example, devices such as Digital184

Camera image sensors , AD/DC converters and X drives are now in advanced prototype185

and/or early commercialisation stages.186

2.2.1. Control and Intelligent Systems Challenges187

Now that there is a robot reaching into the environment, the next set of challenges188

present themselves. The biggest element of this is that these robots should be aiming to189

match or outperform the human operator.190

Robotic solutions for gloveboxes mostly rely on teleoperation in order to keep the191

human in the decision making process. However, ideal robotics solutions will attain192

better productivity, reduced cost and increased safety by relying on autonomous systems.193

Despite the considerable amount of research, deploying an autonomous robotic system194

inside a glove box is not feasible with current technology; however, certain parts of the195

task execution can benefit from autonomy or semi-autonomy.196

Regardless of teleoperation or autonomy the area is cluttered, and the robot can not197

risk hitting the windows and breaking containment. This then requires the robot to be198

able to sense its location and environment and then avoid collisions.199
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Within teleoperation this primarily will present itself as a complex operation to200

be able to manage redundant joints re-orienting in the null space, risking collisions or201

reducing manipulability. The cognitive load of managing these additional degrees of202

freedom is very mentally taxing on the operator.203

Beyond this, the limited number of sensors, and cluttered environment, thus leads204

to limited visibility. This then effects the ability of intelligent systems to act within the205

system.206

The variety of tasks, events, and elements that the robot may encounter are nu-207

merous and unpredictable. For example, the faults that the robot may encounter can208

not be predicted, as testing for them through accelerated destructive testing would209

be prohibitively difficult. Similarly, an autonomous grasping system would be able210

to have a priori items that it can deal with, but many items such as shrapnel from211

decommissioning will be novel, possibly even in their physical characteristics.212

The next issue is in assurance. The robot and must meet nuclear regulator and site213

owners requirements. The safety and operation must be verified and validated. This214

doesn’t preclude advanced techniques such as deep learning, as verification through215

statistical methods have been used in nuclear []; but, it is a consideration.216

,217

3. Previous Work218

In the last forty years, the robotics research community has investigated innovative219

robotic solutions to improve the safety and the efficiency of operational activities in220

nuclear environments. In [2], the authors highlight the importance of robotic solutions221

to accomplish inspections and decommissioning tasks in a hazardous environment and222

glovebox, in particular, this aspect was investigated more in-depth with preliminary223

experiments in [3], where a robotic manipulator was exploited to dismantle a JDPR224

reactor. Autonomous robot and tele-operation are also key factors to innovate a legacy225

glovebox that is going to be dismantled in multiple nuclear facilities in the world. Up to226

now, operators accomplish different tasks by inserting the hand (with proper equipment)227

in a hazardous environment where the consequence of an accident could be serious:228

the operator could be contaminated by accidental cuts of the rubber glove [4] or by an229

error in operation process [5]. Robotics and artificial intelligence can be profitably used230

to remove the operator from dangerous tasks while autonomous or semi-autonomous231

systems could accomplish the activities. To pursue this aim, it is necessary to improve the232

control strategies of manipulation systems in order to operate in complex environments233

with constraints and robot redundancy [6].234

One preliminary study into the use of automated robotics within a glovebox is235

presented in [7], where an automation system and non-redundant robotic arms are236

proposed to mitigate human operator risks in handling activities. In order to reduce237

operational cost, robotic solutions are proposed to execute ad-hoc tasks [8,9] and simula-238

tions are developed to aid in mitigating hazards that may be introduced as a result of239

the deployment of robotic manipulators [10]. The solutions proposed above are not mul-240

tipurpose because they are designed to solve specific tasks. In this scenario, redundant241

collaborative robots can potentially improve the system manipulation capabilities [11]242

as redundancy can be exploited to adapt robot poses, for example, to avoid collision243

with objects in the constrained space, or to handle an object with higher quality grasping244

index [12], and, therefore, more robust handling. At the same time, novel strategies need245

to be designed to exploit redundancy within individual applications or tasks with the246

aim to reduce the control complexity.247

The same strategies could support the operators in manipulation and grasping248

tasks that are accomplished with difficulty by tele-operation inside the glovebox, as249

shown in [13] or in [14].250
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Figure 3. The glovebox mock-up hardware. The dimensions of the glovebox mock-up is based on
legacy gloveboxes which are still being in use.

While a training course could improve the ability in manipulation tasks [15] and251

reduce the fatigue, in some cases an autonomous system could provide aid to the252

operator [16] to control the robot at any level of autonomy.253

More recent research fields explore how to reduce the operator workload with254

high-level instructions given to the robot by voice command [17] while the usability of a255

humanoid robot is explored in order to do bi-manual tasks inside a legacy glovebox [18,256

19]. In general, all the solutions, which are cited above, exploit methods and strategies257

presented in robotics literature in order to identify reliable grasping poses.258

4. The RAIN Solution: Tele-operated robotic manipulation259

The following is a proposed testing framework for glovebox robotics. It does not260

attempt to represent the challenges of contamination, but does attempt to reproduce in a261

safe environment the other challenges presented in Section 2.262

4.1. Hardware263

To best represent a human-like kinematic chain it is proposed to use a serial robot264

with inline joints, with a narrow diameter to fit through the glovebox ports. To limit265

possible forces exertible on internal surfaces a cobot is desirable due to in-built force266

limitations. This leads to the proposed option of the Kinova Gen3. The robot will be in-267

glove and the end-effector be in glovebox. This will allow for the end-effector to perform268

high dexterity task while minimising contamination, it also enables the possibility for269

tool changing. Two robots are mounted at a standard port width of 450mm on a mobile270

plinth that can be raised and lowered.271

The Kinova Gen3 has a wrist mounted RGB-D camera. Then 2 external sensors are272

installed, RGB-D cameras, their positioning is subject to the operation being tested. All of273

this integrated with ROS and MoveIt [20], to deliver path planning, collision avoidance,274

tele-operation, and visualisation.275

The glovebox mock-up itself is an aluminium extrusion frame, with an enclosed276

upped section with closed panels, and a support structure, as illustrated in Figure 3.277

4.2. Simulator278

An important asset for development and testing is a simulator, as it allows simpler,279

safer, faster, repeat testing without risk to humans or robots. For this reason a Glovebox280

Robot simulator was created [21].281

The simulator has been generated in Gazebo and integrates the robots, the glovebox,282

and sensors. They have the same API for control and Moveit through ROS as the real283

robots. Additionally some tools in python have been generated to enable easy scripting of284
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scripting. Two versions of the simulator have been generated: ROS package1 and Docker285

container2. The docker option is essentially the same as the ROS package, but does not286

require installation, can start with a single command and has an entirely browser-based287

interface with gzweb for visualisation and Jupyter notebooks for interaction.288

5. Research Areas289

5.1. Autonomous grasping290

As with all remote handling tasks the robot most do more than inspect, it must be291

able interact with the world. This may be using specially designed remote handling292

tooling enabling mechanical automation to simplify tasks. But eventually the robot will293

need to handle objects. This may be achieved through tele-operation. However, for294

performance and repeatability it would advantageous to have an autonomous method.295

The glovebox presents a few abnormal issues in respect to the state of the for296

autonomous grasping. Firstly, is the constrained and cluttered environment which limits297

robot motions, and causes some optimal grasps to become unreachable. Then, there298

is the nature of the objects to be grasped. If they are known, they maybe damaged or299

contaminated, leading to them being desirably picked up from very particular points,300

with optimality and success rates regrading away from those point. Alternatively, many301

of the object in the boxes maybe entirely unique and novel in gloveboxes, with humans302

having not performing detailed inspections in 30 years. For this reason the system303

should also be capable of coping with a clutter of novel objects, that will need to be304

sorted in to be sorted in to different waste streams, for example.305

5.1.1. Grasp synthesis306

Operations in glovebox require to manipulate objects and tools in order to follow307

complex procedure, in this context it can be concluded that grasping plays a funda-308

mental role to ensure safe and successful operation. Identifying a feasible grasp in a309

unstructured environment is one of the fundamental research question that is yet to310

be solved. The synthesis of a reliable grasp is complex because of (i) considering the311

geometric constraints (such as obstacles in the environment, the glovebox boundaries)312

on the arm/gripper pose, (ii) identifying a suitable grasp pose on the manipulated object313

and(iii) applying a suitable contact force distribution for a safe hold. In order to provide314

reliable solution for the problem described above, autonomous grasping strategies have315

to be improved to provide novel tools to support operator to identify feasible grasping316

poses or to develop robotic glovebox with high degree of autonomy.317

Grasping synthesis in a glovebox, in robotics literature, could be formulated as as318

problem to identify feasible grasping solutions in a constrained workspace. Two different319

strategies are commonly used in order to identify feasible grasping poses that satisfy320

the environmental constraints: (1) finding grasp poses without considering constraints321

and then filtering them to respect environment constraints [22–25], (2) modelling the322

constraints inside the algorithm to find grasping poses [26–29].323

Taking in account a priory knowledge of the proprieties of the object, the first group324

could be split in two different subgroups that use two different approaches based on: i)325

the model of the object or ii) sensor signals to partially estimate object properties326

Several strategies have been proposed to identify optimal grasping poses in en-327

vironments without constraints. If the object model is available, swept volumes and328

continuous collision detection [30] or independent contact region algorithms [31] are329

proposed to identify a handling pose. Force closure [22] and form closure index [32]330

optimisation could be considered a valid offline method to collect high quality grasping331

poses. In [23] a real-time algorithm is proposed to collect stable grasping poses.332

1 https://github.com/ukaea/Glovebox-Simulator
2 https://github.com/ukaea/Glovebox-Simulator-Docker
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In [33,34] the authors design an optimisation algorithm in order to identify suitable333

grasping poses taking into account optimal contact force distribution constraints. The334

environment constraints and hand kinematics are not considered in this work. A different335

approach is presented in [35], where support functions and wrench oriented grasp336

quality measures are used; this solver is not tested in a real scenario where a cluttered337

environment restricts feasible grasping poses.338

5.2. Grasping without Object Model339

The object model could be not available in all the scenario, in these cases sensor340

data are exploited to estimate some properties of the scene, then a partial reconstruction341

of the object is used to identify grasping poses.342

One possible approach exploits a grasp quality neural network that is trained with343

information from a synthetic data set and RGB-D images; grasping pose candidates344

could be estimated in real time as shown in [36,37]. Usually, good performance is only345

achieved after extensive neural network training with a very large dataset.346

Different light conditions and partial views of the scene could reduce the perfor-347

mance of these methods; in such condition Gaussian Process Implicit Surfaces and348

Sequential Convex programming could be used to recover the performance as shown349

in [24]350

Alternatively grasping strategies could be inspired by human motor control, tactile351

sensor could be used to implement human inspired grasping strategies as shown in [25]352

or video recording of human handling sequence could be used to train the robot [38].353

5.3. Grasping in Constrained Environments354

Filtering grasping poses by constraints has the disadvantage that high quality355

grasping poses could be not identified, an alternative approach could be used to model356

the constraints directly in the research algorithm. Following the concept above, in357

a constrained environment reliable kinematic chain configurations are identified by358

minimizing a suitable cost index, the optimisation is subject to linear and nonlinear359

constraints, and is presented and tested on humanoid characters in [39,40].360

A similar approach, for robotics applications, is provided by Graspit! [26] an algo-361

rithm that synthesize stable holding poses in constrained environments by exploiting362

simulation and shape primitives.363

In a structured scenario the environment could be modelled and an accurate simu-364

lation tool can be developed using multi-body dynamics tools in order to avoid colli-365

sion [27]. A complete knowledge of the workspace could be useful to avoid collisions366

between the robot and the objects as shown in [41] exploiting motion constraint graph.367

In some hazardous application it’s mandatory to guarantee a safety distance of the368

gripper from dangerous object in the scene, in these scene it’s possible to use e a list369

of grasp candidate associated with a metric [28]. In order to identify feasible grasping370

poses in glovebox environment, a constrained optimization is proposed in [42], this371

method allows to synthesize poses of the manipulation systems that are force closure372

and are not in collision with glovebox walls.373

Visual feedback could be a valid alternative, in unstructured environment, to evalu-374

ate the constraints and object positions that are necessary to plan grasping poses [29] or375

to move obstacles in order to reach a target object.376

5.3.1. Grasp detection using deep learning377

Advancements in deep learning models, especially in computer vision, has led to378

its widespread application in robotics and has been gaining popularity in autonomous379

operations. One of the limitations of this approach is that its performance is tied to the380

quality of the data, which is sometimes difficult to acquire. For an active agent in a381

dynamic environment, these data driven models can become challenging to implement382

where accuracy and speed are essential part of ensuring safety in operations. In recent383
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years however, significant progress has been made for vastly improved levels of speed,384

accuracy and generalization that makes it possible to apply these models for a closed385

loop control system.386

Robotic grasping is a difficult problem to solve due to the many sources of potential387

uncertainties such as object pose, shape, friction, camera pose [43]. Nuclear industry388

gloveboxes include the added challenges of limited visibility, clutter and objects with389

varying shapes and textures. In such cases, where finding an accurate model of the390

physical properties is difficult, data driven approaches have demonstrated that a level of391

adaptability can be reached when the robots learn from example.392

5.3.2. Grasp estimation with convolutional neural networks393

There has been many different approaches with deep neural networks on the grasp394

detection problem. Instead of a separate module to extract object properties, and using395

that output for further processing for extracting grasp information, these models estimate396

the grasp pose directly from the input data. While some models directly estimate 6dof397

gripper poses from 3D inputs such as pointclouds, others estimate 2D gripper poses from398

depth or RGB images and project them to 3D space. The availability of standardised399

grasp datasets such as Cornell [44] and Jacquard [45] and its relative speed of detection400

has made the 2D input models a popular choice for application in robotic grasping.401

These 2D input models can also be categorised into the type of outputs. The earlier402

models generated a 6 dimensional vector that represented the position, angle and width403

of a parallel plate gripper [46–48]. Models such as the Grasp Quality Convolutional404

Neural Network(GQ-CNN) [43] performs grasp sampling, followed by a grasp quality405

evaluator model which ranks the sampled grasps. In recent developments, the grasp map406

estimator type of models such as the Generative Grasp Convolutional Neural Network407

(GGCNN), first proposed in [49] has demonstrated the highest performance in terms408

of speed and accuracy. These networks, which generally follow an encoder-decoder409

structure of image segmentation maps, generate 2D maps associated with position, angle410

and width, with a pixelwise grasp representation.411

5.3.3. Grasp convolutional neural network with Variational Autoencoders412

For autonomous grasping in a glovebox, it is important to identify feasible gripper413

pose for novel objects in cluttered environment. For this purpose, a neural network was414

developed where a variational autoencoder (VAE) was added to a grasp map estimator415

type of model.416

The VAEs, first proposed by Kingma and Welling in [50], maps the data into a417

distribution, also known as the latent space, from which samples drawn can generate418

data similar to the input. A VAE consist of two neural networks, respectively the encoder419

and the decoder, and a loss function. The encoder maps the input sample into a reduced420

size space, called latent space, containing the main characteristics of the sample. The421

decoder, in a similar way, maps back out from the latent space to the original form. The422

distinctiveness of a VAE is that the latent space has a form of Gaussian distributions,423

expressed as mean and logarithmic variance value. The loss function is given as the sum424

of two components: reconstruction loss and latent loss. The former measures the ability425

of the VAE to reconstruct in output the presented input, while the latter is a metric of426

how much the latent space is in form of Gaussian distribution.427

In the proposed models, variational autoencoders were used for modelling the grasp428

estimation neural network. Two different types of VAEs were explored in this work,429

Conditional variational autoencoders (CVAE) [51] and Vector Quantized Variational430

Autoencoders (VQVAE) [52]. Similar to other grasp map estimation models such as431

[49,53], these models are also very lightweight and are able to generate grasp poses432

with relatively high speed. Evaluation of these approaches on the Cornell dataset also433

demonstrated a high grasp detection accuracy. These models were also evaluated with434
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3D models of objects with complex geometry such as the Evolved Grasping Analysis435

Dataset (EGAD)[54].

Figure 4. Grasp detection from the grasp quality, width and angle maps generated by the VQVAE
grasp model on test images from the Cornell Dataset

Figure 5. Grasp evaluation in simulation for cluttered environment with objects from the EGAD
dataset. The top two pictures from RViz show the image and the estimated grasp map.

436

While grasp models reinforced by a VAE has shown promising results, the full437

extent of its capabilities are currently being investigated with in simulation and real438

world trials. Further improvements can be potentially introduced with its application439

on 3D input. Future work will include data from the simulation environment to train440

deep learning models to learn grasping pose directly from 3D data.441

5.4. Assisting the operator442

Nuclear decommissioning requires material-handling inside radioactively con-443

taminated gloveboxes [14]. Working inside gloveboxes is not only dangerous for the444

operators, but also strenuous. These strenuous tasks performed inside the glovebox typi-445

cally include cleaning, swabbing, removal, scrapping, et cetera, termed as Post-Operative446
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Clean Out (POCO) as they are done to clean previously functioning gloveboxes to447

make them fit for disposal. This work introduces robot manipulators inside the nu-448

clear gloveboxes so that the different glovebox tasks could be remotely handled using449

teleoperation [7].450

Introducing a teleoperated robotic system into gloveboxes ensures the safety of the451

operator by detaching the operator from the hazardous glovebox environment. However,452

the resulting manipulation system is, usually, not intuitive to use and requires certain453

level of familiarisation with the technology via extensive training in order to achieve454

effective use.455

The teleoperated glovebox system improves the safety of the operator but the456

safety of the manipulation is not ensured by default. During the manipulation, the457

operator cannot omit the risks involving the robot and the environment and, therefore,458

the operators have to pay the utmost attention on the movement of the robotic arms,459

consider the possible collision scenarios and ensure the safety of the manipulated objects460

and the environment. Overall, the task load on the operator during a teleoperated461

manipulation is significantly high.462

The RAIN project not only improves the safety of the operator, but also aims to463

improve the safety of the manipulation while keeping the task load on the operator as464

low as possible. Using a teleoperated robotic solution inherently implies the required465

operator safety; however, the safety of the operations, such as ensuring safe manipulation466

of objects in the glovebox and avoiding collision which might damage either the robot or467

the integrity of the glovebox components, is the fundamental question of this research468

package.469

The teleoperated robotic system in the RAIN project allows the operator to plan470

and execute the manipulation in the task space of the robot using an intuitive interface471

at the local (operator) side. Well-known tele-robotic solutions, such as Mascot system472

used in Joint European Torus, provide two kinematically similar robotic interfaces for473

the tele-manipulation to achieve a simplified control architecture and allow operators to474

control robots at the joint level. While this approach can be viewed as giving operators475

more controls on the robot, the resulting teleoperation system is more costly (due to476

the use of similar robots) and not always as intuitive as expected due to the kinematic477

structure of the robots. In order to achieve a cost effective solution with ease of use,478

the teleoperation system in RAIN gloveboxes are relying on local-remote devices with479

dissimilar kinematics where the local device is a hand tracking system while the remote480

robot is an industrial robotic arm.481

The local device, an HTC Vive controller, is a vision based tracking system which482

closely monitors the pose of the operator hand. The tracking system introduces an483

unmatched level of intuitiveness to the robot control by allowing the operators to use484

the hand motion to drive the end-effector remote robot. The reference signal, which is485

the operator hand pose, is tracked by the low level motion controller of the remote robot486

of the teleoperator. The choice of allowing the operators to plan and execute the their487

actions in the task space of the remote robot is the first step in reducing the task load on488

the operator.489

The intuitive control interface and the task space control approach is prone to un-490

wanted collisions because there is not mechanism to prevent the remote robots from491

colliding with the environment or the objects. Therefore, without any assistance mecha-492

nism in the teleoperation, the resulting teleoperator would require the operator to ensure493

the safety of the operation.494

The motivation for this work is to achieve a system which follows a given end-495

effector motion reference without colliding with the environment or the obstacles while496

keeping the manipulation capability of the robot as high as possible.497

An exemplary setup is introduced in Figure 6 which depicts one of the remote498

robot arms with an obstacle inside the glovebox. The operator is expected to manoeuvre499

the robot while avoiding any collision with the obstacle; however, in the given robot500
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Figure 6. Remote robot colliding with an obstacle in the glovebox interior.

configuration, the elbow of the robot is likely to collide with the cylindrical object. Instead501

of relying on the operator skills for avoiding collisions and securing the operational502

safety, our approach utilises the redundancy available in the remote robot and implement503

a collision avoiding rule to the inverse kinematics solutions of the robot. Hence, the504

proposed approach still enjoys the task space planning and control of the robot arm505

during the tele-manipulation and the collisions are avoided at the inverse kinematics506

solutions.507

Obtaining the joint space motion synthesis from a given end-effector trajectory508

is a challenging problem due to the inherent nonlinear relation between the joint and509

task space positions. For majority of robots, this nonlinear mapping prevents obtaining510

analytical solutions to the inverse kinematics problem. As a result, numerical solution511

methods are popular for solving the inverse kinematics problem.512

The inverse kinematics problem becomes more intricate for redundant robots, since513

the mapping between joint and task spaces become one-to-many: multiple joint space514

configurations are mapped to the same task space configuration. These multiple inverse515

kinematics solutions naturally vary with levels of optimality in respect to different516

performance measures, such as collision or singularity metrics.517

The assisting the operator research package designs an inverse kinematics solution518

algorithm for the teleoperation of redundant remote robots. In this approach, the joint519

space trajectories, which are required to control the remote robot, is generated from the520

operator motion reference. The inverse kinematics solution simultaneously considers521

the collision of the robot arm with the objects/obstacles in the environment and improve522

the manipulability of the remote robot configuration for better manipulation.523

Manoeuvring the teleoperated manipulators in a cluttered environment and/or524

a confined space is a well established problem in the robotics literature [55]. The likes525

of [56–58] have addressed the problem of collision detection and trajectory generation526

for moving the manipulator through the clutter. However, the problem becomes more527

complicated when the space where the whole body of the manipulator will move528

becomes restricted due to scattered clutter. This situation is explained in the following529

example.530

Figure 7 depicts a manipulator inside a confined space and the end-effector of the531

manipulator needs to reach to particular objects amidst a bunch of different objects inside532

the space. It should be noted that, in addition to the end-effector, the links of the robot can533

collide with the objects in the glovebox. Then, precise trajectory estimation can facilitate534

to avoid catastrophic accidents. In this work, we are addressing the collision detection535

problem and primarily focusing on collision detection and avoidance of teleoperated536

robots inside nuclear gloveboxes.537

Avoiding collisions is important for safe operations; however, smooth manoeuvring538

the remote robot is another important step for reducing the task load on the operator.539
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Figure 7. Glovebox simulator built in the ROS/Gazebo environment. The simulator depicts the
remote robot arms, glovebox and obstacles for manipulation.

The ability of moving the robot end-effector in arbitrary direction is characterised by the540

manipulability of the robot.541

5.4.1. Augmenting sensing542

The challenges of working with gloveboxes also extend to poor visibility caused due543

the combination of discoloured and damaged windows, dark and cluttered environment544

and wearing of personal protective equipment which usually limits the field of view545

for the operators. While the introduction of a simple camera view of the interiors can546

be useful, additional information related to the environment properties such as the547

type of objects, its position and pose, would not only provide helpful guidance during548

teleoperation, but also form an important component for grasp estimation and collision549

avoidance systems.550

For the glovebox computer vision, multiple sources of visual information were ac-551

quired through RGBD and stereo cameras and different processing units were developed552

to extract valuable information about the environment. In addition to the static sensors,553

the RGBD wrist cameras attached to the Kinova robots were used for surveying the less554

accessible areas. The vision modules include object detection and tracking, semantic555

segmentation RGB image, grasp detection and pointcloud segmentation.556

Deep learning models were trained using custom annotated images that are rep-557

resentative of a glovebox environment. An object detection network was trained with558

the dataset from which, the output detection were then fed into a tracking algorithm.559

For objects detection, a models similar to the You Only Look Once (YOLO)[59] were560

chosen since they generated detection at a much faster rate. In addition, a scene seg-561

mentation model was also implemented to extract more detailed information about the562

environment. These models provide a pixel-wise categorisation of the image. Models563

such as Deeplab [60] demonstrated high accuracy, but had a much slower response time.564

The segmented objects were projected to 3D to extract segmented pointclouds. This565

technique was used mainly for estimating the object shape and pose of known objects566

and obtaining an initial map of the environment. While these supervised techniques for567

object detection and segmentation, have demonstrated high accuracy on the training568

dataset, there is less room for improvements in terms of generalising for novel objects.569

The grasp detection model was kept independent of object recognition and is able to570

detect grasping pose objects regardless of its type.571

Unsupervised detection, which includes traditional computer vision techniques,572

was also introduced to extract objects with simpler geometries such as cylinders, cubes573
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and spheres. The PCL library [61] was used for pointcloud segmentation which imple-574

ments a RANSAC [62] based technique to extract object position, orientation and size.575

This information was the input for the Grasp synthesis module, (described in section576

5.3), which then generated optimal grasping pose for the objects. The extracted objects577

were also introduced into the simulation platform, which is useful for testing of the578

algorithms before deployment.579

5.5. Condition Monitoring of the Robots580

In a robotic glovebox it is extremely important to have confidence that the robot will581

not occur in any failure during operations. Such failure can have dramatic impacts both582

on safety and on costs. A robot unable to be properly controlled can have catastrophic583

consequences, for example it can impact on glovebox’s walls and damage it. Also, a584

robot which is not able to move can be difficult or impossible to retrieve and repair with585

a big impact on costs in terms of both hardware costs and time delay.586

A Condition Monitoring System (CMS) has the objective of monitoring robots587

measurements and identify any anomalous behaviour.588

In recent years many deep learning techniques have been used to identify anomalies589

in many different environments, from images to bank transactions. In this work we590

focused our attention on Variational AutoEncoder (VAE) (see section 5.3.3).591

In this work we applied VAE model to a set of automated moves we perform592

specifically for CMS as part of our operational routine. They are performed at the593

beginning and at the end of operations, in order to inform the operator that the robot is594

respectively safe to use or has not been damaged during the session.595

As already mentioned earlier, our glovebox consists of two identical Kinova Gen3596

robots equipped with different end effectors. We have used data collected from only one597

robot, from now on training robot, and used data collected from the other robot, from598

now on testing robot, only for testing purpose.599

In order to capture the dynamic behaviour of the system, we considered as a single600

sample at time tnow all the measurement collected in the interval [tnow −TIME_WINDOW;601

tnow]. It is important to note that this does not effect the ability of the system of working602

online. Also the length of the interval has an effect on the ability of the system capturing603

information and therefore identifying different types of anomalies.604

In Figures 8, 9, and 10 it is possible to see how the trained VAE is able to reconstruct605

measurements collected from CMS moves. For simplicity we will report in our pictures606

only on reconstruction of joint 3 in few time intervals. In particular Figures 8 and 9 show607

actual measurements and their reconstruction in case of respectively data collected from608

the training robot included in the VAE training set and data collected from the training609

robot but not included in the VAE training set. It is possible to note that the VAE is610

correctly reconstructing the measurements.611

Similarly, Figure 10 shows actual measurements and their reconstruction in case of612

data collected from the testing robot. It is clearly visible that in some time intervals the613

VAE is not able to correctly reconstruct the measurements. These time intervals should614

be considered as anomalies. We believe that this anomalies are due to the different end615

effector installed on each robot.616

Figure 11 show the VAE score of each sample of a CMS move in the three cases617

before, i.e. data coming from training robot included in VAE training set, data coming618

from training robot not included in the VAE training set and data collected from the619

testing robot.620

5.6. Operations621

The Operations Management System (OMS) is a web application that supports the622

three main facets of operations: management of the assets used or encountered during an623

operation, preparation of the operational procedures to be carried out, and the execution624
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Figure 8. Example of data reconstructed by VAE in case of data collected from the training robot
and included in the VAE training set. In light blue are reported original measurement, while in
dark blue are reported different sample of reconstructed output.
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Figure 9. Example of data reconstructed by VAE in case of data collected from the training robot
but not included in the VAE training set. In light blue are reported original measurement, while in
dark blue are reported different sample of reconstructed output.
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Figure 10. Example of data reconstructed by VAE in case of data collected from the testing robot.
In light blue are reported original measurement, while in dark blue are reported different sample
of reconstructed output.
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from training robot and included in the training set (red line), data collected from training robot
but not included in the training set (blue line), and data collected from the testing robot (green
line)
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of those operational procedures. Built off 35,000 hours of remote handling operations at625

JET, OMS is a unique operations management tool.626

In particular, RAIN intends to use the planning and execution capabilities of the627

OMS application to reduce cognitive load on the operator by the following means. Firstly,628

an in-built capability of procedures in OMS highlights a single action or decision at all629

times as the current operational activity to be addressed, with progression being tracked630

throughout the procedure, including along any sub-procedures or different branches631

resulting from decision points. Secondly, the planned procedures often give the operator632

the choice of completing the action via teleoperation or else allowing the robotic system633

to autonomously complete the action by submitting pre-configured commands through634

OMS.635

6. Conclusion636

Nuclear gloveboxes are designed for safe handling of hazardous objects. The safety637

measures, personal protective equipment and the glovebox construction provide some638

degree of assurance to the operators. However, they are still prone to hazards and639

working conditions are still challenging given the long working long hours in a glovebox640

which is an arduous task.641

In RAIN project, we are introducing and developing cutting-edge robotics and642

AI technology to the legacy gloveboxes for improving the safety of the operator and643

operations, along with ease of operation. Moreover, our approach potentially increases644

the efficiency in handling nuclear materials inside gloveboxes. The technologies we645

develop are automated grasping for robotic manipulators working inside the gloveboxes,646

assistive teleoperation technologies for easing the task load of the operators using the647

developed robotic glovebox solution and condition monitoring the robots for the early648

detection of failures in the robot hardware.649

The technologies developed and integrated into the gloveboxes is a step forward650

for safer and more efficient manipulation interfaces for handling nuclear materials and651

contaminated objects. Furthermore, the next generation gloveboxes will be based on652

these technologies.653
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