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Remote handling of breeding blankets poses an unprecedented challenge in future tokamaks like EU-DEMO, 

where individual blanket segments can weigh upwards of 80 tonnes and extend beyond 10 meters in length. The 

unparalleled scale of these components, coupled with extremely tight positional tolerances, demands careful 

consideration of structural flexibility during manoeuvres. This underscores the need for model-based control systems 

capable of mitigating oscillations and static deflections induced by gravity and disturbances.  

In this paper, we present recent experiments towards this objective, focussed on mitigating the effects of gravity. 

We applied model-based, optimal feedforward control to the motion of a planar slender payload, chosen to represent 

the flexible part of a candidate breeding blanket segment.  We combined a predictive path planning algorithm with 

input shaping techniques to manoeuvre the payload effectively accounting for the influence of gravity, while also 

reducing post-manoeuvre oscillations.  Our results highlight the advantages of model-based control and the 

limitations associated with the use of feedforward control. 
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1. Introduction 

In-vessel remote handling (RH) of breeding blankets 

is recognised as a significant challenge in EU-DEMO [1]. 

Researchers have investigated a variety of RH approaches 

featuring both single mover and multiple mover systems. 

A single mover approach (such as the Hybrid Kinematic 

Manipulator concept [2], [3]) is illustrated in Fig. 1.  This 

features a dexterous manipulator designed to manoeuvre 

the blankets. In EU-DEMO we anticipate many control-

specific challenges due to tight spatial constraints, and the 

presence of gamma radiation that limits sensor placement. 

We also recognise the importance of understanding the 

flexure of the combined blanket-mover system in 

ensuring collision avoidance.  This increases with the 

offset between the blanket centre of mass and the lifting 

point. 

 
Fig. 1: Single mover manipulation of an in-board breeding 

blanket 

 

Model-based optimal control uses knowledge of system 

properties in determining actuator commands to achieve a 

chosen objective. In robotics, a typical control objective 

is to minimise payload tracking error throughout a desired 

trajectory, and a model is typically a set of differential 

equations describing the dynamics of the system. Many 

techniques have been used to dynamically model and 

control flexible structures and manipulators [4]. Dynamic 

modelling approaches for flexible manipulators include 

the finite element approach, the assumed-modes method 

and the lumped parameter method [5], [6]. 

Optimal control approaches employ numerical 

optimisation to calculate and execute a best-case robot 

trajectory that accounts for obstacles, actuator limitations 

and the modelled dynamics. Optimisation can be carried 

out offline to produce full optimal command trajectory for 

the RH system to carry out: a technique known as 

feedforward control [7]. Alternatively, flexible robot 

trajectory optimisation can be carried out online. One 

such online optimal control technique is Model Predictive 

Control (MPC), where the optimal trajectory is repeatedly 

calculated to account for possible drifting that can occur 

with feedforward control. The literature provides 

examples of MPC applied to control single link [8], [9], 

and multiple link flexible manipulators [10], [11].  Other 

investigators recently presented a simulation-focused 

investigation relevant to in-vessel tokamak remote 

maintenance [12]. Model-based approaches can provide 

large performance benefits over non-model-based 

techniques, whether they are feedforward or feedback. 
With recent advances in computing technology, this 

approach has seen increasing use within robotics, 

especially for control of complicated, underactuated non-

linear systems with many degrees of freedom. For flexible 

payloads with known dynamic properties and external 

forces or disturbances, such techniques can be used to 

manoeuvre the object in such a way to minimise transient 

and residual structural oscillations  [13], [14].  



 

In this paper, we investigate optimal feedforward 

control techniques for manoeuvring a payload consisting 

of a simple flexible beam with a tip-mounted mass. The 

payload serves as a convenient analogue to a slender 

blanket segment. In section 2, we discuss dynamic 

modelling considerations.  In section 3 we define a 

generic optimisation problem for manoeuvring 

underactuated payloads using reliable robot manipulators. 

In section 4 we simulate a particular test trajectory, and in 

section 5 we compare simulation results to experimental 

measurements. Finally, section 6 presents conclusions 

and recommendations for future investigation. 

2. Dynamic modelling 

We used a finite element (FE) approach to dynamically 

model a simple planar slender payload, free to move and 

bend within a cartesian plane, as shown in Fig. 2. Here, 

the position and deformation of the isolated payload can 

be described by the vector 𝐪 =
[𝑥𝑒 𝑦𝑒 𝜃𝑒 𝜃1 ⋯ 𝜃𝑁]⊺ , where the robot end-effector 

coordinates are denoted by the ‘e’ subscript, and the 

tangential angles of the payload at each FE node are 

measured from the global vertical direction. Bold 

symbols are used to denote vectors or matrices.   

 

 
Fig. 2: Simple flexible payload finite element model 

representation 

 

The Euler-Lagrange equations of motion were derived 

by a technique adapted from [15]; the general form of 

these equations is given in equation (1). 

 

𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐊𝐪 + 𝐆(𝐪) = 𝐅(𝑡) , (1) 

 

where 𝐌(𝐪) is a non-linear symmetric matrix containing 

inertial parameters, 𝐂(𝐪, �̇�) is a skew-symmetric Coriolis 

matrix describing rotational cross-coupling between FE 

components, 𝐊 is a symmetric stiffness matrix, 𝐆(𝐪) is a 

non-linear vector describing the gravitational forces and 

𝐅 = [𝐹𝑥 𝐹𝑦 𝜏 0 … 0]⊺ is a vector describing the 

forces applied by the robot on the payload. 
In this preliminary study, we simplified the problem of 

suppressing payload oscillations while moving on a 

desired trajectory through the following assumptions: 

- Euler-Bernoulli beam bending (i.e., neglecting 

viscoelastic damping), 

- Out-of-plane deflections and torsion are ignored, 

- Elements are inextensible, and 

- Deflection of elements is small (allowing 𝐊 to be 

approximated using a matrix of constants). 

It should be highlighted that this dynamic beam model 

represents a payload only and does not include robot 

dynamics. This assumption will be discussed further in 

section 3. 

 

3. Robot Motion Planning 

A typical robot motion planning problem is to generate a 

trajectory of actuator commands that manoeuvre the 

system in a desired manner. Numerical optimisation can 

be used to generate optimal robot trajectories that 

minimise a chosen objective function 𝐽. In this paper we 

approach this problem with the goal of minimising the 

planar cartesian and angular trajectory tracking error of 

the payload tip position [𝑥𝑡𝑖𝑝(𝐪) 𝑦𝑡𝑖𝑝(𝐪) 𝜃𝑡𝑖𝑝(𝐪)]⊺ 

relative to a desired trajectory 
[𝑥𝑡𝑖𝑝,𝑑(𝑡) 𝑦𝑡𝑖𝑝,𝑑(𝑡) 𝜃𝑡𝑖𝑝,𝑑(𝑡)]⊺ , while satisfying 

positional, kinematic, velocity and load constraints. The 

problem is described by Fig. 3. 

 
Fig. 3: Planar flexible payload robot trajectory optimisation 

problem 

 
The payload tip position is a kinematic expression 

depending on all generalised coordinates 𝐪(𝑡). This is 

approximated by equation (2). 

𝒑𝑡𝑖𝑝(𝐪) = [

𝑥𝑡𝑖𝑝(𝐪)

𝑦𝑡𝑖𝑝(𝐪)

𝜃𝑡𝑖𝑝(𝐪)

] ≈

[
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𝑁
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(2) 

To solve this problem, the dynamics described by (1) 

should be explicitly considered, in addition to 

configuration constraints that enforce robot end-effector 

position, velocity and actuator force limits. The 

optimisation problem is defined in equation (3). 

min  𝐽 = ∑ ‖[

𝑥𝑡𝑖𝑝,𝑑(𝑡)

𝑦𝑡𝑖𝑝,𝑑(𝑡)

𝜃𝑡𝑖𝑝,𝑑(𝑡)

] − 𝒑𝑡𝑖𝑝(𝐪(𝑡))‖

2

𝑡𝑓

𝑡=𝑡0

 =  ∑ 𝒆(𝐪(𝑡))

𝑡𝑓

𝑡=𝑡𝑖

 

 

(3) 

Subject 

to: 

𝐅(𝑡) = 𝐌�̈� + 𝐂�̇� + 𝐊𝐪 + 𝐆  ∀𝑡 ∈ [𝑡0, 𝑡𝑓] (3a) 
𝐪(𝑡0) = 𝐪0,   𝜽𝑗(𝑡0) = 𝜽𝑗0

 (3b) 
𝐪(𝑡) ∈ 𝐪𝑠𝑎𝑓𝑒  ∀𝑡 ∈ [𝑡0, 𝑡𝑓] (3c) 

 𝒑𝑒(𝐪(𝑡)) = 𝒇𝐹𝐾(𝜽𝑗(𝑡))   ∀𝑡 ∈ [𝑡0, 𝑡𝑓] (3d) 
 ‖�̇�𝑗(𝑡)‖ < �̇�𝑗,𝑚𝑎𝑥,  ‖�̈�𝑗‖ < �̈�𝑗,𝑚𝑎𝑥 ∀𝑡 ∈ [𝑡0, 𝑡𝑓] (3e) 



 

 ‖𝐅(𝑡)‖ < 𝐅max   ∀𝑡 ∈ [𝑡0, 𝑡𝑓]  (3f) 

   

Constraint (3b) sets the initial conditions of the payload 

and robot joints to match those of the physical system. 

Constraint (3c) enforces that the outcome of the 

optimisation does not lead to collisions, where 𝐪𝑠𝑎𝑓𝑒 is the 

set of ‘safe’ payload positions. There are many ways to 

implement this constraint, such as using Control Barrier 

Functions [16], though such techniques are beyond the 

scope of this paper. Constraint (3d) fixes the coordinates 

𝒑𝑒(𝐪) = [𝑥𝑒 𝑦𝑒 𝜃𝑒]
T  to the corresponding robot 

end-effector coordinates, calculated by some forward 

kinematics function 𝒇𝐹𝐾(𝜽𝑗)  [17]. This allows robot 

kinematic limits to be captured within the optimisation 

problem. Constraints (3e) and (3f) ensure that the 

optimisation solution does not breach the maximum joint 

velocity 𝜽�̇�𝑚𝑎𝑥
 and end-effector force limits 𝐅max , 

respectively. Additionally, a set of Forward Euler method 

constraints were used to enforce the time derivative 

relationship between 𝐪, �̇�, �̈�, and 𝜽𝑗 , �̇�𝑗 , �̈�𝑗 . This problem 

can be solved using various nonlinear optimisation 

solvers such as IPOPT [18].  

The robot dynamics are omitted from equation (3) 

because the chosen experimental robot (UR10e) does not 

currently accept joint torque commands. Instead, we use 

robot joint position/velocity trajectory commands, 

generated from the optimisation. Assuming the robot can 

follow the optimal trajectory, and given that the payload 

dynamic model is accurate, constraint (3a) enforces that 

this motion would result in an optimal end-effector force 

trajectory. Under these assumptions it is important to 

compare the observed robot joint motions with the 

optimally generated command trajectories to confirm 

acceptable robot performance. 

It should be noted that the error function 𝒆(𝐪(𝑡)) can be 

appended with other variables, such as tracking errors of 

other FE nodes or nodal angular errors. Doing so could 

either speed up or slow down the optimisation, depending 

on the dynamics of the payload, constraints, robot 

limitations, solver parameters and desired trajectory. For 

simplicity, planar end-effector force limits ( 𝐅max ) are 

considered as opposed to individual robot joint torque 

limits.  If we wanted to consider individual joint loads 

explicitly, we would need to add further constraints and 

include the dynamics of the robot in equation (1). 

3.2 Feedforward Control 

Fig. 4 provides the feedforward control block diagram 

used to carry out the optimal robot trajectory. 

 
Fig. 4: Feedforward control block diagram 

 
With a perfectly accurate payload model, zero 

unmodelled disturbances, and a high-performing robot 

control system, this approach would perform well in 

carrying out optimal manoeuvres, assuming that the 

command is reachable. Realistically it is difficult to 

produce a perfect analytical dynamic model, due to 

inaccurate modelling assumptions. As a result, this 

technique has limitations that must be addressed for the 

case of breeding blanket handling, where system 

uncertainty could be significant due to potentially 

varying dynamic parameters, and unpredictable 

disturbances are likely. There are different approaches to 

addressing these factors, depending on their severity. 

 
3.3 Improving feedforward robustness with Input 

Shaping 

Input shaping (IS) is a feedforward technique that 

modifies the commanded motion in such a way as to avoid 

excitation of known modes of oscillation [19]. We see IS 

used in many applications, most notably in crane 

technology [20]. The simplest input shaper is Zero-

Vibration (ZV) IS, which convolves the desired end-

effector trajectory with two carefully calculated impulses 

based on knowledge of the payload natural frequency and 

damping.  System natural frequencies and damping ratios 

can be identified either from simulation or experimental 

measurements. 

We can augment ZV input shaping to include robustness 

to uncertainty in payload natural frequency.   We do this 

by adding extra impulses to the convolution, at the cost of 

further increasing the time duration of the trajectory. A 

command signal can be input shaped multiple times if 

there are several identified natural frequencies. Other 

investigators have extended the technique for systems of 

time-varying modes, such as flexible manipulators [21]. 

The feedforward control block diagram of Fig. 5 shows 

how the addition of an input shaper alters the feedforward 

controller of Fig. 4.  

 
Fig. 5: Input Shaping for improving steady-state performance 

in the presence of model uncertainty. 

 
4. Simulation Results 

We chose a planar compound manoeuvre, shown in Fig. 

6, as our test scenario.  Our objective was to control the 

cartesian and angular position of the payload tip.  For 

this investigation we chose ramped tip position 

commands (Fig. 7).  This challenged our controller to 

accommodate acceleration impulses, with the resulting 

trajectory detectably exciting oscillation modes if 
unsuitably controlled. 

 



 

 
Fig. 6: Compound trajectory diagram 

 

 
Fig. 7: Ramped tip compound manoeuvre commands 

 
The payload parameters and control limits are listed in 

Table 1; these values are based on the real experimental 

system.  
Table 1: System parameters 

Parameter Value 
Robot model UR10e 
Tip mass 3.53 kg 
End-effector mass 1.0 kg 
Beam mass (including cabling & sensors) 1.63 kg 
Beam material Aluminium 
Beam dimensions (Length X width X depth) 1567 X 50 X 5 mm 

Maximum robot joint velocity, �̇�𝑗,𝑚𝑎𝑥 1.5 rad/s 

Maximum robot joint acceleration, �̈�𝑗,𝑚𝑎𝑥 3 rad/𝑠2 

Maximum end-effector force 122.6 N 
Maximum end-effector moment 10 Nm 

 

We simulated the (isolated) payload system represented 

by equation (1) using three finite elements and a constant 

0.005 s timestep. A Proportional + Derivative (PD) 

control law was chosen, with 𝐅 calculated by the 

following equation: 

 

𝐅(𝐪, 𝑡) = 𝐊𝑝 (𝒑𝑒,𝑑(𝑡) − 𝒑𝑒(𝐪)) + 𝐊𝑑 (�̇�𝑒,𝑑(𝑡) − �̇�𝑒(𝐪)) (4) 

 
𝐊𝑝 and 𝐊𝑑 are proportional and derivative gain matrices 

tuned to achieve suitable end-effector tracking, and 

𝒑𝑒,𝑑(𝑡) = [𝑥𝑒,𝑑(𝑡) 𝑦𝑒,𝑑(𝑡) 𝜃𝑒,𝑑(𝑡)]𝑇 is the desired end-

effector position trajectory produced by the optimisation. 

Substituting equation (4) into equation (1) yields a 

closed loop system that can be simulated using a suitable 

ordinary differential equation solver. Using this control 

law allowed a baseline ‘unshaped’ motion to be 

simulated; Fig. 8 shows the tracking error of the 

simulated payload tip, on a trajectory calculated 

assuming that the payload is rigid (i.e., assuming no 

motion shaping is needed).  Naturally, the payload tip 

does not track the commanded position well since the 

effects of gravity and stiffness are significant.  

 

 
Fig. 8: Simulated payload tip tracking error for unshaped 

trajectory 

 

Fig. 9 shows the payload tip tracking error simulated 

using the end-effector commands generated from the 

optimisation problem of equation (3). To compare the 

approach directly to the unshaped results in Fig. 8, the 

PD control law with the optimal end-effector position 

commands was used instead of substituting the optimal 

force trajectory into equation (1). Here, the transient 

tracking performance is improved significantly, and the 

steady-state offset is removed. 

 

 
Fig. 9: Simulated payload tip tracking error for optimal 

trajectory 

 
As discussed in Section 3, optimisation constraints allow 

force limits to be accounted for explicitly when 

calculating joint trajectories. Fig. 10 shows the end-

effector torque 𝜏 constrained to within ±10 Nm (equal to 

the software limit of the UR10e robot axes). 

 

 
Fig. 10: Optimal end-effector force trajectories 

 
It is important to highlight how the chosen optimisation 

time-step affects the performance of the optimal 

trajectory. This is shown in Fig. 11 where the y-direction 

tip tracking error is shown to significantly deviate from 

that of Fig. 9 as the time-step increases. The results from 



 

0.025 time-step closely match that of the originally 

chosen 0.005 time-step. 

 
Fig. 11: Simulated motion precision for varying optimisation 

time-steps 

The robot joint trajectories generated from the 

constrained optimisation can be made to satisfy a 1.5 

rad/s velocity limit. The UR10e joint motion profiles are 

shown in Fig. 12. 

 
Fig. 12: UR10e robot joint velocity trajectories produced from 

the optimisation 

 
5. Experimental Results 

We used a Universal Robots UR10e robot for the 

experimental part of this investigation.  We used the 

in-built robot control system to implement optimal 

trajectories, supplied to it using ROS. The setup is shown 

in Fig. 13. 

 
Fig. 13: Experimental UR10e and aluminium payload setup 

 
We used an inertial measurement unit to measure the tip 

angle 𝜃𝑡𝑖𝑝.  In Fig. 14, this measurement is plotted against 

both the command 𝜃𝑡𝑖𝑝,𝑑  and the simulated response 

results from Section 4, for each of three tests. Test (a) 

shows that, for the trajectory with no shaping, the 

experimental tip angle closely matches the simulated 

results, with poor command tracking performance in the 

transient and steady state. Higher frequency oscillations 

are more prevalent in the simulation, since the dynamic 

model does not include viscoelastic damping, whereas in 

the physical system, the higher-order modes are damped 

quickly. 

 
Fig. 14: Tip angle tracking performance comparison for three 

tests: (a) no motion shaping, (b) optimal shaping, (c) optimal 

shaping with ZVDD input shaping 

 
The observed tip angle response using the optimal 

trajectory, shown in test (b), improves upon the 

unshaped results, though small mismatches between the 

analytical dynamics from equation (1) and the real-life 

payload dynamics lead to reduced tracking performance. 

This results in error in the transient tip tracking 

performance, as well as residual steady state oscillations.  

A robust zero-vibration-derivative-derivative (ZVDD) 

input shaper was selected to mitigate these residual 

oscillations. This was chosen over a time-varying input 

shaper as the change in natural frequency of the payload 

throughout the trajectory was small enough to be 

captured within the range of a ZVDD shaper.  Test (c) 

shows the benefits of using input shaping for improving 

steady-state performance, though, as discussed in 

Section 3.3, the trajectory time is increased, leading to 

poorer transient tracking performance. The post-

manoeuvre tip tracking error 𝜃𝑡𝑖𝑝(𝑡) − 𝜃𝑡𝑖𝑝,𝑑(𝑡𝑓) is plotted 

in Fig. 15 for each test. This plot clearly demonstrates 

that, in the steady state, the optimal trajectory with input 

shaping (test (c)) performs best, with the least vibrations 

and a mean tip offset of 0.039°. It should be mentioned 

that only the fundamental natural frequency was used to 

input shape the trajectory; as a result, the higher order 

modal frequencies can be observed between 0 and 5 

seconds of the post-manoeuvre measurements.  To assist 

the demonstration we left these unmitigated, although 

they can be removed by input shaping the command 

again with the calculated 2nd order frequency. 

 
Fig. 15: Experimental post-manoeuvre tip angular error 

comparison 

 

We also validated that the UR10e robot was capable of 

follow the commands.  Fig. 16 shows that the 



 

experimental end-effector position closely matches the 

commanded motion. 

 
Fig. 16: Robot end-effector motion and commands for optimal 

trajectory 

 

6. Conclusion 

The results presented in Section 5 demonstrate that 

model-based optimal control approaches are applicable to 

a physical system inspired by the EU-DEMO blanket 

handling problem.  Using a UR10e commercial robot, we 

have shown that we can explore and improve on the 

capability limits of positional control strategies for a 

flexible payload.  By deriving a finite-element payload 

dynamic model and then calculating an optimal trajectory 

using the IPOPT non-linear optimisation algorithm, we 

were able to implement feedforward control to manoeuvre 

the position and pose of the payload tip with improved 

performance over a nominal unshaped trajectory. We 

demonstrated the potential of input shaping in mitigating 

known steady state oscillations. Our results also confirm 

the following factors as antagonistic to feedforward 

performance: 

• Uncertainty, time-varying and/or unmodelled 

dynamic properties 

• Presence of disturbances 

To address these factors and build upon our results, we 

plan to investigate the potential of nonlinear MPC and 

explore modern system identification methods to build or 

improve dynamic models based on data [22].  We also 

plan to extend our investigation to more complex payload 

geometries, to include out-of-plane and torsional motions, 

viscoelastic damping, and actuator dynamics, using joint 

torque-controllable manipulators. 
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