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Highlights
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Alessandro Altobelli,Ozan Tokatli,Robert Skilton

• This paper presents a strategy to compute the optimal trade-off between grasping posture and contact forces in a con-
strained environment by minimising a suitable cost index that includes the desired contact point positions to plan
grasping pose.

• To identify feasible grasps a novel holistic approach, which takes into account the constraints of the workspace, is
achieved by designing an optimization algorithm with: i) a suitable cost index that evaluates the grasping pose quality
and contact force distribution, ii) modelling the environmental limitations using linear and nonlinear functions which
relate to collision between the manipulation system and the limited workspace.

• Simulations and experimental results corroborate the usability of the described strategy that identifies multiple grasping
poses in a glovebox mock-up.
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ABSTRACT
In the last decades, several approaches have been presented to accomplish tasks with a robot or au-
tonomous systems in a glovebox, nevertheless, in nuclear facilities, risky operations are still executed
by humans that guarantee a high manipulation capability and dexterity. Inside the gloveboxes, robotic
devices have to operate in cluttered environments, or environments with limited space for movement;
therefore it is of significant interest to identify grasping poses those are feasible within such con-
strained environments. In this paper, we present and experimentally evaluate a strategy to synthesize
optimal grasps of geometric primitives for anthropomorphic manipulation systems in a constrained
environment. The novel strategy has been experimentally evaluated in a cluttered environment (as
glovebox mock-up) with realistic objects, as a result, we demonstrate the suitability of our developed
algorithm.

1. INTRODUCTION
Robotics is a key technology for the nuclear industry,

which takes an important role for the safe and cost-effective
maintenance of safety-critical sections in reactors, research
labs and similar places. There is a constant search for new
robotic solutions to improve the safety of operations and re-
duce operational costs [1, 2].

In the nuclear industry and research, gloveboxes, which
are contained environments which are used to handle haz-
ardous objects/tasks in a safe fashion, are extensively used.
Despite the comprehensive protective equipment and safety
procedures, which are developed over the years, glovebox
operations are still posing a high risk for the operators. More-
over, due to the strenuous working conditions, glovebox op-
erations for operators are slow and intensive in terms of the
task load.

Improving safety and efficiency in glovebox operations
have become a new research topic drawing more attention.
These new glovebox solutions utilise cutting-edge robotics,
AI and computer vision technology to assist the operator dur-
ing glovebox operations, improve the safety of the operator
and increase the overall productivity.

The glovebox environment, such as in Figure 1, is clut-
tered, dynamic and the tasks executed in gloveboxes are sig-
nificantly complex and safety-critical; therefore, a stand-alone
robotic system cannot be expected to out-perform a human
operator with the current technology. Moreover, due to safety
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Figure 1: The glovebox mock-up and the manipulation system
with representative cylindrical containers to store radioactive
substances.

concerns, human-in-the-loop solutions are found to be more
reliable. Robotic solutions for gloveboxes mostly rely on
teleoperation in order to keep the human in the decisionmak-
ing process. However, ideal robotics solutions which will
attain better productivity, reduced cost and increased safety
by relying on autonomous systems. Despite the consider-
able amount of research, deploying an autonomous robotic
system inside a glovebox is not feasible with current technol-
ogy; however, certain parts of the task execution can benefit
from autonomy.

A close inspection of task execution of operators can re-
veal that object manipulation or tool use is common in many
glovebox operations. Hence, it can be concluded that grasp-
ing plays a fundamental role in a safe and successful oper-
ation. On the other hand, grasping alone is a very complex
procedure and automating the grasping for a robotic system
is one of the fundamental research questions which is yet to
be solved.

Grasping is a very complex task for a robot to execute be-
cause of i) considering the geometric constraints (such as ob-
stacles in the environment, the glovebox boundaries) on the
arm/gripper pose, ii) identifying a suitable grasp pose on the
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manipulated object and iii) applying a suitable contact force
distribution for a safe hold. Improving autonomous grasping
strategies could provide novel tools to support the operator
in order to identify feasible grasping poses, the same solu-
tions could be used to develop robotic glovebox with a high
degree of autonomy.

This paper aims to present a strategy to compute the opti-
mal trade-off between grasping posture and contact forces in
a constrained environment by minimising a novel cost index
that extends the work in [3] by including the desired con-
tact point positions to plan grasping poses. A novel holis-
tic approach, which takes into account the constraints of the
workspace, is achieved by designing an optimization algo-
rithm with: i) a suitable cost index that evaluates the grasp-
ing pose quality and contact force distribution, ii) modelling
the environmental limitations using linear and non-linear func-
tions which relate to a collision between the manipulation
system and the limited workspace.

Although our experimental setup uses a two-finger grip-
per configuration, the procedure presented can be generalised
to hands with multiple fingers. The results in this paper
show that the work is well suited to applications with lim-
ited workspace such as within a glovebox.

The rest of the paper is arranged as follows. Section 2 in-
troduces: i) robotic solutions for handling and grasping tasks
in nuclear environment, ii) grasping strategies with robotics
manipulation systems in a constrained environment. Sec-
tion 3 presents the limits of legacy gloveboxes and defines
the problem. Section 4 describes in detail the implementa-
tion of the algorithm in order to identify optimal grasping
poses. In Section 5, the experimental setup is described in
details. In Section 6, simulation results are provided to show
the effectiveness of the proposed algorithm, then, optimal
grasping poses are tested and validated on a real robot. Re-
sults are discussed in depth in Section 7. Conclusions and
directions for future works are presented in Section 8.

2. Literature Review
2.1. Robots in Gloveboxes

In the last forty years, the robotics research community
investigates innovative robotic solutions to improve the safety
and the efficiency of operational activities in nuclear envi-
ronments. In [4], the authors highlight the importance of
robotic solutions to accomplish inspections and decommis-
sioning tasks in a hazardous environment and glovebox, in
particular, this aspect was investigated more in-depth with
preliminary experiments in [1], where a robotic manipula-
tor was exploited to dismantle a JDPR reactor. Autonomous
robot and tele-operation are also key factors to innovate legacy
glovebox that is going to be dismantled in multiple nuclear
facilities in the world. Up to now, operators accomplish dif-
ferent tasks by inserting the hand (with proper equipment) in
a hazardous environment where the consequence of an acci-
dent could be serious: the operator could be contaminated by
accidental cuts of the rubber glove ([5]) or by an error in op-
eration process ([6]). Robotics and artificial intelligence can

be profitably used to remove the operator from dangerous
tasks while autonomous or semi-autonomous systems could
accomplish the activities. To pursue this aim, it is necessary
to improve the control strategies of manipulation systems in
order to operate in complex environments with constraints
and robot redundancy ([7]).

One preliminary study into the use of automated robotics
within a glovebox is presented in [8], where automation sys-
tem and non-redundant robotic arms are proposed to miti-
gate human operator risks in handling activities. In order
to reduce operational cost, robotic solutions are proposed to
execute ad hoc tasks ([9] and [10]) and simulations are de-
veloped to aid in mitigating hazards that may be introduced
as a result of the deployment of robotic manipulators ([11]).
The solutions proposed above are not multipurpose because
they are designed to solve specific tasks. In this scenario,
redundant collaborative robots can potentially improve the
system manipulation capabilities ([12]) as redundancy can
be exploited to adapt robot poses, for example, to avoid col-
lision with objects in the constrained space, or to handle an
object with higher quality grasping index ([13]), and there-
foremore robust handling. At the same time, novel strategies
need to be designed to exploit redundancy within individual
applications or tasks with the aim to reduce the control com-
plexity.

The same strategies could support the operators in ma-
nipulation and grasping tasks that are accomplishedwith dif-
ficulty by tele-operation inside the glovebox as shown in [14]
or in [15].

While a training course could improve the ability in ma-
nipulation tasks ([16]) and reduce the fatigue, in some case
an autonomous system could provide aid to the operator ([17])
to control the robot at any level of autonomy.

More recent research fields explore how to reduce the
operator workload with high-level instructions given to the
robot by voice command ([18]) while the usability of a hu-
manoid robot is explored in order to do bi-manual tasks in-
side a legacy glovebox ([19] and [20]). In general, all the
solutions, which are cited above, exploit methods and strate-
gies presented in robotics literature in order to identify reli-
able grasping poses.
2.2. Grasping

Robotics theories are fundamental to identify feasible
grasping solutions in a constrained workspace such as glove-
box, within the robotics literature, two different strategies
are commonly used in order to identify feasible grasping
poses that satisfy the environmental constraints: 1) finding
grasp poses without considering constraints and then filter-
ing them to respect environment constraints ([21], [22], [23],
[24]), 2) modelling the constraints inside the algorithm to
find grasping poses ([25], [26], [27], [28]). Taking into ac-
count the necessity to use a model of the object in order to
identify grasping poses, the first group could be split into
two additional subgroups: model-based and sensor-based.

Multiple approaches have been proposed to identify op-
timal grasping poses in environments without constraints. If
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the object model is available, swept volumes and continu-
ous collision detection ([29]) or independent contact region
algorithm ([30]) are proposed to identify a handling pose.
Force closure [21] and form closure index [31] optimization
could be considered a valid offline method to collect high
quality grasping poses. In [22] a real-time algorithm is pro-
posed to collect stable grasping poses.

In [32] and [33] the authors design an optimization algo-
rithm in order to identify suitable grasping poses taking in
account optimal contact force distribution constraints. The
environment constraints and hand kinematic are not consid-
ered in this work. A different approach is presented in [34],
where support functions and wrench oriented grasp quality
measures are used; this solver is not tested in a real sce-
nario where a cluttered environment restricts feasible grasp-
ing poses.
2.3. Grasping without object model

If a prior object model is not available, then a comple-
mentary approach can be employed, which aims to detect
feasible grasping poses, exploiting sensor data in the scene.

Information from a synthetic data set, RGB-D sensor and
grasp quality Neural Network is used to identify in real-time
reliable grasping pose in [35] and [36]. Usually, good perfor-
mance is only achieved after extensive neural network train-
ing with a very large dataset.

Uncertainty from the sensor or subsequent processing
could affect these methods; however, one solution to this
problem is proposed in [23], which exploits Gaussian Pro-
cess Implicit Surfaces and Sequential Convex programming.
Also, human grasping strategies can reduce the grasping con-
trol technique complexity by exploiting tactile sensing tomod-
ulate the contact forces in grasping and releasing actions
([24]) or by mapping robot optimal grasping pose from hu-
man handling strategy as captured in video recordings ([37]).
2.4. Grasping in constrained environments

Modelling the constraints directly in the search algorithm
is a valid alternative to filtering grasping poses by constraints
and has the beneficial property that infeasible but otherwise
high-quality grasping poses are not being identified and dis-
carded, and hence it is more likely that a good enough fea-
sible solution will be found. Following the concept above, a
holistic approach is proposed by animation industry to iden-
tify reliable kinematic chain configurations in a constrained
environment. The method is called cost index optimization,
is subject to linear and nonlinear constraints, and is presented
and tested on humanoid characters in ([38] and in [39]). For
robotics applications, stable holding poses in constrained en-
vironments are achieved by exploiting simulation and shape
primitives in the open-source platform calledGraspit! ([25]).
If a complete environmental knowledge is available, an ac-
curate simulation tool can be developed using multi-body
dynamics tools in order to avoid collision [26], for exam-
ple with a soft humanoid hand. This approach can be time-
consuming; however, decomposing the problem in multiple
low dimensional spaces can improve performance [40]. In
some applications, one important constraint that needs to

be considered relates to avoiding collisions with objects in
the scene. This goal could be achieved, as shown in [41],
with a motion constraint graph that allows the identifica-
tion of object surfaces which are reachable by the gripper.
This method, however, does not provide information about
the grasping quality. A more general solution is provided in
[27], where a grasp scoring function is proposed in order to
evaluate the handling pose quality, taking into account the
distance of the gripper from the other objects in the scene.
A different solution is proposed in [28] where visual feed-
back is used to evaluate constraints and their positions, and
to update the proposed grasping pose. If the handling system
could collide with other objects in the scene, a trajectory can
be planned to reach and to grasp a desired object by pushing
and moving the others as shown in [42].

In recent studies [43], [44] environment constraints are
exploited to perform grasping tasks; this approach is promis-
ing for application with compliant hand in an environment
where no risks are caused by interactions between the ma-
nipulation system and the environment; however, may apply
to a wider range of situations.

3. Problem Definition
3.1. Background: Legacy glovebox

In the nuclear industry, for safe handling of hazardous
objects/material, gloveboxes are used where an operator per-
forms a task reaching through the ports which can be seen in
Figure 1.

Despite the variety of objects and tools used in glove-
boxes, most of the manipulated objects can be approximated
with spherical and cylindrical geometries. In effect, in [12]
the authors are focused on the problem to grasp and manipu-
late cans and pucks, in [45] spherical objects aremanipulated
to accomplish direct oxide reduction and automated bag-out
operations, often it is requested to interact with plutonium
pits and pipes.

Figure 2: An example of oxidized wast can with high (red)
and low (green) corrupted regions with a desired contact point
(blue) inside the graspable region.

For the high levels of radiation and wear, the manipu-
lated objects are often corroded/contaminated [46]; there-
fore, a secure grasp can be achieved by using the non-corroded
surfaces and by touching the containers on desired contact
points (Figure 2); hence limiting the number of grasp con-
figurations. In this setting, the manual operations performed
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by the operators benefit from the dexterity of the human hand
and achieve a secure grasp by adapting the hand posture and
position in functional way to the specific task.
3.2. Robotic glovebox

Novel technologies in robotics and artificial intelligence
can be exploited to increase the safety in the legacy glovebox
or to design new robotic gloveboxes; in both cases, dexter-
ous robotic manipulators, sensors and control algorithms can
avoid the direct contact between the operator and hazardous
material.

Inside the unstructured environment of gloveboxes, the
robots could be controlled by the operator via teleoperation
whilemore autonomous control strategies could be exploited
in more standard tasks. Robot arms could be profitably used
to accomplish operations that are performed by the operator
in order to reduce the workload and the risks of accident or
contamination. Usually, inside the glovebox the workspace
is limited and it is mandatory to identify robotic arm config-
urations that avoid collision with glovebox structure while
ensuring: 1) to reach the objects to grasp, 2) to touch the
object on safe regions, 3) to apply correct contact force dis-
tribution.
3.3. Problem Definition

In a nuclear industrial environment, several grasping and
manipulation operations could be executed in autonomy by
robots, in this scenario, a challenging problem is identifying
arm configurations that avoid collisions between the robot
and the glovebox walls while ensuring feasible and reliable
grasps of cylindrical (see Figure 1) and spherical objects.
The force distribution problem has to be evaluated also with
simpler manipulation systems as gripper in order to ensure
the correct compensation of the weight of the object while
avoiding contact force magnitudes that are non-feasible (out-
side the friction cone) or dangerous for the integrity of the
object.

This work proposes an algorithm to identify optimal grasp-
ing pose and contact force distribution to ensure feasible grasp
of known objects with modelled manipulation systems. De-
sired contact points on the grasped object are used as input to
the algorithm in order to identify grasp poses that are func-
tional to the task. In case of repetitive tasks, it is possible
that the desired contact points are not reachable because the
surface is damaged, in this case, the algorithm has to iden-
tify the optimal grasping pose in feasible contact regions, as
shown in Figure 3.

In order to test the algorithm outcomes in a scenario that
is similar to industrial requirement, a glovebox mock-up was
integrated with a manipulator arm (Kinova Gen3) provided
with a gripper (Robotiq 2F-85).

4. Optimal Grasping Algorithm
4.1. Robotic Hand Model

In order to provide a more general approach in this paper
the theory about compliant manipulation system is taken into
account.

Figure 3: An example of feasible grasping pose on desired con-
tact regions (green) avoiding contacts with possible corrupted
surfaces (red) of the object. Desired contact points (functional
for the task and fixed a priori) are plotted in blue. The manip-
ulator pose has to avoid collisions with the glovebox while the
gripper position has to ensure a feasible grasp.

The grasping system is modeled following the definition
in [47] and [21] with the notation in Table 1. For the sake of
clarity and completeness, we have included the balance and
congruence equations for hand and object, these equations
are fundamental to model interactions in the manipulation
system. In this work, for simplicity, we model the contact
between the object and the robot fingers with the hard finger
model, as consequence three contact force components are
generated for each contact point. We define cp as the number
of contact points, c = 3cp as the dimension of the contact
force/torque vector (due to the hard finger assumption), � ∈
ℝn as the joint torque vector, f ∈ ℝc as the contact force
vector, �f ∈ ℝc as the twist of the contact points on the
fingers and q ∈ ℝn as the joint angles.

The congruence equation for the handwith nDoFs, which
contacts an object in cp points:

� = JT f, �f = J q̇, (1)
where J ∈ ℝc×n is the hand Jacobian matrix.

Similarly, the balance and congruence equations for the
object are defined as:

we = Gf, �o = GT �e (2)
where G ∈ ℝ6×c is the grasp matrix, we ∈ ℝ6 is the object
wrench, �o ∈ ℝc is the twist of the contact points on the
object and �e ∈ ℝ6 is object twist.

The structural compliance Cs = (1∕kstru)Ic×c ∈ ℝc×c

is combined with the joint compliance Cq = (1∕kss)In×n ∈
ℝn×n in order to obtain the hand elasticity
K = (Cs + JCqJT )−1. Contact forces are generated in the
model through the effect of the stiffness matrix K and vir-
tual displacements between contact points on the object and
finger.
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Notation Definition
n ∈ ℝ number of contact points
cp ∈ ℝ number of contact points
c ∈ ℝ dimension of the contact force/torque vector
� ∈ ℝn joint torques
q ∈ ℝn joint angles
qr ∈ ℝn joint reference angles
f ∈ ℝc contact force/torque vector
we ∈ ℝ6 object wrench
�e ∈ ℝ6 object twist
�f ∈ ℝc twists of the contact points on the fingers
�o ∈ ℝc twists of the contact points on the object
J ∈ ℝc×n hand Jacobian matrix
G ∈ ℝ6×c grasp matrix
kstru ∈ ℝ structural stiffness
kss ∈ ℝ joint stiffness

Cstru ∈ ℝc×c structural compliance matrix
Css ∈ ℝn×n joint compliance matrix
K ∈ ℝc×c stiffness matrix
GRK ∈ ℝc×6 K-weighted pseudo-inverse of G
s ∈ ℝ number of synergies
�� ∈ ℝs synergistic displacement
S ∈ ℝn×s synergy matrix
�fp ∈ ℝc particular solution
�fℎrs ∈ ℝc active internal forces
�fℎos ∈ ℝc passive (preload) internal forces
Fs ∈ ℝc×s map of �� into active internal forces �fℎrs
es ∈ ℝ rank of Fs

Es ∈ ℝc×es basis of the range space of Fs
y ∈ ℝes parameterizing vector of the active internal forces
�s ∈ ℝ static friction coefficient
fmin ∈ ℝ minimum value of forces component in f
fmax ∈ ℝ maximum value of forces component in f
com ∈ ℝ3 center of mass of the object
ci ∈ ℝ3 desired contact point
ci ∈ ℝ3 real contact point
l ∈ ℝ number of arm joint
qa ∈ ℝl arm joint angles
m ∈ ℝ number of contact parameter
qc ∈ ℝm contact parameter
ni ∈ ℝ3 normal vector to the contact surface (itℎ point)

Table 1
Notation for grasp analysis.

We consider synergies as coordinated movements of the
finger due to mechanical coupling of the hand fingers. A
relation between the synergy input displacements �� ∈ ℝs

and the joint reference displacements �qr can be formalised
as

�qr = S�� S ∈ ℝn×s (3)
where 1 ≤ s ≤ n. A new equilibrium configuration q, due
to the effect of joint compliance Cq , can be reached by the
hand due to the effect of the compliance:

�q = �qr − Cq��. (4)
It’s worth to note that the equations (1), (2), (3) , that

strictly derive from the manipulation system kinematics, al-
low to model grasping system with multiple fingers and con-
tact points; more details about these aspects are provided in
[48] and [47].
4.2. Grasping contact force optimization

In grasping systems with compliant contact and joints,
as described in [21], the particular solution �fp , the active

internal forces �fℎrs and the passive (or pre-load) internal
forces �fℎos contribute on the contact force distribution:

f = �fp + �fℎrs + �fℎos (5)
The particular solution has direct relation to the external

wrench we ∈ ℝ6:
�fp = GRKwe, with GRK = KG

T (GKGT )−1 ∈ ℝc×6 (6)
The active internal forces, which can be combined to

squeeze the objects, can be computed as:
�fℎrs = Esy (7)

whereEs is the active internal force base matrix and y ∈ ℝes

is a vector that combines the active internal forces.
In this paper the passive internal forces are considered

null, with no loss of generality.
As described in [3] and [47] the y element can be achieved

by optimizing a suitable index cost. In particular given a
grasping configuration, it is possible to identify an optimal
force distribution by minimizing a convex function that can
be composed from GRK , Es, an object wrench w ∈ ℝ6, min-
imum/maximum contact force value fmin and fmax.With more details the grasping force optimisation prob-
lem is set up as:

y∗ = arg min
y

V (w, y) (8)

where V (w, y) is a convex function defined in [3]. The
function V (w, y) is defined as sum of terms that model: i)
the friction cone constraints, ii) maximum and minimum
value of normal force at contact, iii) constraints to ensure the
contact force distribution equilibrium. For a given grasping
pose, the minimum value of V (w, y) is evaluated with the
optimal contact force distribution.

In this work, the optimisation of the forces is a nested op-
timisation task of an additional optimisation routine to find
feasible contact points between the object and the manipu-
lation system.
4.3. Algorithm Implementation

As defined in the literature, the grasp planning solver
identifies contact points on a desired object that ensure fea-
sible grasping. In particular, two conditions are required for
this process:

1) “A Feasible Pose” has to be identified before apply-
ing grasping forces in order to ensure that the manipulation
system satisfies the constraints of the environment, for ex-
ample, the feasible pose must include no contact with the
wall or with other objects in the environment.

2) “Force Closure” has to be guaranteedwhen themanip-
ulation system applies grasping forces in order to maintain
stable holding, without damage to the object.

Depending on the manipulation system properties, ob-
ject properties and environmental constraints, the problem
described above may have no solution, one solution or mul-
tiple solutions. Two independent indices can be provided in
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order to evaluate the force closure quality and feasible pose
quality. The force closure quality can be evaluated by the
cost function V (w, y) as described in [21], for the feasible
pose we can define an index cost that evaluates the distance
between desired (a priori) contact points, ci, on the object
and the real contact points between the object and the robot
fingertip, ci. Our formulation is as follows:

Φ(c1, ..., ccp ) =
cp
∑

i=1
(||ci − ci||)2 (9)

The value ofΦ will be zero if contact point positions are
equal to desired contact point positions. The contact point
positions ci are mapped by the forward kinematics of each
finger of the hand as shown in [48].

To evaluate the quality of the pose and the grasp, we de-
fine an index cost as:

U = Φ(c1, ..., ccp ) + kV (w, y) (10)
where k is a weight that modulates the effect of the force cost
index on the total cost index. The index V is an dimension-
less and positive definite cost index. The index V (w, y) has
a global minimum value because the function is convex, on
the contrary, theΦ function is not regular and multiple local
minima could exist. For the reason above, it is important to
note that the total cost index U is not convex and multiple
local minima can exist. The cost index U is defined in order
to model grasp with multiple fingers because the Φ compo-
nent and V (w, y) component are defined taking in account
the forces at each contact points and the kinematics of the
hand. The Φ component allows to penalise the hand config-
uration with contact points that are far from desired contact
points on the objects; this aspect is used to identify grasping
poses that are functional to the task as the operator grasps the
same object in different positions for different operations.
4.4. Grasp planning optimization

For a grasping manipulation system, assume the follow-
ing information is given:

• A robot manipulator model (kinematic, joint stiffness,
contact stiffness and friction) formulated as in [47]

• Information relating to the object to be manipulated:
shape, stiffness, centre of mass of the object (com) and
grasping regions.

• Desired contact points (c1, ..., ccp ) on object surface

We define arm joint vector as qa =
[

qa1 ,… , qal
]T where

l is the number of joints in the arm. The contact point posi-
tions on the link are modeled with qc =

[

qc1,… , qcm
]T where

m is the number of parameter used to map the contact points
on the phalanx surface. It is worth to note that m ≤ c.

The variables qa, �, qc , y are collected in vector Q with
v = l + s + m + es dimension as follow:

Q =
[

qa, �, qc , y
]T (11)

The cost index U , proposed as metric to evaluate grasp-
ing pose quality, is a function of (c1, ..., cp) variables thoseare mapped from Q variable vector by the forward kinemat-
ics relation; therefore we can write U (Q). In order to ensure
stable and feasible grasping poses, theQ vector can be found
by minimizing the U (Q) cost index:

Q∗ = arg min
Q

U (Q) (12)

The optimization is constrained by a set of linear/non-
linear equalities and inequalities:

• range limits of vector Q
⎧

⎪

⎨

⎪

⎩

qamin < qai < q
a
max i = 1,… , l;

�min < �i < �max i = 1,… , s;
qcmin < qci < q

c
max i = 1,… , m;

(13)

• finger and object tangent conditions
F (xci , yci , zci ) = 0 i = 1,… , cp; (14)

• link and object non interpenetration condition
F (xli , yli , zli ) ≥ 0; ∀(xli , yli , zli ) ∈ P (li) (15)

• link (hand/arm) and environment non collision condi-
tion

F (xli , yli , zli ) ≥ 0; i = 1,… , l + n; (16)

It is worth noting that V (w, y) includes the following el-
ements:

• Coulomb’s inequality
�i||fi|| − fTi ni ≤ 0 i = 1,… , cp; (17)

where �i = 1
1+�2s

and �s is the static friction coeffi-
cient.

• minimum and maximum values of normal forces
{

fi,min − fTi ni ≤ 0 i = 1,… , cp;
||fi|| ≤ fi,max;

(18)

In this work, in order to optimise the cost function and
evaluate multiple local minima, a multi-start optimization
solver is used.
4.5. Starting point selection

Multiple criteria can be used to select starting point con-
ditions in the optimization research. In this work we pro-
pose to collect multiple configurations of the arm in the con-
strained work space by sampling joint space range values,
only feasible configurations need to be stored in a database.
Multiple starting conditions can be achieved with an SQL
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query that extracts only arm poses that have the wrist posi-
tion in a region close to the object to grasp. Then, multiple
starting conditions are used to run constrained optimizations
in parallel, each optimization could converge on local/global
minimum values. Optimization outcomes are sorted taking
into account the index cost U in order to identify the best
local minima that is a global minima candidate. If all the
optimizations fail, no grasping pose is identified, this case
could happen when the problem is high constrained or when
the object is located in a work space region that is impossible
to reach by the manipulator.

The pseudocode for the optimal grasping algorithm is
presented in Algorithm 1. In the next section, the strategy
described above is tested to generate the grasping configu-
rations of manipulation system inside a constrained environ-
ment as glovebox mock-up.

Algorithm 1: Optimal grasping algorithm
Data:

- Sphere/cylinder model and centre of mass position
(com)

- Desired contact points on the object
- Desired grasping region on the object
- Robot kinematics and model
- Environment geometry

Result: Optimal arm configuration, synergy,
contact point and grasping force Q∗

initialpoints← (SQL query) SELECT robot arm
configurations WHERE wrist position is in a bounded
region around the object com;
foreach Qi ∈ initial points do

min
Q

U (Q)

s.t. environment geometry,
robot kinematics,
force distribution constraints

;
Q∗ = Q∗i which leads to the minimum U (Q∗i ) fromthe previous step;

5. Experimental Setup
5.1. Manipulation System

This section presents the setup that was used to test the
algorithm presented above.

The manipulation system is composed of a Kinova Gen3
Arm (7 DoFs) and a finger gripper (2F85 Robotiq) mounted
on the wrist of the arm; the manipulator was installed in a
glovebox mock-up, providing a confined space representa-
tive of realistic application environments, as show in Figure
1.

A kinematic models of the arm and the left finger of the

li b −� a � d �
(mm) (rad) (mm) (rad) (mm) (rad)

0 0 0 0 � 156.4 0
1 -5.4 0 0 �∕2 -128.4 qa1
2 -210.4 0 0 −�∕2 -6.4 qa2
3 -6.4 0 0 �∕2 -210.4 qa3
4 -208.4 0 0 −�∕2 -6.4 qa4
5 0 0 0 �∕2 -105.9 qa5
6 -105.9 0 0 −�∕2 0 qa6
7 0 0 0 � -61.5 qa7

Table 2
D.H. parameters for Kinova Gen3 arm.

li a (mm) � (rad) d (mm) � (rad)
1 57.3 0 0 qℎ1
2 43.7 0 0 qℎ2

Table 3
D.H. parameters for Robotiq 2F85 gripper.

gripper were achieved by D.H. convention, with D.H. pa-
rameters defined in Table 2 and in Table 3.

The kinematic model of the right finger uses the D.H.
table (Table 3) pre-multiplied by a fixed transformation ma-
trix with translation amount (25.2 mm) on the x-axis; for
both fingers, the synergy matrix is defined as:

S = [0.5,−0.5,−0.5, 0.5]T . (19)
Taking into account the manipulation system kinematic,

the optimisation is constrained by a set of linear/non linear
equalities and inequalities:

• joint range limits:
qamin = [-6.283, -2.094, -6.283, -2.443, -6.283, -1.919,
-6.283]T rad, qamax = [ 6.283, 2.094, 6.283, 2.443,
6.283, 1.919, 6.283]T rad, �min = 1.570 rad, �max =2.119 rad, qcmin = [-43.7, -43.7]T mm, qcmax = [0, 0]T
mm,

• upper and lower values to model the contact point po-
sition on the gripper phalanges:

−43.7 ≤ ci ≤ 0 i = 1,… , cp; (20)

The gripper fingers are covered by a layer of rubber in or-
der to increase the grasping capabilities. We assume a static
friction value �s = 0.9 that is comparable with the rubber
and aluminium static friction at contact. The angle of fric-
tion is equal to 41.98°.

In the force optimization routine we assume minimum
value of normal forces f1,min = f2,min = 0, 001N,maximum
value of normal forces is f1,max = f2,max = 100NandKss =
105 Nmm/rad as joint stiffness.
5.2. Objects

The algorithm is tested with a spherical and cylindrical
objects, for both of them we assume that:

• sphere/cylinder radius r,
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• desired contact points as c1 = [comx, comy + r, comz]and c2 = [comx, comy − r, comz],
• theweight is the only component of the external wrench

that is modeled as: we =
[

2, 0, 0
]T N. We used

Kstru = 10 N/mm as stiffness of the material.
5.2.1. Sphere

For a spherical object the following constraints have to
be added in the optimization routine.

• link and object tangent conditions
||ci − com||2 = r2 i = 1, 2 (21)

• link and object non interpenetration conditions
we define F (xli , yli , zli ) as the distance between comand gripper phalanx contact plane.

5.2.2. Cylinder
The parameter ℎ models the cylinder height, in this case

a different set of equalities/inequalities has to be evaluated
in the optimization:

• link and object tangent conditions
F (xc1 , yc1 ) = 0; F (xc2 , yc2 ) = 0; (22)

• link and object non interpenetration conditions
F (xli , yli ) ≥ 0; ∀(xli , yli ) ∈ P (li) (23)

with
F (xli , yli ) = (xli − x0)

2 + (yli − y0)
2 −R2 (24)

where (x0, y0) is the center position on the circular
face.

5.3. Software architecture
The algorithm is developed in C++ using NLOpt library

with solver NLOPT_LN_COBYLA that is local and deriva-
tive free algorithm. The arm configurations in the workspace
(21 × 106 poses) are collected in a database stored in Mi-
crosoft SQL Express 2019. All the simulations run on a
desktop PC equipped with Intel i7700 CPU 3.60 GHz and
16 Gb RAM.

6. Validation of the Algorithm
6.1. Simulations Results

In order to test the algorithm multiple simulations are
evaluated with object in different positions and k = 1; an
high value of k is necessary to decrease the effect of contact
positions on the total cost index. Each simulation terminated
after 10 - 12 hours.

6.2. Sphere Grasp
Starting from 1304 arm configurations, that are gener-

ated by the SQL query, a total of 722 reliable poses are iden-
tified by the optimization algorithm. For each pose the cost
index values are shown in Figure 4. The lowest index cost
values U = 2.178, sum of Φ = 3.5 × 10−5 and V = 2.178,
is generated from optimization variable values (qa, �, qc , y)in Table 4 (Sim. 1). The manipulation pose satisfies the en-
vironment constraints as show in Figure 5 and the contact
force distribution, generated from q, qr, f1, f2 in Table 5
(Sim. 1), is shown in Figure 6.

Figure 4: Index cost values sorted in descending order.

Figure 5: Manipulation pose at minimum value of U.

Figure 6: Contact force distribution composed by contact
forces (red) at fingers and sphere weight (blue). Friction cone
are plotted in green.

6.3. Cylinder Grasp
In this section we present the result about cylinder grasp-

ing in three different conditions.
CASE 1: The algorithm identifies 479 reliable grasp poses

(1304 starting poses), the cost index values are shown in Fig-
ure 7. The lowest index cost values U = 5.094, sum of
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Φ = 2.912 and V = 2.181, is generated from optimization
variable values (qa, �, qc , y) in Table 4 (Sim. 2). The manip-
ulation pose satisfies the environment constraints as show in
Figure 8 and the contact force distribution, generated from
q, qr, f1, f2 in Table 5 (Sim. 2), is shown in Figure 9.

Figure 7: Index cost values sorted in descending order for cylin-
der grasping task (CASE 1).

Figure 8: Manipulation pose at minimum value of U (CASE
1).

Figure 9: Contact force distribution (CASE 1) composed by
contact forces at fingers (red) and cylinder weight (blue). Fric-
tion cone are plotted in green.

CASE 2: We test the algorithm to grasp the cylinder in
a position close to one of the bounding box wall, this con-
figuration increase the number of constraints and reduce the
number of feasible poses.

A total of 101 reliable poses are found from a 1304 start-
ing configurations, the index cost values are shown in Fig-
ure 10 . The manipulation pose, in Figure 11, satisfies the
environment constraints with the lowest index cost values
U = 3.738 × 103, sum of Φ = 3.736 × 103 and V = 2.195.
The optimization variable values (in Table 4 - Sim. 3) and
the contact force distribution (in Table 5 - Sim. 3) contribute
to ensure feasible grasp.

CASE 3: Limited contact region on the cylinder is se-
lected and modeled with constraints in the optimization al-
gorithm. Starting from 1304 arm configurations (from SQL

Figure 10: Index cost values sorted in descending order for
cylinder grasping task (CASE 2).

Figure 11: Grasping pose with minimum index cost U (CASE
2).

query), 507 reliable grasping poses are identified, the index
cost values are shown in Figure 12 . The limited contact re-
gion on the object and the manipulation pose, in Figure 13,
satisfies the environment constraints with the lowest index
cost values U = 2.410 × 103, sum of Φ = 2.408 × 103 and
V = 2.198. The optimization variable values (in Table 4 -
Sim. 3) and the contact force distribution (in Table 5 - Sim.
3) contribute to ensure feasible grasp. It’s worth to note that
the contact points are close to the contact region limit in or-
der to be close to the desired contact points.

Figure 12: Index cost values sorted in descending order for a
cylinder with a limited contact region on the object (CASE 3).

6.4. Grasping Pose Experiments
The optimal and sub-optimal configurations collected by

the algorithm are finally tested on the real robot. The object
to grasp is an aluminium can that is used to define the phys-
ical properties in the simulation in Section 6.1. Four grasp-
ing poses with different U cost values are selected: A) U =
1.317 × 104, Φ = 1.316 × 104, V = 2.224, B) U = 7.307 ×
103, Φ = 7.305 × 103, V = 2.179, C) U = 5.253 × 103,
Φ = 5.251 × 103, V = 2.179, D) U = 5.094, Φ = 2.912,
V = 2.181

All the grasps are successfully accomplished with the
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. qa (rad) � (rad) qc (rad) y (mm)
Sim.1 [1.224, -0.638, 0.231, 1.344, 1.899, -1.698, 0.737]T 2.017 [-5.760, -5.730]T 5.055
Sim.2 [1.671, -0.785, -0.471, 1.937, 6.155, -1.168, 1.857]T 2.116 [-3.236, -1.938]T -5.111
Sim.3 [0.989, -0.362, 2.711, -0.875, 4.343, -1.407, -3.642]T 2.116 [-2.862, -6.268]T 5.087
Sim.4 [-0.149, -0.307, 2.512, -0.254, 0.750, -1.668, 1.428]T 2.116 [-5.496, -2.417]T 4.987

Table 4
Components of the Q vector at the minimum value of the index cost U for each simulation
case.

. q (rad) qr (rad) f1 (N) f2 (N)
Sim.1 [2.017, -0.446, -0.638, 0.446]T [2.004, -0.433, 1.137, 0.433]T [-1.000, -3.631, 0.000]T [-0.999, 3.631, -0.000]T

Sim.2 [2.116, -0.546, -0.785, 0.546]T [2.104, -0.534, 1.036, 0.534]T [-0.985, -3.630, 0.092]T [-1.014, 3.630, -0.092]T

Sim.3 [2.116, -0.545, -0.362, 0.545]T [2.104, -0.533, 1.036, 0.533]T [-1.062, -0.872, 3.527]T [-0.937, 0.872, -3.527]T

Sim.4 [2.116, -0.545, -0.307, 0.546]T [2.105, -0.534, 1.036, 0.534]T [-0.840, -3.630, -0.029]T [-1.159, 3.630, 0.029]T

Table 5
The joint values (q), reference joint values (qr) and contact force values (f1, f2) in the
new equilibrium configuration for each simulation case.

Figure 13: Grasping pose with minimum index cost U for a
cylinder (CASE 3) with a limited contact region on the object
surface (green).

manipulation system setup without collision in the cluttered
environment. For all the configurations tested, gripper pos-
tures are presented in Figure 14, it is worth to note that pose
D is the optimal grasping configuration described in the sec-
tion. A video is provided by the authors (Video) in order to
show the grasping actions for all the configurations above.

7. Result Discussion
For all the test cases, the simulations and the experimen-

tal results corroborate the usability of the described strategy
that identifies multiple grasping poses in a constrained envi-
ronment such as a glovebox mock-up.

In Section 6.2 and 6.3/CASE 1, the physical constraints
don’t prevent to grasp the object on the desired contact points,
in both the cases the algorithm optimizes the grasping poses
in order to ensure a small distance between the real contact
points and the desired contact points.

In Section 6.3/CASE 2, two glovebox walls constraint
the feasible grasping poses of the arm, in particular, it is im-
possible to reach the desired contact points. Also in these
conditions, the algorithm identifies several poses to grasp
the object in order to minimize the distance between the real
contact points and the desired contact points.

(a) Grasping pose A (b) Grasping pose B

(c) Grasping pose C (d) Grasping pose D
Figure 14: The four grasping poses tested with the manipula-
tion setup.

CASE 3 shows the usability of the strategy when limited
contact surfaces are allowed on the object; for example, if
the object is damaged or corrupted. In this case, the algo-
rithm accepts only the solutions that have contact points on
a limited region on the object surface, while the distance be-
tween the desired contact points and the real contact points
is minimized as possible.

In all the tests the starting points are collected with a
query from the same database with a collection of configu-
rations of the arm. This is an important aspect to highlight
because the workspace could be generated only one time and
associated with the glovebox environment in order to save
time.
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Simulation results highlight that the principal contribu-
tor of the total index cost is the distance between real contact
points and desired contact points if the weight value k = 1.
This aspect pushes the optimization process to find grasping
solutions that are close as possible to the desired contact po-
sitions, but a higher value of k could be used to find high
quality grasps far from desired contact point positions.

The algorithm is designed to be executed offline because
the process is time-consuming, but increasing the number
of cores can decrease the computation time in order to have
more fast feedback for the operation.

Compared with other solution ([25]), our strategy allows
identifying feasible configurations of the robot in order to
have contact points those are close to desired contact points,
additionally custom equality/inequality could be exploited to
plan restricted contact region on the object/robot surfaces.
The correctness of the model can ensure the grasping of the
object, that is not guaranteed by techniques that are not based
on the model ([35] and [36]). Compared with solutions that
use optimization strategies ([32] and [33]) this work extends
and tests the optimization algorithm in order to be used in-
side a constrained environment. Errors in the model could
affect the capability of the algorithm, this problem could
be mitigated by using margins in the algebraic constraints.
The optimal grasping poses could be exploited to train a
machine-learning algorithm to identify a map between the
object properties and grasping pose variables. It’s worth to
note that the trajectory of the manipulator is not evaluated
in the optimization process, and multiple objects are not in-
cluded in the test scenario.

8. CONCLUSIONS
In this work, we present a strategy to minimise a suitable

index cost to synthesise optimal grasping poses within con-
strained environments (such as glovebox) for a robotic ma-
nipulation system. Previous studies and different approaches
are argued in order to provide: i) an overview about the im-
portance of robotics in nuclear activities and robotic glove-
box, ii) a multidisciplinary perspective about the state of
the art on grasping synthesis in cluttered/no-cluttered envi-
ronment. The limits of the legacy glovebox are presented
in order to highlight the benefits and the challenges of au-
tonomous grasp inside a robotic glovebox. In order to pro-
vide the necessary knowledge to describe the proposed grasp-
ing strategy, the robotic hand model and the contact force
distribution are described briefly, later we define a novel cost
index that can evaluate the grasp quality as the sum of two
different components: grasping pose and contact force dis-
tribution. A strategy, with nested optimization (of which one
constrained) routines, is presented in order to provide opti-
mal and suboptimal grasping poses by minimizing the pro-
posed cost index; the environment constrains are modelled
in the algorithm as linear/nonlinear equalities/inequalities.
Simulation results identify the optimal/suboptimal grasping
poses for two object primitives as a sphere and cylinder in
a cluttered environment as glovebox mockup; after, several
grasping configurations, that were previously collected in

simulations, are tested on a real manipulation system with
success.

All the results are discussed providing some comparisons
with other grasp planning algorithms to highlight the bene-
fits and disadvantages of the algorithm proposed. In order
to improve the capability of the presented algorithm, next
research activities will explore possible solutions to evalu-
ate criteria abut optimal trajectory of the manipulator and to
include multiple objects inside the glovebox. Additionally,
objects with more complex shape will be investigated in or-
der to generalise the presented work.
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