
UKAEA-RACE-PR(25)05

Michal Staniaszek, Tobit Flatscher, Joseph Rowell,

Hanlin Niu, Wenxing Liu, Yang You, Matthew Gadd,

Matı́as Mattamala, Alex Schutz, Daniele De Martini,

Luke Pitt, Robert Skilton, Maurice Fallon, Nick

Hawes

AutoInspect: Towards Long-Term
Autonomous Inspection and

Monitoring



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/


AutoInspect: Towards Long-Term
Autonomous Inspection and

Monitoring

Michal Staniaszek, Tobit Flatscher, Joseph Rowell, Hanlin Niu,

Wenxing Liu, Yang You, Matthew Gadd, Matı́as Mattamala, Alex

Schutz, Daniele De Martini, Luke Pitt, Robert Skilton, Maurice

Fallon, Nick Hawes

This is a preprint of a paper submitted for publication in
IEEE Transactions on Field Robotics





<Society logo(s) and publica-
tion title will appear here.>

Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/XXXX.2022.1234567

AutoInspect: Towards Long-Term
Autonomous Inspection and

Monitoring
Michal Staniaszek 1, Tobit Flatscher 1, Joseph Rowell1, Hanlin Niu 2, Wenxing Liu2,
Yang You2, Matthew Gadd1, Matı́as Mattamala1, Alex Schutz1, Daniele De Martini1,

Luke Pitt1, Robert Skilton2, Maurice Fallon1, Nick Hawes1

1Oxford Robotics Institute, Department of Engineering Science, University of Oxford, Oxford, UK
2Remote Applications in Challenging Environments (RACE), United Kingdom Atomic Energy Authority, Culham, UK

Corresponding author: Nick Hawes (email: nickh@robots.ox.ac.uk).

Initial work was supported by the Innovate UK AutoInspect grant (1004416). Further work was supported by the EPSRC Programme Grant
“From Sensing to Collaboration” (EP/V000748/1), the UKAEA/EPSRC Fusion Grant (EP/W006839/1), and part of the work has been carried
out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme
(Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are those of the author(s) and do not necessarily reflect

those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held
responsible for them.

ABSTRACT This paper presents a technical overview of AutoInspect, a ROS-based software system for
robust and extensible mission-level autonomy. Over the past three years we have deployed AutoInspect
on multiple platforms in a variety of environments, from forests to fusion reactors, for durations ranging
from hours to weeks. The AutoInspect system combines robust mapping and localisation with graph-
based autonomous navigation, mission execution, and scheduling, into a complete autonomous inspection
and monitoring system. Code for the graph-based autonomy component will be made available at
ori.ox.ac.uk/projects/autoinspect. In this article we describe in detail our most commonly-used configuration
of AutoInspect: a Boston Dynamics Spot fitted with a custom compute and sensing payload, called
Frontier. To highlight the flexibility of the AutoInspect system, we also describe its deployment with
different hardware and software configurations. We evaluate AutoInspect’s performance in two long-term
deployments on Spot at the Culham Centre for Fusion Energy in Oxfordshire, UK. The first deployment
took place at a robotics test facility, spanning 49 days, including 14 uninterrupted days of autonomous
operation. The second deployment covered 35 days in the torus hall of the Joint European Torus (JET)
fusion reactor, and achieved 15 days of uninterrupted operation. This was the first ever deployment of a
fully autonomous mobile robot in a fusion facility.

INDEX TERMS Inspection, Simultaneous Localisation and Mapping, Long-term Autonomy

I. Introduction
The increasing physical capabilities of commercially-
available robot platforms has opened up new applications
for mobile autonomy, and also allows research in plan-
ning and mapping to be applied in a much wider range
of industrial settings than was previous possible. A use-
case of major industrial importance for this technology is
autonomous inspection, where a robot has to monitor a set
of sites of interest over a long period of time. Creating a
robotic system capable of performing autonomous inspection
requires a generic, modular and scalable software system

that can integrate multiple components such as perception,
decision-making, planning and control. To meet this need we
have developed AutoInspect, a flexible software system for
autonomous inspection and monitoring.

Our goal with AutoInspect was to create an autonomy
system which can perform a wide variety of inspection and
monitoring tasks, for long periods of time, on a range of
robot platforms. Requirements for the system were driven by
interactions with industry parters as well as test deployments
in a variety of environments, including: an operational chem-
ical plant, a decommissioned nuclear power plant, a mine,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

https://ori.ox.ac.uk/projects/autoinspect


Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

FIGURE 1. Spot deployments during development of AutoInspect. Top left: October 2021, climbing stairs at Fire Service College mock oil rig during first
fully autonomous mission. Top right: May 2022, short-term construction site deployment. Bottom left: May 2023, change detection testing at Fire
Service College urban search and rescue facility. Bottom right: January 2024, measuring gamma radiation during long-term deployment at the Joint
European Torus.

a mock oil rig, and around partially demolished buildings
at an outdoor training ground for firefighters. Some of these
are shown in Figure I.

To meet these requirements AutoInspect integrates two
major elements: Frontier, a mapping and localisation system
packaged in a fixed hardware payload; and Toplogical Auton-
omy (TA), a framework for spatial abstraction and mission
planning. The mapping subsystem that runs on the Frontier
brings together our modular odometry system VILENS [1]
with pose-graph LiDAR SLAM (see Section III). The
TA spatial abstraction and mission planning subsystem is
a robot-agnostic graph-based autonomy framework (Sec-
tion IV). Code for TA will be made available through our
website1. Figure 2 shows an overview of AutoInspect as a
whole, which is implemented using ROS Noetic [2].

A key enabler of AutoInspect is our Frontier hardware,
shown in Figure 3. Weighing approximately 1.5kg, It com-
bines sensors for mapping and localisation with a small
form-factor computer in a 3D printed case, and runs the
entire AutoInspect system. With Frontier, AutoInspect can

1ori.ox.ac.uk/projects/autoinspect

be integrated with any platform which provides power and
a connection to control its motion. This platform neutrality
is a key benefit of AutoInspect. The graph-based navigation
system within the TA subsystem provides a standard inter-
face to integrate robot-specific navigation commands. This
inteface can be used to define a variety of motion behaviours
for use during navigation between graph nodes, e.g. door
traveral or stair climbing. TA’s mission planning component
provides interfaces for integration of custom actions to be
performed by the robot, such as capturing images or making
sensor measurements. Although our work is agnostic of
the hardware platform being controlled by AutoInspect, the
majority of the work presented in this article uses the
Boston Dynamics Spot2 platform. We selected Spot as our
primary development platform for its robust navigation, stair
climbing, and autonomous charging capabilities.

In the following sections, we describe AutoInspect in
detail, covering mapping and localisation in Section III and
the TA system in Section IV. In Sections VI and VII we
descibe how we integrate AutoInspect with Spot, and present

2bostondynamics.com/products/spot

2 VOLUME ,

https://ori.ox.ac.uk/projects/autoinspect
https://bostondynamics.com/products/spot


<Society logo(s) and publication title will appear here.>

FIGURE 2. Overview of the AutoInspect system deployed on Spot, using
the Frontier payload. IMU measurements and LiDAR data from Frontier, as
well as leg odometry from Spot are used by VILENS to generate a
continuous pose estimate of the robot and a SLAM pose graph. These
inputs, was well as Spot’s action and navigation capabilities, are used by
the topological autonomy system to provide autonomous navigation,
action execution, mission planning, and scheduling capabilities to the
operator.

FIGURE 3. Left: Our autonomy payload, Frontier, consisting of a Hesai
LiDAR, three Sevensense Alphasense cameras, and an IMU. Right: Our
primary deployment platform, Boston Dynamics Spot, with the payloads
used for deployments at UKAEA. The Frontier runs the entire AutoInspect
software stack and sensor drivers.

results from two long-term deployments of this system.
Section VIII gives an overview of AutoInspect integrations
and deployments with other robot platforms.

II. Related Work
A. Robotic Inspection Systems
Early surveys on robotic systems for transmission line [3]
and pipe [4] inspection, detail the different approaches to
robot morphologies required for these tasks. This highlights
the degree of hardware specialisation and complexity re-
quired for certain inspection tasks. This is in contrast to more
recent surveys on the robotic inspection of infrastructure [5,

6] which show a trend for systems based on general-
purpose mobile platforms such as aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs). In these cases the
complexity comes from the design and integration of the
sensor suite, rather than the design of the platform itself.
These surveys also note the limited autonomy capabilities
provided by existing systems, something AutoInspect aims
to address.

AutoInspect may appear superficially similar to the
platform-specific inspection solutions implemented for the
ANYbotics ANYmal34 [7, 8] and Spot5. This is because its
development was guided by similar requirements. However,
in contrast to these and other inspection systems [5, 9, 10],
AutoInspect is not committed to any particular robot or
inspection objective.

B. Odometry, Mapping, and Localisation
Mobile robots use a variety of sensors to position them-
selves within their operational environment and to perceive
obstacles. Here we broadly distinguish between the three
different positioning tasks of odometry, localization and
SLAM (Simultaneous Localization and Mapping) and give
a brief summary of relevant systems.

Odometry is concerned with tracking the continuous rel-
ative pose (position and orientation) of the robot. This is
usually with respect to an arbitrary fixed origin and used for
the purpose of closed loop control and local path following.
Initial odometry systems used wheel odometry for dead
reckoning in 2D. Legged robots are prominently used in this
work and example legged robot motion estimators include
TSIF [11] and Pronto [12] which fuse foot and joint sensing
as well as IMU readings often using an Extended Kalman
Filter (EKF) in full 3D. These systems aim to achieve low-
latency, low-drift proprioceptive motion estimates.

Exteroceptive odometry systems incorporate environment
sensing with vision and LiDAR being the most common
modalities. Both visual and LiDAR odometry have been
extensively studied. Our system uses LiDAR inertial odom-
etry (LIO) to construct building-scale 3D point cloud maps.
A key breakthrough in this field was the LOAM system
by Zhang et al. [13] which leveraged inertial sensing to
correct motion effects during scanning as well as detecting
features in LiDAR scans to achieve accurate frame-rate
motion tracking. Subsequent systems such as Fast-LIO2 [14]
and WildCat [15] have demonstrated impressively accurate
performance, e.g. 1m drift per 1km travelled in benign
conditions. A common way to achieve robustness is to fuse
these various modalities. In our case we use the odometry
estimate of the plaform being controlled by AutoInspect (e.g.
the leg odometry from Spot) as a motion prior for a second
stage LiDAR odometry system. This helps to reduce the risk
of LiDAR scan degeneracy in constrained environments.

3anybotics.com/robotics/anymal
4anybotics.com/robotics/robot-capabilities
5bostondynamics.com/products/orbit

VOLUME , 3

https://anybotics.com/robotics/anymal
https://anybotics.com/robotics/robot-capabilities
https://bostondynamics.com/products/orbit


Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

Inevitably, odometry systems will accumulate incremental
drift which will lead to the map representation becoming
inconsistent. To address this problem, simultaneous local-
ization and mapping (SLAM) systems aim to correct for
odometry drift by building a single consistent global map
which relies on recognising when a robot returns to a
previous location. A common approach to solve this problem
is pose graph optimization [16] which builds a graph of
nodes corresponding to samples of the robot’s odometry
state. When a location is re-recognised, the graph can be
adjusted in real-time to maintain map consistency and to
correct for odometry drift. A summary paper for the 2021
DARPA Subterranean challenge presents a detailed overview
of the research frontiers of multi-sensor odometry and SLAM
more broadly [17]. The systems of the winning teams in
that competition are representative of most mature LiDAR-
focused SLAM systems.

Localization involves positioning the robot within a prior
map of a (largely static) environment built using SLAM. This
topic can be divided between global and local localization. In
our work we focus on local localisation, and refer the reader
to exemplar systems for global localization: NetVLAD [18]
and ScanContext++ [19] Local localization aims to update
a precise running position estimate in the map at sensor
frame rate which can be directly used to make mission
planning decisions. Early 2D systems using sonar and single-
beam LiDARs, lacked the ability to uniquely resolve a full
position estimate from a single LiDAR scan — especially
in the presence of scene change and dynamics around the
robot. To overcome this problem, common systems including
the default ROS navigation stack, rely on Monte Carlo
localization [20] to fuse their platform odometry estimate
with partial position measurements into a recursive Bayesian
position estimate. Many modern inspection robots now use
3D multi-beam LiDARs to achieve full 6 DOF localisation
within a 3D point cloud map using a single LiDAR scan
and ICP registration without needing to rely on a Bayesian
estimator to fuse measurements [8]. These systems often as-
sume that there is sufficient structure close to robot to ensure
localization reliability but may also rely on introspection and
global place recognition to recover from registration failures.

C. Mobile Robot Autonomy
Mobile robot autonomy often consists of a variety of systems
for obstacle avoidance, local and global motion planning,
task execution, and mission planning. We assume access
to low-level local motion planning and obstacle avoidance,
and focus on high-level autonomy for navigating and acting.
Topological map representations are good at representing
large physical spaces [21], and since their introduction in
this context by Brooks [22] have been used extensively
on mobile robots as an abstraction for laser-based [23–26]
and visual [27–30] navigation and mapping. The topological
map is well suited for incorporating domain knowledge
during deployments and can be used to adapt the system’s

behaviour. It is also a natural representation for advanced
planning and resource allocation algorithms, which is im-
portant for our research. Topological maps have been used
as a basis for planning and navigation in field deployments
in offices [26, 31–33] and agriculture [34]. In addition to
its technical benefits, a topological representation is also an
intuitive model for end users, providing a clear visualisation
of the structure and bounds of the robot’s operational area,
and the ability to label locations in the environment is
useful when communicating about missions. Topological
maps can be constructed in many ways, such as from aerial
images [35] and 2D or 3D maps [36–38]. We use a hybrid
approach, automatically generating an initial map based on
the SLAM pose graph from global map construction, then
use a graphical user interface (GUI) to manually adapt it to
the environment and mission specification.

Long-Term Autonomy (LTA) has long been recognised as
a challenge for mobile robots [39], and is a target for our
work on AutoInspect too. Much literature on LTA describes
tour guide robots [40–44], which navigate the environment
and present information to tour participants. The most sig-
nificant recent LTA projects in terms of complexity are the
CoBots [45] and STRANDS [26] projects. The CoBots [45,
46] operated in a university office building to schedule
tasks such as visitor escort, remote telepresence, and object
transport on a team of mobile robots, with a task scheduler
distributing these tasks between deployed robots. The robots
travelled over 1000km in 3100 deployments, over the course
of 1280 hours of deployment. As such, each individual
deployment was relatively short, while our aim is to build
a system for uninterrupted autonomy over long periods of
time. One of the primary aims of the STRANDS project was
uninterrupted long-term autonomy [26]. Operating in offices
and a care home, the robots ran for a total of 104 days
over 43 runs, the longest being a single uninterrupted run of
28 days. The project developed two performance measures
for LTA: total system lifetime (TSL) measures how long the
system is available for autonomous operation; and autonomy
percentage (A%) the proportion of the TSL during which
the system was actively performing tasks autonomously,
an important metric of system utilisation. The reliability
of platforms such as ANYmal and Spot, along with their
autonomous docking capabilities, has lowered the barrier
to entry into LTA in industrial environments. However, as
mentioned above, published work in this area is limited,
likely due to commercial sensitivity.

Some LTA projects use human interventions to augment
autonomous recovery behaviours, and Meeussen et al. argue
that so long as human intervention is not too frequent, this
method can be very effective in maintaining uptime [47].
The STRANDS project’s monitored navigation system [26]
sent requests for help from humans in situations where
the autonomy system was unable to recover. Reliability
engineering is a significant hurdle to more systems with
LTA capabilities as software maintenance and management

4 VOLUME ,



<Society logo(s) and publication title will appear here.>

and complex interfacing tends to be brittle [48]. In our
work, we track interventions as a measure of the robustness
of autonomy, as part of the reliability engineering process,
identifying and improving parts of the system which cause
interruptions to autonomy. This is a key part of the iterative
process of refinement for LTA systems.

D. High-Level Autonomy
High-level autonomy involves control and coordination of a
robot’s capabilities to fulfil tasks specified by operators, or
generated by the autonomy system itself. A common feature
of approaches to high-level autonomy is the use of hierar-
chies to abstract away some of the complexity. Frameworks
like SMACH6 and RAFCON7 facilitate the construction of
hierarchical finite state machines for this purpose, which can
be coordinated to build complex behaviours. While powerful,
a weakness of state machine approaches is that as complexity
increases, it can be challenging to modify existing compo-
nents or integrate new ones as the complex interlinking of
components can cause unexpected results. Behaviour trees
are an alternative approach which takes advantage of the
hierarchial nature of trees [49]. They can be used to build
behaviours which are more complex, but nonetheless easier
to understand due to their modularity. Other architectures
such as ROSPlan [50] make use of more formal planning
techniques, using the Planning Domain Definition Language
(PDDL) to hook into existing classical planning solvers.
This requires explicit definition of the domain and the goal
of the system, which may be challenging if the aim is to
perform different types of tasks. AutoInspect is not intended
to replace any of these approaches. As tasks are abstracted in
our topological autonomy system, it is possible to use any of
these types of frameworks to define tasks and missions. The
primary goal of AutoInspect’s topological autonomy system
is to link a topological representation of the environment
with task execution, rather than to define a specific model of
high-level autonomy. It can be used as a simple high-level
autonomy framework, or integrated into an existing system
as another layer of abstraction.

Autonomy systems may have varying degrees of human
supervision, and thus lie on a spectrum from supervised
to unsupervised. Human supervision was a key part of
the DARPA SubT challenge, in which robot teams were
deployed for 60 minutes in unknown subterranean envi-
ronments with the goal of building maps and discovering
artifacts [51–54]. Participating teams were allowed only a
single operator controlling the system. With most teams
deploying more than 4 robots at once, the operator was
under very high cognitive load. The robots thus had a high
degree of autonomy, with strictly controlled access to the
operator’s attention. The challenge involved highly complex
and challenging environmental conditions, time pressure, and
active operator interaction. In contrast, AutoInspect is aimed

6github.com/ros/executive smach
7rafcon.readthedocs.io

at long-term operation in more controlled environments. Our
goal is to minimise the need for operator interaction, by
creating a robust system that can operate independently
for long periods, using a schedule for mission execution
provided by operators.

III. Mapping, Localisation, and Change Detection
When operating autonomously in an industrial facility, our
system localises in a prior map of the environment. While
the map can be generated from existing 3D LiDAR scans
taken with a terrestrial LiDAR scanner; we typically create
a map from scratch by running our SLAM system while
teleoperating the robot. In this section we describe the real-
time SLAM system used to build the prior map, how we
localise within the map, as well as a more recent system
component which carries out 3D object-level change between
successive missions. Previous applications of this system
include forest inventory [55] and aerial inspection of tall
buildings [56].

A. Multi-sensor Odometry
The first module in the navigation system is VILENS [1],
a multi-sensor odometry system which can fuse IMU, leg
odometry, vision, and LiDAR data. VILENS has several
configurations. In this project, we maintain a windowed
factor graph which smooths the IMU measurements and
relative odometry constraints from an ICP-based module
based on libpointmatcher [57] (running at 3Hz). The
motion of the robot can be dynamic and jerky. To achieve
the most accurate maps it is important to correct the motion
of the LiDAR during each scanning sweep.

When localizing in a prior map, we can instead leverage
the leg odometry estimate provided by the Boston Dynamics
API. We use this motion estimate as a prior for a simple ICP
odometry system. This is preferable because the windowed
factor-graph can be computationally expensive.

Because the robot operates in narrow and confined loca-
tions, odometry failure due to degeneracy is a possibility.
Our current system leverages a LiDAR with a wide vertical
field-of-view (104.2 degrees), as well as the point clouds
produced by the Spot’s depth cameras, to ensure that a well-
defined point cloud can be observed.

B. Building a Prior Map with SLAM
The odometry system passes a steam of registered LiDAR
scans to our real-time SLAM system, VILENS SLAM. At a
spacing of about one metre, we sample the odometry stream
and add a new odometry node to a pose graph. By spatially
sampling these nodes, we ensure that the map has uniform
density even if the robot stands still for periods during the
mapping phase. It also aids the search for independent loop
closures (described below). Nonetheless, mild odometry drift
will occur which necessitates correcting the pose graph using
pose graph optimization with the iSAM2 solver [58].

VOLUME , 5

https://github.com/ros/executive_smach
https://rafcon.readthedocs.io


Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

Geometric and 
Appearance Place 

Recognition

Lidar Scans

Joint Sensing

IMU Data

Sparse Pose Graph

SLAM Module

SLAM Poses
(1Hz)

Motion Correction

ICP Registration Factor Graph

Loop Closure

Incremental Poses @1m Undistorted Scans

Odometry Module

Complete Point 
Cloud Map

FIGURE 4. Overview of the VILENS odometry and VILENS SLAM system.
On Spot, AutoInspect uses leg odometry as an additional input to the
odometry module.

In a separate thread, the SLAM system repeatedly searches
for loop closures. In a small facility, using loop proposals
drawn from the existing pose-graph is sufficient. For larger
environments we rely on place recognition to propose po-
tential loop closures. We have used visual place recognition
systems as well as lidar systems such as ScanContext [59]
and Logg3dNet [60]. Given a suitable loop proposal, we
refine the proposal using ICP refinement. If the refinement
is successful, we add a loop closure constraint to the pose
graph. An overview of the system is shown in Figure 4.

Searching for loop closures across a graph with perhaps
1000 nodes requires judicious use of computation. After a
loop proposal has been proposed, each ICP loop refinement
takes several hundred milliseconds, meaning that brute force
pair-wise search is not feasible. When given a potential loop
closure pair, we first determine if the loop closure would be
helpful using the density of the pose graph, and only then
attempt ICP loop refinement.

To implement this test of loop closure value, we build
an matrix corresponding to the pose graph connectivity. We
consider the two nodes which form an edge in the pose graph
as a pair. The set of pair-wise constraints are then treated as
pixels in the connectivity matrix. Next we dilate this matrix
by several pixels — corresponding to about five adjacent
odometry or loop closure edges as illustrated in Figure 5.

To test if a loop closure between two nodes (P,Q)
would help to improve the pose graph, we determine if the
corresponding pixel lies close to an existing edge using the
connectivity matrix. If it does, we abandon this loop closure
proposal because adding it would not significantly affect the
graph and might actually over-constrain it. In doing so we
avoid carrying out computation in well-constrained parts of
the graph. In addition to this check we also take care to
ensure that potential loop closures are consistent with one
another. For this we carry out pairwise consistency checks
to determine if two consecutive potential loop closures agree

Pose graph nodes → 

P
o
s
e
 g

ra
p
h
 n

o
d
e
s
 →

 

FIGURE 5. Illustration of the pose graph density check. A connectivity
matrix is built using the odometry edges (the green diagonal) and loop
closure edges (blue). A dilation operation declares several more cells as
being occupied (red). After this, only the unoccupied cells (white) are
considered for potential loop closures - greatly reducing unproductive
computation.

well with one another. More details about these filters and
checks can be found in [55].

The output of the mapping step is the pose graph with
corresponding individual pointclouds, as well as a global
map in which all individual clouds have been registered in a
global reference frame. Figure 6 shows the global map from
the JET deployment described in Section VII.

C. Subsequent Localisation in Prior Map
To re-localise in the global prior map we again use ICP
which requires an accurate initial pose estimate to be pro-
vided by the operator or by initialising the robot in a known
location. The pose estimate is then iteratively updated using
the leg odometry motion prior and ICP to the prior map at
2Hz.

An alternative approach is to localise in a prior map
made up of the individual pose-graph pointclouds using place
recognition (for example ScanContext) to determine the pose
guess at each iteration. This approach does not require an
initial pose estimate and can be particularly effective in very
large environments where performing ICP to a single facility-
sized pointcloud map would be computationally prohibitive.

D. 3D Change Detection
AutoInspect incorporates LiSTA [61], a 3D change detection
system. It uses volumetric differencing to detect object-
level changes between pointclouds acquired across different
missions. During each mission, a set of local pointclouds
are acquired and converted into octrees. Octrees correspond-
ing to the same spatial area, but from different missions,
are then compared to generate a set of difference octrees
which are projected back into the original pointcloud. The
pipeline includes ground filtering via RANSAC, Moving
Least Squares smoothing, and morphological opening to
obtain a set of pointcloud clusters. The pointcloud clusters
for each discovered object are then segmented out using

6 VOLUME ,



<Society logo(s) and publication title will appear here.>

FIGURE 6. Top-down and side view of the central JET structure cropped
from the full SLAM pointcloud. The structure is 30m across on its widest
axis, and a has a height of 15m. Due to the height of the robot and the field
of view of the LiDAR, upper parts the structure receive sparse coverage.

Euclidean clustering. Finally, inter-mission correspondences
of objects are determined through K-means clustering of
SE(3) invariant descriptors assigned to each object using a
learning-based 3D pointcloud descriptor [62]. This provides
actionable insights to operators in the form of pointclouds of
object-level changes to the environment between missions.
An application of the system is shown in Figure 15.

IV. Topological Autonomy
In this section we describe the second major component
of AutoInspect: the Topological Autonomy system. Imple-
mented in ROS, it provides autonomous navigation and task
execution capabilities. At its core is a topological map repre-
sentation. In combination with the mapping and localisation

system, it allows the robot to act in its environment without
the need for continuous monitoring or input from operators.
The autonomy system is designed with flexibility in mind
to facilitate integration with a variety of platforms. Figure 7
shows an overview of the system. The initial topological
map is constructed based on the SLAM pose graph. The
robot is localised in the topological map based on the closest
node to the 3D pose received from the localisation system.
The system uses the robot’s navigation capabilities through
the navigation interface. The robot’s action capabilities are
registered with the action register, which can call the action
executor to execute them. Mission execution navigates and
executes tasks based on mission specifications. The scheduler
can execute missions on a schedule, subject to interrupts
from system monitors. The operator typically controls the
robot by scheduling or executing missions. The topological
map, graph localisation, and the robot’s navigation and
action capabilities are integrated differently depending on
the specific platform. We give an overview of integration on
a variety of platforms in Sections VI and VIII.

A. Topological Map
The core of the autonomy system is the topological map,
which is a graph of nodes and edges, examples of which
are shown in Figures 8 and 14. A node is a location in the
environment and is both a waypoint for navigation and a
location at which tasks may be executed. Edges are used to
connect one node to another, indicating direct traversability
between them. We collectively refer to nodes and edges as
map components.

The base topological map is an abstraction of the envi-
ronment and does not contain spatial information. This was
done to avoid committing to a particular spatial model, and
has allow topological autonomy to be used on both systems
with global metric maps, and non-visual teaching-and-repeat
systems which use a non-metric local spatial model. To
add spatial (and other) information to map components, we
use overlays. An overlay maps node or edge identifiers to
arbitrary values represented by ROS messages. While each

FIGURE 7. Overview of topological autonomy on Spot. The topological
map, graph localisation, navigation interface, and action register adapt
the system to different platforms.

VOLUME , 7



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

FIGURE 8. Top-down view of RACE B1 pointcloud with overlaid
topological map. Points coloured by z coordinate height, red is lowest.

overlay depends on the topological map for information
about map components, it exists as an independent part of the
system and is published to its own ROS topic. Each node in
the system can thus subscribe to only those overlays it needs
for operation, and can publish its own overlays. This provides
flexibility, as different parts of the system can add a variety of
overlays as needed without affecting the operation of others,
or needing to modify the base map. This design was chosen
based on experiences in the STRANDS project [26], where
topological map data types became over-fitted to particular
application elements, and thus limited our ability to re-use
the software across robots and projects.

Figure 9 shows an example of overlays defining a 2D
structure for the topological map. The node position overlay
assigns a 2D position to each node in the map. The edge
length overlay then uses the node position overlay to define
edge lengths for each edge in the map, which can be
used for path planning. The enabled components overlay
defines which parts of the topological map can be used for
navigation. Any changes to the node position overlay can be
propagated to other overlays which depend on it through an
update procedure. For example, in the edge length overlay
the procedure is to recompute edge lengths for any edges
attached to a node whose position is changed. This update
procedure also means that we can make modifications to the
topological map online and have those changes propagate
through the entire system automatically.

Topological maps are defined using a yaml structure,
and can thus be constructed in a variety of ways. Our
GUI tools allow us to construct maps entirely by hand,
and we have also constructed maps online while exploring
an environment [63]. In Section VII-B we describe how
we use the SLAM pose graph as a basis for constructing
the topological map. The topological map and overlays
are a simple yet powerful representation, allowing us to
annotate nodes and edges with domain-specific information
for deployments. It is also an ideal structured abstraction of
the environment for input to planning algorithms [33].

Base map

(-1, -2)

(1, 2)

(-4, 0)

(4, 4)

(-3, 6)

(-8, 9.0)
(-10, 11)

(-14, 15)
(-16, 16)

(-17, 20)

(-15, 26)

(-13, 7)

(-7, 2)

(-19, 13)

(-24, 11)

Node position overlay

Edge length overlay

6.0
2.6

4.8
7.8

3.5
3.2

5.8

4.0

4.8

5.82.43.6

6.3

3.7

5.4

Enabled components overlay

FIGURE 9. Example topological map and overlays. The node position
overlay ties each node to a 2D coordinate. The edge length overlay reads
the node position overlay to generate lengths for all edges. Enabled
components is a binary overlay which can be used to specify which
edges and nodes in the map are enabled. For presentation purposes, the
nodes are depicted in a 2D plane, and node positions and edge lengths
are approximated. Nodes or edges which do not have a value in an
overlay are show in grey.

B. Topological Navigation
We use the topological map as the basis of our autonomous
navigation framework, which is built to be adapted to a
variety of robot platforms. Integrating a platform into the
framework requires the implementation of two components.
The first component is a topological localiser, which con-
nects the robot’s position in physical space with its position
in the topological map. For most deployments, we define
an overlay of 3D node poses indicating their location and
orientation in a global reference frame, and an influence
zone which defines their extent in space. The localiser must
translate the robot’s pose in the environment to a node in
the topological map. We typically do this using the ROS
transform tree. If the pose of the robot is within the influence
zone of a node, it is considered to be at that node in the
topological map.

The second component is a set of edge traversal action-
servers, which use the local motion control system of the
robot to move it between nodes which are connected in
the topological map. Each edge in the map is associated
with an action server, which has a standardised interface
to receive edge information. Traversing an edge should
move the robot from the edge’s start node to its end node.
This means that the topological map effectively acts as a
soft constraint on where in the environment the robot can
move. The exact form of this motion is defined by the
implementation of the action server. This abstraction is a

8 VOLUME ,



<Society logo(s) and publication title will appear here.>

key part of flexibility of our system, as the action server can
be customised to interface with the local navigation system
of a variety of robot platforms. Associating different types of
traversal actions with edges allows us to define how the robot
behaves when travelling between nodes, with no human input
necessary during navigation. For example, custom actions
may be required for moving through doors or up stairs. The
edge traversal action server can also be used to combine the
edge traversal with other inspection or monitoring actions.
Each action server is required to report success or failure of
the traversal, which is used within the topological navigation
framework to retry or abandon traversal of the edge. We
store the start and end time, duration, and success or failure
of edge traversals in a database, which facilitates analysis of
the robot’s performance during deployments.

Robot tasks are generally driven by the need to be at a
specific location, so navigation on a purely edge-by-edge
basis would be cumbersome. We provide an additional node-
based navigation layer on top of edge traversal to send
the robot to a specific node, called the traversal policy
executor. This component receives the robot’s current and
destination nodes, and computes the shortest path between
them. The cost of each edge in the shortest path calculation
is defined by an overlay. We can easily use a variety of
cost measures such as distance, duration, or congestion, or
even define an overlay which combines all of these into a
single measure. The computed path is executed by calling
the action server for each edge in turn. Paths through the
map can involve multiple different types of edge traversals,
all handled automatically. For efficiency, we only require the
robot to orient itself to a node if it is the final node in a path.
Once an intermediate node is reached, the policy executor
immediately requests the next edge traversal. If an edge
traversal fails, the underlying action server will report failure,
which temporarily adds the edge to an overlay of disabled
edges which cannot be used for navigation. The edges in
this overlay are excluded when computing the shortest path,
so whenever a failure occurs the system can automatically
reroute and attempt an alternative path to the destination. As
disabled edges are stored in an overlay, it is not necessary to
modify the underlying topological map to reroute the robot.

C. Mission Planning and Scheduling
Mission execution and scheduling links navigation with task
execution. We define a task as an action performed at a
topological node. Each action available to the system is
defined in an action register. Each action has a name, and
is associated with a specific action server and a set of
parameters for that action server. The action register acts
as an abstraction layer between the autonomy system and
the implementation of the actions. By providing parameters
for actions, we ensure that at execution time no additional
human input is necessary. When integrating with a platform,
we can provide a set of default actions which interact with

its basic capabilities, leaving users to integrate actions for
custom payloads.

We define a mission as a list of tasks. Missions are usually
specified by human operators, but can also be constructed
programmatically. To execute a mission, each task is pro-
cessed in order. First, the mission planner sends a request to
the navigation system to move to the task node, and waits
for the result. The navigation system will automatically retry
if its initial path is blocked. If navigation is successful, the
task’s action is executed by calling the action register and
then waiting for the task to complete. These steps repeat
until the last task is processed. Tasks in the mission may
fail either because the task location cannot be reached, or the
action itself fails. When this happens, we can configure the
system to either attempt to complete the remaining tasks, or
abort. For missions where the order of tasks is not important,
it can be challenging for humans to define the optimal
ordering in terms of mission distance. The mission planner
can automatically minimise the path cost by reordering tasks
according to an approximate solution to a standard travelling
salesperson problem (TSP) [64].

To provide control over when missions are executed,
we use a scheduler, the key component for long-term au-
tonomous operation. The scheduler builds on the mission
execution system and can schedule a mission for execution
once at a specific time, or repeat missions on a fixed
schedule (e.g. every hour, every day at 09:00, every Tuesday
at 16:00). The scheduler includes monitors which, when
specified conditions are fulfilled, can request execution of a
mission, or disable execution of missions. Monitors can be
used to handle a variety of contingencies. For example, when
the robot’s battery is low, the battery monitor prevents any
scheduled or user-requested mission from being executed,
and immediately executes a mission which sends the robot
to the nearest charging station.

D. User Interfaces
We provide interfaces implemented in the ROS RViz tool to
interact with the system quickly and conveniently. Users can
modify topological maps in the RViz window (Figure 10),
which allows repositioning, addition, or deletion of nodes
and edges. RViz can also display the point cloud of the
environment, so users can take its structure into account
while modifying the topological map. The map modification
interface allows the map to be modified while the system
is running and provides immediate feedback on the updated
structure. During deployments, this interface allows us to
assess potential problem areas in the map, and modify it
accurately. The mission and scheduling panels (Figure 11)
allow operators to define, save, load, execute, or interrupt
missions and schedules, and to monitor their status.

These interfaces make interaction with the system easier,
faster, and less error-prone for both expert and non-expert
users of the system. After moving from command line
interfaces to graphical interfaces, we observed a marked

VOLUME , 9



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

FIGURE 10. RViz interface showing the global map point cloud and
topological map during AutoInspect deployment on Spot in the Torus Hall
of the JET fusion reactor. Yellow arrows on edges indicate the global
navigation policy, and blue arrows the expected path to the robot’s next
task location.

FIGURE 11. Topological autonomy user interfaces. Left: mission
construction, with action and node specification, remote and local saving,
loading, and execution. Ordering of missions can be changed by dragging
and dropping tasks. Centre: schedule construction, with specification of
predefined mission files and their repeat frequency. Right: mission
monitoring, where row colour indicates status of a task. Green tasks have
been successfully completed, and light blue indicates the robot is
navigating to the task location.

decrease in the time from arrival on site to autonomous
operation.

E. Mission Execution Example
We now briefly illustrate a typical execution with the topo-
logical autonomy system. The mission is executed in a
Gazebo simulation using a Clearpath Jackal running the full
AutoInspect system. Figure 12 shows the execution trace
of the mission. Figure 13 shows the mission structure and
the simulation environment, as well as images corresponding
to parts of the execution trace. The location row shows
the current position of the robot in the topological map.
Where this row is blank, the robot is not currently at a
node. The robot stays longer at goal nodes as it must
orient to the node, and move_base can take some time
to report success. A mission starts by requesting navigation
to the first task location, indicated by the go to node row.
This action starts with navigation policy generation, shown

in the generate policy row. The traversal policy executor
executes the policy, which sends commands to the edge
traversal. Edge traversal receives a specific edge to traverse,
then translates this into a pose to send to the move base
actionserver, which actually executes the motion. Once the
robot reaches the task location, the action row shows when
the action executor executes the action requested by the
mission planner. In this example, we introduce an obstacle
into the environment which blocks the edge between Node10
and Node11. When edge traversal executes the edge, it
monitors the execution status of the move_base action.
While initially there appears to be a valid path to go from
Node10 to Node11, there is not enough space for the robot to
pass through. move_base generates a much longer global
plan to execute the traversal. Edge traversal compares the
length of planned paths to the length of the edge, aborting the
traversal if it is much longer than expected. This allows for
flexibility for obstacle avoidance, but will abort edges which
are entirely blocked. The Edge blocked row shows when the
overlay tracking blocked edges is updated. The failure of the
edge propagates up to the traversal policy executor, which
retries the navigation task, generating a new policy which
factors in the blocked edge by using the overlay. The new
policy successfully executes, taking the robot back to the
node at which the mission started.

V. Deployment Overview
In this section we present the process we follow to deploy
an AutoInspect system in a new environment.

A. Localisation Pointcloud Generation
Once on site, the first step is to build the metric map of the
environment (unless an existing point cloud is already avail-
able). To do this, we teleoperate the robot in the environment
while running the SLAM system. The time needed for this
process depends on the size of the environment, but generally
only takes as long as is needed to move the robot around
its areas of operation. To ensure a complete and accurate
map is generated, operators must ensure that loop closures
happen during the mapping process, since these necessary for
correcting poses based on odometry drift over long distances.
Once mapping is complete, the resulting point cloud does
not require any post-processing and can be used directly to
support autonomous navigation.

B. Topological Map Construction
The next step is to build the topological map. This can be
done manually or automatically. In AutoInspect deployments
we use the pose graph generated by the SLAM system as
the basis of an initial topological map. Figure 14 shows
an example of this process. Following the order in which
the poses in the pose graph were generated, each one is
converted to a topological map node with the same pose.
Before creating a node, we check if the pose is close to an
existing node, in which case it is merged into the existing

10 VOLUME ,



<Society logo(s) and publication title will appear here.>

FIGURE 12. Execution trace of a mission with four tasks. Bars correspond to the state of the system or the execution of a goal which has been sent to
an actionserver. Bars are colour-coded according to the node associated with the action. Circled numbers refer to images in Figure 13.

FIGURE 13. Mission execution in simulation, circled numbers refer to parts of the execution trace in Figure 12. Top left: Expected mission route. Yellow
to purple gradient indicates progression from start to end of route. Actions are executed at the 4 highlighted nodes. ① Generating the traversal policy
(yellow arrows) and expected route (blue arrows) to Node6. ② Traversing to Node6, current edge in green. ③ Rotation to node orientation and execution
of short wait action. ④ Obstacle is placed, blocking edge from Node10 to Node11. ⑤ move_base attempts to plan around obstacle (orange path). ⑥

move_base replans much longer route due to infeasible route. ⑦ Traversal actionserver aborts due to longer than expected route, causing edge from
Node10 to Node11 to be blocked (red arrow). Policy is regenerated taking into account blockage, and executed.

node. Edges in the pose graph either connect successive
poses or define loop closures. We create bidirectional edges
in the topological map using the edges in the pose graph,
ensuring that edges which were connected to any merged
poses are correctly connected to the corresponding node in
the topological map.

This step provides the basic structure of the topological
map. In the mapping stage every edge except those defined
by loop closures was traversed, so we know which edges
should be traversable. However, the resulting map has many
redundant nodes due to pose graph nodes being placed

at 1m intervals. We remove redundant nodes with a user-
configurable sparsification process. We then hand-adjust the
map to conform to operational requirements, adding nodes
where actions are to be performed, and adjusting node
positions to ensure safe and reliable navigation. Edges in
the map are annotated according to the traversal method
which must be used, for example door or stair traversal. For
long-term deployments, the robot’s charging stations are also
added to the map as nodes connected by a suitable docking
edge.

VOLUME , 11



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

C. Autonomous Operation
After the topological map is created the system is ready to
support autonomy. In our experience, the time from arriving
on site to autonomous navigation is usually less than an
hour. With the final topological map in hand, missions and
schedules for long-term operation can be defined using the
actions available to the robot. Once a schedule is set for the
robot, it can operate autonomously, with operator action only
needed to modify the schedule.

FIGURE 14. Building a topological map from the SLAM pose graph at JET.
Top: SLAM pose graph, red edges indicate loop closures. Middle:
Automatically constructed topological map. Bottom: Final topological
map after manual pruning and adjustment for mission objectives.

VI. Spot AutoInspect Integration
We selected the Boston Dynamics Spot robot as our devel-
opment platform for AutoInspect due to its reliable collision
avoidance and stair climbing capabilities, which fit well with
our intended application areas, as well as its autonomous
docking capability, which facilitates long-term deployment.
This section provides more detail on the integration of
AutoInspect with the Spot robot.

A. Frontier Payload
The key hardware component of AutoInspect is our Frontier
autonomy payload (Figure 3). It combines: a NUC mini-
PC with i7-1165G72.8 GHz and 32 GB of RAM; a Hesai
XT-32 LiDAR; three time-synchronised fish-eye Sevensense
Alphasense cameras; and a Bosch BMI085 IMU. These
are mounted in a compact 3D-printed case, with a com-
bined weight of 1.5 kg and a power consumption of less
than 60 W. Camera intrinsics and extrinsics are calibrated
with Kalibr [65] while the camera-to-LiDAR extrinsics are
calibrated according to [66]. As all sensors are mounted
rigidly, we can move the Frontier between robots without
recalibration.

B. Robot Hardware Integration
To integrate AutoInspect on to Spot, we attached the Frontier
via a 3D-printed mounting plate connecting it to the robot’s
network and power supply through a payload port. To main-
tain network connectivity between the operator computer
and the robot, we use an industrial-grade mesh network.
One Rajant ES-1 network node is mounted on the robot,
and another is connected to the operator computer. Other
Rajant mesh nodes are set up in the environment to cover the
operational area of the robot. Network connectivity across
an entire site is only necessary if constant monitoring is
required. AutoInspect is self-contained on the Frontier and
does not require a network connection except to receive
operator commands.

Depending on the particular application, we extend the
system with different inspection payloads. For the deploy-
ments described in Section VII we mounted the Spot
CAM+IR which has a pan-tilt-zoom (PTZ) unit with thermal
and visual cameras. We also added a Kromek Sigma 50
Gamma ray detector, along with a TEMPerHUM temperature
and humidity sensor, both connected to the Frontier device.

C. Topological Autonomy Integration
Topological navigation interfaces with Spot using the
spot_ros driver8, which provides access to point-to-point
navigation and velocity controls. We use the driver to im-
plement a variety of edge traversal actions, including stair
climbing and autonomous docking. Topological localisation
is achieved by using the robot’s current pose in the TF tree
provided by ICP odometry, and comparing it to locations

8github.com/heuristicus/spot ros

12 VOLUME ,

https://github.com/heuristicus/spot_ros


<Society logo(s) and publication title will appear here.>

of nodes in the map using a k-d tree. For task execution
we implemented two action servers to integrate the sensing
payloads. The Spot CAM+IR actions allows us to point the
PTZ camera at coordinates in the global reference frame,
set the zoom level, and capture images in either the optical
or IR spectrum. The gamma ray detector action triggers the
gamma ray detector to capture radiation spectrum data for 1
minute. The TEMPerHUM sensor did not require an action
as it was set to collect data continuously.

VII. Spot AutoInspect Deployments
This section describe two long-term deployments of Au-
toInspect controlling Spot in the configuration described in
the previous section. Both deployments took place at the
Culham Centre for Fusion Energy in Oxfordshire, UK, in
collaboration with UKAEA’s centre for Remote Applications
in Challenging Environments (RACE). The first deployment
was at the B1 robotics test facility, and the second in the
torus hall of the JET fusion reactor, shown in Figure I.

Throughout the deployments we tracked interventions,
which we define as any modification of the system’s state by
a human. Minor interventions are normal user interactions
with the system, such as modifying the topological map,
running additional missions, or software failures which do
not affect the system’s functionality, such as logging. As
such, we do not count minor interventions as interrupting
the system. Serious interventions are when components or
subsystems are modified or restarted during operation. Fatal
interventions are when the entire software stack or the
hardware is restarted.

1) RACE B1 Test Facility
The robot was deployed at the B1 test facility for total of
49 consecutive days from 18th July to 5th September 2023.
The intent of this deployment was to build confidence with
UKAEA staff and understand the requirements for future
deployments, as well as to stress-test the system. Prior to

FIGURE 15. Change detection results from RACE deployment. Detections
in red, static cloud in blue. Changes were organically induced by workers
in the environment.

this deployments of AutoInspect had focused on integration
testing and short-term performance. In those deployments the
system was not expected to run for more than several hours
at a time. In contrast, the explicit aim of this deployment was
continuous operation with minimal operator interruption.

We logged 25 interventions over the course of the de-
ployment. The longest period without any serious or fa-
tal interventions was 14 days. Twelve interventions were
minor. The nine serious interventions included manually
re-localising the robot (3 times), and restarting navigation
(3), the camera driver (2), or localization (1). Four fatal
interventions were restarting the entire software stack (3) or
rebooting the Frontier payload (1). Not counting minor inter-
ventions, the mean time between interventions (MTBI) was
78 hours. In practice, interventions tended to be clustered
together, as configuration or hardware issues caused repeated
failures. All of the interventions provided us with valuable
information about how the system was used in practice, and
how to improve its robustness. In this deployment, several
interventions were caused by a bug in the localisation system
which only manifested after long periods of time and was
caused by thermal throttling of the CPU, which we may not
have discovered without a long-term deployment.

The topological map, shown in Figure 8, consisted of 37
nodes, of which 9 were inspection points. We captured a
visual spectrum image at all 9 locations, and IR images at
2 locations. At each inspection point, the we also recorded
temperature and humidity readings. The SLAM system ran
continuously in order to capture new pointcloud maps for
input to the offline change detection system. The robot
performed a scheduled mission at 11:00 and 15:00 each
weekday, with an average duration of 11 minutes 30 seconds.
Including unscheduled missions for visitors, it executed 84
missions, during which 673 of 730 inspection actions were
successfully performed. There were 7 partially successful
missions during the deployment, in which at least one action
or traversal failed, accounting for 9 failed actions. Five failed
missions account for the other 48 failures, where the entire
mission failed to execute. These missions were associated
with major interventions, failing due to errors with SPOT
CAM+IR functionality, and a disk capacity issue caused by
excessive logging. The robot walked approximately 13.6 km
over the 13 hours in which it was actively performing
missions. A total of 4565 edge traversals were attempted,
4191 of which were successful. The 374 failed attempts
were associated with 249 requests for an edge traversal.
218 of these traversals were successfully completed after
automatic retries generated by the autonomy system, with
the remaining 31 unsuccessful. As with action failures during
missions, the majority of edge failures occurred on days
where we also recorded major interventions. Figure 15 gives
an example of changes in the environment detected during
the deployment, which were organically induced by workers,
showcasing this important capability which provides opera-
tors with actionable insights.

VOLUME , 13



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

2) Joint European Torus
The deployment in the torus hall of the JET fusion reactor
ran for 35 consecutive days from 21st February to 27th
March 2024. The robot was fitted with a gamma ray detector
to perform radiation measurements near the reactor. We
implemented a variety of improvements to the software based
on experience from the previous deployment, including a fix
for the localisation system’s thermal throttling issue.

In this deployment there were 16 interventions. Excluding
minor interventions, this is an MTBI of 140 hours, almost
twice as long between interventions as the B1 deployment.
The longest period without serious or fatal interventions
was 15 days. 10 interventions were minor, 1 serious, and
5 fatal. The fatal interventions were all caused by a user-
facing process manager used to monitor the system that
would intermittently cause all ROS nodes to shut down
when operators reconnected to the system. We noticed this
bug during this deployment as due to construction and
maintenance activities in the area operators would regularly
connect to the running system and apply manual adjustments
to the schedule. We suspect this was the cause of 3 fatal
interventions at B1, which we were unable to identify at
the time. None of the interventions were caused by the core
systems, indicating an increase in reliability compared to the
B1 deployment.

The topological map, shown in Figure 14, had 41 nodes
including 7 inspection points. Two of the inspection points
were for visual spectrum images, 3 for IR images, and at the
remaining 2 we recorded the gamma radiation spectrum for
1 minute. Missions ran at 11:00 and 15:00, this time every
day instead of just weekdays, with an average duration of 20
minutes. The robot executed 81 missions, during which 571
of 653 inspection actions succeeded. Three missions were
partially successful, accounting for 10 action failures. The
remainder occurred in 8 failed missions. Four of these failed
missions were due to planned downtime over a weekend,
during which a flag was set to disable the robot’s motion, but
all components continued running as normal. As in the B1
deployment, the remaining failed missions were associated
with major interventions, this time caused by the process
manager issue. The robot walked approximately 15km over
the 19 hours 30 minutes in which it was performing missions.
A total of 4464 edge traversals were attempted, of which
3833 were successful. 471 of the failures were on the edge
leaving the docking station. Approximately 300 of these
were caused by the weekend downtime, and the others
by the process manager causing autonomy to fail. Of the
remaining 160 failures, only a single edge did not succeed
after automated retries. These numbers are further indication
of improvement in reliability over the B1 deployment.

To capture images during the deployment, the PTZ camera
was commanded to look at a point in the global reference
frame. The accuracy of this command was entirely based
on the localisation quality, with no visual servoing used.
Figure 16 shows a sample of images taken from the same

FIGURE 16. Inspection images of an electronics patch board taken with
the Spot CAM+IR during the JET trial of object about 1.5m wide from a
distance of approximately 5m. Top 6 images randomly sampled from 60
taken at the location. Bottom row are images with largest estimated offset
of all images in the set.

FIGURE 17. Images from Spot CAM+IR across three different missions at
JET, showing cooling of a reactor component over the course of 24 hours.

location across the deployment. We use descriptor matching
to find a quantitative measure of the image variation, as
we do not have access to ground truth. For each possible
pairing of 60 images of the target, we compute ORB [67]
keypoints and descriptors, then match the descriptors across
the two images. Each match gives an estimate for the offset
between the two images, though this is an approximation
since the image is not strictly planar. Using the top 10
matches, we compute the mean offset in the x and y axes,
which is then used as the estimated offset for that image.
For all possible pairs of images of 1920 by 1000 pixels, the
mean of the estimated offsets is 54± 71 pixels along x, and
51 ± 42 pixels along y, an average variation of less than
5%. The similarity of these images is an indicator of both
localisation robustness and repeatability, which are important
for long-term deployments. Figure 17 shows the cooling
process of a reactor component which was captured during
the deployment. These examples show how autonomous
inspection can be used to provide useful information to plant
operators independent of fixed instrumentation.

VIII. Deployments on other Platforms
AutoInspect was developed to be robot platform-agnostic,
and to provide a flexible substrate for application-driven
autonomy. To demonstrate this, we now describe the use of
AutoInspect for other hardware platforms and applications.

14 VOLUME ,



<Society logo(s) and publication title will appear here.>

FIGURE 18. ANYmal Monitoring in Wytham Woods. Top: ANYmal
navigating the forest. Bottom: Topological map and pointcloud used by
the robot to navigate in a 50 m×35 m forest patch, with robot’s front
camera view overlaid.

A. ANYmal Monitoring in Wytham Woods
We used AutoInspect as part of a system for continuous
monitoring in forests with the ANYbotics ANYmal D plat-
form (see Fig. 18). ANYmal is an IP67-certified and ROS-
native quadruped robot, which has been extensively tested
in unstructured [52], as well as natural [68], environments.
In contrast to Spot, direct access to many of the robot’s
low level control systems is available as standard, and parts
of the software system can be customised by users. The
payload set-up on the ANYmal platform is similar to that
of Spot, with the Frontier device mounted on the front
of the robot together with a Rajant DX-2 mesh network
node. As the accessible power connections on the robot
are current-limited, Frontier was powered by an external
battery. We protected the Frontier with a roll cage, as natural
environments often have uneven terrain and a variety of other
hazards such as low branches.

Integration of AutoInspect on ANYmal is similar to
Spot. The Frontier provides state estimation through LiDAR-
inertial odometry, LiDAR mapping, and ICP- or place
recognition-based localisation. Both localisation methods
provide the 3D pose of the robot in a global frame. In
contrast to Spot, we did not use the leg odometry estimate

from the robot, as we observed that LiDAR-inertial was
sufficient to localize in a forest. Leg odometry is helpful in
confined, narrow, or repetitive environments, which are not
generally characteristics of natural spaces. To integrate topo-
logical navigation, we used a reactive local planner [69] that
provides an interface similar to move_base [70], which
we tuned and extensively tested in natural environments [68].
The local planner relies on a 6 m×6 m local terrain map built
by the default robot stack using its front and side-mounted
depth cameras.

We carried out field trials in Wytham Woods, Oxford, UK,
on the 26th and 27th June 2024, with the objective of testing
ANYmal integration and evaluating potential uses cases in
forestry applications. For our experiments, we selected a
50 m×35 m forest patch, and manually teleoperated the robot
to build the localisation map. The resulting topological map
contained 234 topological nodes, which was then down-
sampled to 46 nodes for smoother navigation (see Fig. 18).
The goal of the deployment was to assess the system’s
ability to traverse long edges in the topological map. We
did this by testing autonomous navigation between pairs
of nodes on the topological map which were an average
of 25 m apart. In addition, we automatically added new
edges to the topological map had not been traversed during
the mapping phase. This was achieved by implementing a
geometric obstacle check performed using VP-STO [71] on
the pointcloud. If a path could be found by VP-STO in the
pointcloud then the edge was added to the map, otherwise
it was discarded. Despite this initial filtering step, some of
these new edges could not be autonomously navigated due to
terrain constraints. Such edges were marked as failed in the
topological autonomy system after a specified timeout, and
subsequent routes would then avoid using the failed edge.

This demonstrated that AutoInspect can be adapted for
other robotic platforms, such as the ANYmal. This adapta-
tion is particularly straightforward when the basic navigation
interfaces are similar. Once the AutoInspect integration was
completed, seamless execution of autonomous missions was
possible.

B. Husky Long-term Biodiversity Monitoring
We have also applied the topological autonomy component
of AutoInspect to an autonomous system for biodiversity
monitoring, using the Husky UGV [72]. The primary dif-
ference between this deployment and those above is that
we used a visual experience-based map for navigation and
localisation [73], instead of a metric map. This highlights
the flexibility of design of the topological autonomy model,
which does not require a metric map, or any global reference
frame, since autonomy is modelled as edge traversals in
a graph. As with ANYmal, this system was deployed at
Wytham Woods. It was deployed as part of a project to study
plant biodiversity changes in experimental drought condi-
tions [74]. The deployment area contains over 60 permanent
experimental grassland plots, each of which has controlled

VOLUME , 15



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

watering and irrigation, simulating the effects of climate
change and human disturbance on grassland ecosystems.
Data on these plots was previously collected entirely based
on manual observations.

The Clearpath Husky A200 is an all-terrain UGV with
a high payload capacity. We equipped the robot with a
forward-facing Hokuyo planar LiDAR which we use to set
speed limits near obstacles. A forward-facing Bumblebee2
stereo camera is used for mapping and localisation using vi-
sual teach-and-repeat. Autonomous docking is implemented
using laser-based line-segment matching and visual servoing
to guide the robot to a Wibotic wireless charger. The robot
is equipped with side-facing monocular, thermal, and multi-
spectral cameras for data collection, which feed data into a
biodiversity estimator [75]. Experience-based mapping and
localisation with vision [73] has been proven to be robust in
extremely challenging domains, e.g. Martian-analogue [76].
Our system uses FAST-BRIEF feature point detection and
description [77, 78], visual odometry [79], and place recog-
nition with FAB-MAP [80]. To build the experience map,
we teleoperated the robot along various routes shown in
Figure 19①. The resulting experiences are dense strings of
experience nodes, each of which is associated with images
captured when it was first traversed. Once an experience has
been taught, the robot is able to repeat it autonomously.

Topological autonomy was integrated on top of the
experience-based localisation and navigation system. We
constructed the topological graph by first selecting a subset
of the experience nodes to map to topological nodes. We
did this for the nodes at the data-capture points (since the
robot should stop here to record data) and at the intersections
of experiences in order to allow the topological autonomy
system to recombine experiences into new routes not tra-
versed during the teaching phase. Topological localisation
requires determining the closest topological node to the
robot. Since the visual teach-and-repeat system does not have
a global metric frame, we achieve this via a breadth-first
search up to a fixed radius (typically 50m) on the experience
graph, starting at the experience node that the robot is
localised to best. Since topological nodes are anchored to
experience nodes, the first experience node/topological node
pair which is found is considered the closest node. Since
we use visual teach-and-repeat, the traversability of edges is
not in question. If required, traversability information could
be integrated into the system as an overlay which makes
use of prior work in safe exploration [63] or traversability
estimation [81].

The robot was deployed from 22nd June 2024 to 1st Au-
gust 2024. We executed many autonomous missions across
the period, with the longest being 1 hour and 45 minutes,
which is close to the limit of the platform’s battery life.
Figure 19 (Bottom) shows the timing diagram for the longest
mission. Over the course of the deployment the robot was au-
tonomous for 33 h, and drove more than 14 km. More detail
is available in [72]. This deployment shows that the design of

FIGURE 19. Top: Application of the topological autonomy component of
AutoInspect to autonomous biodiversity monitoring. In this a UGV was
deployed over 6 weeks to automatically collect thermal images (④) at
enclosures (⑤) at which endemic grasses’ response to climate change is
studied. A visual teach-and-repeat navigation system (②) which has the
UGV follow taught paths (③) was integrated with AutoInspect for this, with
the taught paths forming a network (①) over the entire site, including
autonomously docking and charging (①H). Bottom: Timing diagrams of an
example autonomous mission lasting 1.5 hours. The vertical axis shows
pairs of node IDs for enclosures where thermal images are gathered. One
entry in this plot corresponds to the duration of a journey from one
collection site to another (e.g. from B5SWWN to B3NWWN).

the topological autonomy component of AutoInspect allows
it to be adopted to localisation methods other than those
based on metric maps. As with the ANYmal integration in
the previous section, once the navigation integration was
achieved, the autonomy capabilities (e.g. task execution,
mission planning, and scheduling) from AutoInspect became
available without further effort.

C. Jackal Simulation and Transition to ROS2
We are in the process of integrating AutoInspect onto the
Clearpath Jackal UGV, seen in Figure 21. As with Spot
and ANYmal, Frontier localises the robot through place
recognition or ICP localisation, using wheel odometry to
extrapolate the pose between two iterations of ICP. Topo-
logical navigation uses the ROS navigation stack [70], with
move_base used to traverse between topological nodes.
Dynamic obstacles are inserted into the 2D local cost map by
taking a slice of the current 3D LiDAR scan and projecting
the points onto the ground plane. We create a global costmap
by slicing the SLAM map at a fixed height.

16 VOLUME ,



<Society logo(s) and publication title will appear here.>

FIGURE 20. Left: ROS1 Gazebo simulation of industrial environment and
Jackal. Right: RViz display of simulated components and AutoInspect in
autonomy mode. White points are simulated 3D LiDAR. Coloured points
are the 3D map generated by VILENS SLAM in the initial mapping step,
here used for ICP localisation. 2D overlay is the global costmap used by
move_base for navigation. Topological map shown as connected nodes
and edges. Mission execution is shown in Figures 12 and 13.

Before working on the physical system, we integrated
the full AutoInspect system onto a simulated Jackal where
SLAM, localisation, and topological autonomy could run.
Figure 20 shows a small test environment in Gazebo with a
simulated Jackal. The simulated 3D LiDAR is used during
the mapping step to generate a 3D pointcloud that is used
to localise during autonomous operation, as in the physical
system. The topological map is constructed using the SLAM
pose graph as a base, then modified by hand as needed.

Having a simulation means we can also perform some
comparisons to ground truth data for localisation, which was
not possible in the environments in which AutoInspect was
physically deployed. We executed the mission described in
Section IV-E 120 times. The missions were executed in real-
time in the simulation, over the course of approximately 7
hours. All 120 missions were successfully completed. The
average duration of each mission was 3 minutes 30 seconds,
with a standard deviation of 9 seconds. In each mission the
robot visited 4 locations, then returned to the start location.
A total of 2124 edge traversals were attempted, all of which
succeeded. During execution we recorded our localisation of
the robot using ICP, and its ground truth position as defined
by Gazebo, both at 2Hz. With approximately 52,000 pairs of
samples, the mean position difference was 0.020m±0.014m,
and the mean angle difference was 0.325◦ ± 0.680◦. The
Jackal simulation has some idiosyncrasies which contribute
to lower angular accuracy, in particular very rapid accelera-
tion when turning on the spot. The physics simulation also
causes the robot’s model to translate during rotations, which
does not occur on the physical robot.

With the end of support for ROS1 approaching, we took
the opportunity provided by the simulation to test a ROS2
implementation of AutoInspect. We updated our simulation
to use ROS2 implementations of AutoInspect components,
and verified system integration by building a map of a sim-
ulated environment, then executing autonomous navigation
tasks. We performed the first physical deployment of the
AutoInspect system in ROS2 at Keble College’s H.B. Allen
Centre, using the maps in Figure 21 for localisation and

FIGURE 21. Initial deployment of the ROS2 prototype on the Clearpath
Jackal at H.B. Allen Centre. Left: Localising in the SLAM map, with
topological map generated from pruned SLAM poses. Right: Jackal
hardware configuration with Frontier and Realsense D435i.

navigation. In our initial test we executed 19 missions, of
which 5 failed due to issues with navigation controllers. We
were able to quickly resolve these issues through further
testing in simulation. We then ran 20 missions with the new
configuration, all of which were successful. Over both sets of
missions, the robot performed 472 edge traversals with only
5 failures caused by the initial controller issues, travelling
1.5km in 1 hour and 40 minutes.

Simulation of the system is helpful for integration, testing,
and debugging, but there are some important limitations.
In earlier sections we described how physical instantiation
of the system on Spot experienced thermal throttling issues
caused by interaction between hardware and software, which
we would be unlikely to observe in simulation. Motion of the
robot is another key concern. Even a relatively simple robot
like Jackal has significant differences in how it moves in
simulation and in the physical world. Accurately simulating
quadrupeds like Spot and ANYmal would require significant
computational resources. Complex built-in components like
obstacle avoidance and stair climbing would have to be
reproduced, making it impractical. Simulations also cannot
reproduce the unknown dynamics of the real world. As
we experienced during the JET deployment, even in the
most controlled environments the robot’s operational area is
changed by the people who work in those spaces. Human
presence in these spaces is another barrier to accurately
simulating them, as it is very difficult to predict the number
and type of interactions a system is likely to experience.
The constantly changing demands of the real world mean
that simulation can never truly be a substitute for physical
deployments.

IX. Discussion
A. AutoInspect as a Substrate for Autonomy
AutoInspect has become our standard substrate for auton-
omy. Whilst it is often tempting to develop new software
platforms, and unique hardware integrations, when faced
with a new application or robot platform, we argue that
adopting a standard approach to an autonomy stack has
a number of benefits. The repeated use of a single soft-

VOLUME , 17



Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

ware/hardware tool like AutoInspect across a range of set-
tings increases its robustness, since each new adoption drives
the discovery and fixing of bugs, and the development of new
capabilities. The benefits of standardisation and reuse are
widely known across engineering fields, including robotics,
but bear repeating when working in a space such as robot
autonomy, where the pace of change, and often different
appearances of applications/platforms, often drives people to
reinvent the wheel. A powerful additional benefit we have
found through adopting AutoInspect is that the elements
of topological autonomy, have become a clear design lan-
guage that we can use to communicate with stakeholders,
from integration engineers to end-users. For example, by
framing the problem of making a platform autonomous as
the problems of supporting topological edge traversal and
topological localisation, what could be an unconstrained
challenge, becomes a clear set of integration tasks. Similarly,
when planning how to deliver a new application, rather than
consider all the possible ways this could be done with the
chosen robot platform, the question can be reframed as how
to map the autonomy requirements on to the AutoInspect
framework (in terms of payload, prior map, task nodes etc.).

The value of AutoInspect as both a tool for both fa-
cilitating communication about, and enabling the practical
deployment of, autonomy, as allowed us to use it to support
both novel autonomy research, and quick translation of that
research to applied projects. For example, AutoInspect has
been used to underpin research in exploration [63], time-
bounded mission planning [82], and change detection [61],
as well as to deploy autonomous inspection systems into
high-value and high-risk industrial settings, including active
nuclear sites, large-scale perimeter monitoring settings, and
human-in-the-loop mapping of decommissioning environ-
ments that are inaccessible to humans.

The design of AutoInspect was inspired by years of experi-
ence in developing and deploying autonomous systems, from
lab demonstrators [83], to large scale competitions [52, 84]
and in-the-wild long-term deployments [26]. The topological
map is widely used in mobile autonomy [21, 33, 34]. How-
ever, it is unlikely to be the best spatial representation, or
abstraction of autonomy, for all platforms and applications.
For example, if the precise behaviour of the platform in
continuous space and time is crucial for your use-case, then
topological autonomy’s inherently discrete abstract model of
the robot’s environment and capabilities may obscure too
much of the continuous world to provide added value.

B. Engineering for Long-Term Autonomy
More practically, AutoInspect has allowed us to build and de-
ploy mobile robot systems capable of long-term autonomy in
real industrial environments. In doing this, we have learned
lessons about both systems engineering and interacting with
users and challenge owners. As above, standardisation has
been key to fast deployments. This includes adopting stan-
dard sensors and compute (the Frontier), networking (mostly

Rajant systems), and even platforms (defaulting to Spot
where possible).

We have also found that developing a standard user inter-
face (UI) that allows the operation of the autonomy system
with only a small amount of training to be hugely valuable.
In our experience a good UI makes system operation faster
and less error-prone than using the command line, and allows
us to quickly place the system in the hands of independent
users, placing our team into a remote (rather than hands-on)
support role.

For successful long-term deployments, a pre-deployment
testing period in a new environment is necessary to ensure
that there are no unexpected things which cause unnecessary
interruptions to the deployment. This is true even when
deploying a well-tested autonomy system like AutoInspect,
since particular features of an application environment, from
user behaviours to the presence of other wireless signals,
may impact on the system as complex as an autonomous
robot in new ways that have not previously been encountered.

To support monitoring and debugging, during both pre-
deployment and live operation, we recommend logging sys-
tem configuration and state extensively, ideally across the
levels of the autonomy stack. In AutoInspect, in addition
to logging low-level robot state, we record logs from the
Frontier’s localisation system (e.g. localisation uncertainty),
and events across the topological autonomy system, includ-
ing edge traversal and task execution statistics, mission plan
evolution, and schedule status. This allows us to quickly
assess the state of an AutoInspect system remotely (e.g. via
ROS topic inspection) as well as replay or reconstruct the
events leading up to an intervention when debugging.

One of the advantages of combining pointcloud localisa-
tion and a topological map for navigation within AutoInspect
is that these approaches make it easy for a user to extend or
modify the robot’s model of its environment. The full extent
of the robot’s operational area is defined by the localisation
pointcloud, so to extend AutoInspect to a new area, only an
updated pointcloud is required for the previously unmapped
region. Once nodes and edges are added to include the
extended area, those areas are immediately accessible to
autonomy without the robot needing to visit them. The
modification of navigation routes within the operational area
can be performed simply by changing the topological map,
which can be done while the system is running.

X. Conclusion
We have presented an overview of AutoInspect, our mission-
level mapping and autonomy system. We described two long-
term deployments of the system with Spot at the Culham
Centre for Fusion Energy, during which the robot operated
autonomously for 2 weeks without interruption, demonstrat-
ing its robustness. The deployment at JET was the first ever
deployment of a fully autonomous mobile robot in a fusion
facility. We showcased the flexibility of our system through

18 VOLUME ,



<Society logo(s) and publication title will appear here.>

descriptions of a further three robot platforms on which it is
integrated.

The primary aim of future work is continued improvement
in robustness of the system by stress-testing with increased
up-time. In the near term, we plan to extend the system to
multi-robot applications, and continue to explore applications
for autonomous inspection robots at other large-scale indus-
trial sites. Another key goal is to use planning and scheduling
algorithms to generate policies for completion of missions
which take into account uncertainty in the environment,
such as the probability of successfully traversing edges and
completing actions, as well as the duration of actions and
edge traversals, which we can learn from data gathered
during deployment. This will make it possible to provide
feedback to operators about the probability of mission suc-
cess. We will use the data from initial deployments to design
autonomous inspection routines and sensor suites to gather
actionable scientific and operational data, and to demonstrate
that autonomous robots can provide tangible benefits to
operators.

References
[1] David Wisth, Marco Camurri, and Maurice Fallon.

“VILENS: Visual, Inertial, Lidar, and Leg Odome-
try for All-Terrain Legged Robots”. In: IEEE Trans.
Robotics 39.1 (2023), pp. 309–326.

[2] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: ICRA Workshop on Open
Source Software. Vol. 3. Jan. 2009.

[3] Kristopher Toussaint, Nicolas Pouliot, and Serge Mon-
tambault. “Transmission Line Maintenance Robots
Capable of Crossing Obstacles: State-of-the-art Re-
view and Challenges Ahead”. In: Journal of Field
Robotics 26.5 (May 2009), pp. 477–499.

[4] Josep M. Mirats Tur and William Garthwaite.
“Robotic Devices for Water Main In-pipe Inspection:
A Survey”. In: Journal of Field Robotics 27.4 (July
2010), pp. 491–508.

[5] David Lattanzi and Gregory Miller. “Review of
Robotic Infrastructure Inspection Systems”. In: J. of
Infrastructure Systems 23.3 (Sept. 2017).

[6] Srijeet Halder and Kereshmeh Afsari. “Robots in
Inspection and Monitoring of Buildings and Infras-
tructure: A Systematic Review”. In: Applied Sciences
13.4 (Feb. 2023), p. 2304.

[7] C. Dario Bellicoso et al. “Advances in real-world
applications for legged robots”. In: J. Field Robot.
35.8 (2018), pp. 1311–1326.

[8] C. Gehring et al. “ANYmal in the Field: Solving
Industrial Inspection of an Offshore HVDC Platform
with a Quadrupedal Robot”. In: Field and Service
Robotics. 2021, pp. 247–260.

[9] Konstantinos Loupos et al. “Autonomous Robotic Sys-
tem for Tunnel Structural Inspection and Assessment”.

In: Intl. J. of Intelligent Robotics and Applications 2.1
(Mar. 2018), pp. 43–66.

[10] Filipe Rocha et al. “ROSI: A Robotic System for
Harsh Outdoor Industrial Inspection - System Design
and Applications”. In: J. of Intelligent & Robotic
Systems 103.2 (Oct. 2021), p. 30.

[11] M. Bloesch et al. “The Two-State Implicit Filter
Recursive Estimation for Mobile Robots”. In: IEEE
Robotics and Automation Letters 3.1 (2018), pp. 573–
580.

[12] Marco Camurri et al. “Pronto: A multi-sensor state
estimator for legged robots in real-world scenarios”.
In: Frontiers in Robotics and AI 7 (2020), pp. 1–18.

[13] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odome-
try and Mapping in Real-time”. In: Proceedings of
Robotics: Science and Systems. 2014.

[14] Wei Xu et al. “Fast-lio2: Fast direct lidar-inertial
odometry”. In: IEEE Transactions on Robotics 38.4
(2022), pp. 2053–2073.

[15] Milad Ramezani et al. Wildcat: Online Continuous-
Time 3D Lidar-Inertial SLAM. 2022. arXiv: 2205 .
12595 [cs.RO].

[16] Michael Kaess et al. “ISAM2: Incremental smoothing
and mapping using the Bayes tree”. In: The Inter-
national Journal of Robotics Research 31.2 (2012),
pp. 216–235.

[17] Kamak Ebadi et al. “Present and Future of SLAM
in Extreme Underground Environments”. In: IEEE
Transactions on Robotics (T-RO) (Aug. 2022).

[18] R. Arandjelović et al. “NetVLAD: CNN architecture
for weakly supervised place recognition”. In: IEEE
Conference on Computer Vision and Pattern Recogni-
tion. 2016.

[19] Giseop Kim, Sunwook Choi, and Ayoung Kim. “Scan
Context++: Structural Place Recognition Robust to
Rotation and Lateral Variations in Urban Environ-
ments”. In: IEEE Transactions on Robotics (2021).
Accepted. To appear.

[20] Frank Dellaert et al. “Monte Carlo Localization for
Mobile Robots”. In: Proceedings of (ICRA) Interna-
tional Conference on Robotics and Automation. Vol. 2.
May 1999, pp. 1322–1328.

[21] Benjamin Kuipers. “Modeling Spatial Knowledge”.
In: Cognitive Science 2.2 (Apr. 1978), pp. 129–153.

[22] R. Brooks. “Visual Map Making for a Mobile Robot”.
In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). Vol. 2. 1985, pp. 824–829.

[23] Reid Simmons and Sven Koenig. “Probabilistic Robot
Navigation in Partially Observable Environments”. In:
IJCAI. 1995.

[24] Sebastian Thrun. “Learning Metric-Topological Maps
for Indoor Mobile Robot Navigation”. In: Artificial
Intelligence 99.1 (Feb. 1998), pp. 21–71.

[25] Kurt Konolige, Eitan Marder-Eppstein, and Bhaskara
Marthi. “Navigation in Hybrid Metric-Topological

VOLUME , 19

https://arxiv.org/abs/2205.12595
https://arxiv.org/abs/2205.12595


Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

Maps”. In: 2011 IEEE International Conference on
Robotics and Automation. Shanghai, China: IEEE,
May 2011, pp. 3041–3047.

[26] Nick Hawes et al. “The STRANDS Project: Long-
Term Autonomy in Everyday Environments”. In:
IEEE Robotics & Automation Magazine 24.3 (Sept.
2017), pp. 146–156.

[27] Friedrich Fraundorfer, Christopher Engels, and David
Nister. “Topological Mapping, Localization and Nav-
igation Using Image Collections”. In: 2007 IEEE/RSJ
International Conference on Intelligent Robots and
Systems. San Diego, CA, USA: IEEE, Oct. 2007,
pp. 3872–3877.

[28] Rohan Paul and Paul Newman. “FAB-MAP 3D: Topo-
logical Mapping with Spatial and Visual Appearance”.
In: 2010 IEEE International Conference on Robotics
and Automation. Anchorage, AK: IEEE, May 2010,
pp. 2649–2656.

[29] Ioannis Kostavelis and Antonios Gasteratos. “Seman-
tic Mapping for Mobile Robotics Tasks: A Survey”.
In: Robotics and Autonomous Systems 66 (Apr. 2015),
pp. 86–103.

[30] Emilio Garcia-Fidalgo and Alberto Ortiz. “Vision-
Based Topological Mapping and Localization Meth-
ods: A Survey”. In: Robotics and Autonomous Systems
64 (Feb. 2015), pp. 1–20.

[31] Lars Kunze et al. “Searching Objects in Large-
Scale Indoor Environments: A Decision-Theoretic
Approach”. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA). St Paul, MN, USA, May 2012,
pp. 4385–4390.

[32] Lenka Mudrova, Bruno Lacerda, and Nick Hawes.
“An Integrated Control Framework for Long-Term
Autonomy in Mobile Service Robots”. In: European
Conference on Mobile Robotics (ECMR). Sept. 2015,
pp. 1–6.

[33] Bruno Lacerda et al. “Probabilistic Planning with
Formal Performance Guarantees for Mobile Service
Robots”. In: Intl. J. of Robot. Res. 38.9 (Aug. 2019),
pp. 1098–1123.

[34] Gautham Das et al. “A Unified Topological Repre-
sentation for Robotic Fleets in Agricultural Applica-
tions”. In: (Sept. 2023).

[35] Zuoyue Li, Jan Dirk Wegner, and Aurelien Lucchi.
“Topological Map Extraction From Overhead Im-
ages”. In: Intl. Conf. on Computer Vision (ICCV).
IEEE, Oct. 2019, pp. 1715–1724.

[36] Sebastian Thrun and Arno Bücken. “Integrating Grid-
Based and Topological Maps for Mobile Robot Nav-
igation”. In: National Conf. on Artificial Intelligence.
1996.

[37] Z. Zivkovic, B. Bakker, and B. Krose. “Hierarchical
Map Building and Planning Based on Graph Partition-
ing”. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). 2006, pp. 803–809.

[38] Fabian Blochliger et al. “Topomap: Topological Map-
ping and Navigation Based on Visual SLAM Maps”.
In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). May 2018, pp. 3818–3825.

[39] Lars Kunze et al. “Artificial Intelligence for Long-
Term Robot Autonomy: A Survey”. In: IEEE Robotics
and Automation Letters 3.4 (Oct. 2018), pp. 4023–
4030.

[40] Wolfram Burgard et al. “Experiences with an In-
teractive Museum Tour-Guide Robot”. In: Artificial
Intelligence (1999).

[41] I.R. Nourbakhsh, C. Kunz, and T. Willeke. “The
Mobot Museum Robot Installations: A Five Year
Experiment”. In: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS). Vol. 3. Las Vegas, NV,
USA: IEEE, 2003, pp. 3636–3641.

[42] Shengye Wang and Henrik I. Christensen. “TritonBot:
First Lessons Learned from Deployment of a Long-
Term Autonomy Tour Guide Robot”. In: IEEE Intl.
Sym. on Robot and Human Interactive Communication
(RO-MAN). Nanjing: IEEE, Aug. 2018, pp. 158–165.

[43] Francesco Del Duchetto, Paul Baxter, and Marc Han-
heide. “Lindsey the Tour Guide Robot - Usage Pat-
terns in a Museum Long-Term Deployment”. In: IEEE
Intl. Sym. on Robot and Human Interactive Communi-
cation (RO-MAN). New Delhi, India: IEEE, Oct. 2019,
pp. 1–8.

[44] Marvin Stuede et al. “Sobi: An Interactive Social
Service Robot for Long-Term Autonomy in Open
Environments”. In: 2021 European Conference on
Mobile Robots (ECMR). Bonn, Germany: IEEE, Aug.
2021, pp. 1–8.

[45] Joydeep Biswas and Manuela Veloso. “The 1,000-Km
Challenge: Insights and Quantitative and Qualitative
Results”. In: IEEE Intelligent Systems 31.3 (May
2016), pp. 86–96.

[46] Manuela Veloso et al. “CoBots: Robust Symbiotic Au-
tonomous Mobile Service Robots”. In: International
Joint Conference on Artificial Intelligence. 2015.

[47] Wim Meeussen et al. “Long Term Autonomy in Office
Environments”. In: ALONE Workshop, In Proceedings
of Robotics: Science and Systems (RSS’11). 2011.

[48] Shengye Wang et al. “Robotic Reliability Engineer-
ing: Experience from Long-Term TritonBot Develop-
ment”. In: Field and Service Robotics. Ed. by Genya
Ishigami and Kazuya Yoshida. Vol. 16. Singapore:
Springer Singapore, 2021, pp. 45–58.

[49] Matteo Iovino et al. “A Survey of Behavior Trees
in Robotics and AI”. In: Robotics and Autonomous
Systems 154 (Aug. 2022), p. 104096.

[50] Michael Cashmore et al. “ROSPlan: Planning in the
Robot Operating System”. In: Proceedings of the
International Conference on Automated Planning and
Scheduling 25 (Apr. 2015), pp. 333–341.

20 VOLUME ,



<Society logo(s) and publication title will appear here.>

[51] Ali Agha et al. “NeBula: TEAM CoSTAR’s Robotic
Autonomy Solution That Won Phase II of DARPA
Subterranean Challenge”. In: Field Robotics 2 (July
2022), pp. 1432–1506.

[52] Marco Tranzatto et al. “CERBERUS: Autonomous
Legged and Aerial Robotic Exploration in the Tunnel
and Urban Circuits of the DARPA Subterranean Chal-
lenge”. In: Field Robotics 2 (Mar. 2022), pp. 274–324.

[53] Sebastian Scherer et al. “Resilient and Modular Sub-
terranean Exploration with a Team of Roving and
Flying Robots”. In: Field Robotics 2 (May 2022),
pp. 678–734.

[54] Harel Biggie et al. “Flexible Supervised Autonomy for
Exploration in Subterranean Environments”. In: Field
Robotics 3 (Jan. 2023), pp. 125–189.

[55] Haedam Oh et al. “Evaluation and Deployment of
LiDAR-based Place Recognition in Dense Forests”.
In: IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS). Abu Dhabi, UAE, 2024.

[56] Rowan Border et al. “Osprey: Multi-Session Au-
tonomous Aerial Mapping with LiDAR-based SLAM
and Next Best View Planning”. In: IEEE Trans. Field
Robotics 1 (July 2024), pp. 113–130.

[57] François Pomerleau et al. “Comparing ICP Variants on
Real-World Data Sets”. In: Autonomous Robots 34.3
(2013), pp. 133–148.

[58] F Dellaert and M Kaess. “Factor Graphs for Robot
Perception”. In: Foundations and Trends in Robotics
6 (2017), pp. 1–139.

[59] Giseop Kim and Ayoung Kim. “Scan Context: Ego-
centric Spatial Descriptor for Place Recognition
Within 3D Point Cloud Map”. In: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). 2018,
pp. 4802–4809.

[60] Kavisha Vidanapathirana et al. “LoGG3D-Net: Lo-
cally guided global descriptor learning for 3D place
recognition”. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA). 2022.

[61] Joseph Rowell, Lintong Zhang, and Maurice Fallon.
“LiSTA: Geometric Object-Based Change Detection
in Cluttered Environments”. In: IEEE Intl. Conf. on
Robotics and Automation (ICRA). 2024.

[62] Lintong Zhang et al. “InstaLoc: One-shot Global Lidar
Localisation in Indoor Environments through Instance
Learning”. In: Robotics: Science and Systems (RSS).
2023.

[63] Alex Stephens et al. “Planning under Uncertainty
for Safe Robot Exploration Using Gaussian Process
Prediction”. In: Autonomous Robots 48.7 (Oct. 2024),
p. 18.

[64] César Rego et al. “Traveling Salesman Problem
Heuristics: Leading Methods, Implementations and
Latest Advances”. In: European Journal of Opera-
tional Research 211.3 (June 2011), pp. 427–441.

[65] Joern Rehder et al. “Extending kalibr: Calibrating the
extrinsics of multiple IMUs and of individual axes”.
In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). 2016, pp. 4304–4311.

[66] Lanke Frank Tarimo Fu, Nived Chebrolu, and Mau-
rice Fallon. “Extrinsic Calibration of Camera to LI-
DAR Using a Differentiable Checkerboard Model”.
In: IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS). 2023, pp. 1825–1831.

[67] Ethan Rublee et al. “ORB: An Efficient Alternative to
SIFT or SURF”. In: 2011 International Conference
on Computer Vision. Nov. 2011, pp. 2564–2571.

[68] Matı́as Mattamala et al. “Deploying Autonomous
Legged Robots in Forests — System, Lessons, and
Challenges Ahead”. In: IEEE Trans. Field Robotics
(Oct. 2024). Submitted.

[69] Matı́as Mattamala, Nived Chebrolu, and Maurice F.
Fallon. “An Efficient Locally Reactive Controller for
Safe Navigation in Visual Teach and Repeat Mis-
sions”. In: IEEE Robot. Autom. Lett. (RA-L) 7.2
(2022), pp. 2353–2360.

[70] Eitan Marder-Eppstein et al. “The Office Marathon:
Robust Navigation in an Indoor Office Environment”.
In: IEEE Intl. Conf. on Robotics and Automation
(ICRA). 2010, pp. 300–307.

[71] Julius Jankowski et al. “VP-STO: Via-Point-based
Stochastic Trajectory Optimization for Reactive Robot
Behavior”. In: 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2023,
pp. 10125–10131.

[72] Matthew Gadd et al. Watching Grass Grow: Long-
term Visual Navigation and Mission Planning for
Autonomous Biodiversity Monitoring. 2024. arXiv:
2404.10446.

[73] Chris Linegar, Winston Churchill, and Paul Newman.
“Work smart, not hard: Recalling relevant experiences
for vast-scale but time-constrained localisation”. In:
2015 IEEE International conference on robotics and
automation (ICRA). IEEE. 2015, pp. 90–97.

[74] J. Jackson et al. “Experimental drought reduces the
productivity and stability of a calcareous grassland”.
In: Journal of Ecology (Feb. 2024).

[75] John Jackson et al. “Short-range multispectral imag-
ing is an inexpensive, fast, and accurate approach
to estimate biodiversity in a temperate calcareous
grassland”. In: Ecology and Evolution 12.12 (Dec.
2022).

[76] MR Balme et al. “The 2016 UK Space Agency
Mars Utah Rover Field Investigation (MURFI)”. In:
Planetary and Space Science 165 (2019), pp. 31–56.

[77] Edward Rosten and Tom Drummond. “Machine learn-
ing for high-speed corner detection”. In: Computer
Vision–ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7-13, 2006.
Proceedings, Part I 9. Springer. 2006, pp. 430–443.

VOLUME , 21

https://arxiv.org/abs/2404.10446


Staniaszek et al.: AutoInspect : Towards Long-Term Autonomous Inspection and Monitoring

[78] Michael Calonder et al. “BRIEF: Computing a local
binary descriptor very fast”. In: IEEE transactions on
pattern analysis and machine intelligence 34.7 (2011),
pp. 1281–1298.

[79] David Nistér, Oleg Naroditsky, and James Bergen.
“Visual odometry”. In: Proceedings of the Computer
Society Conference on Computer Vision and Pattern
Recognition. 2004.

[80] Mark Cummins and Paul Newman. “FAB-MAP: Prob-
abilistic localization and mapping in the space of
appearance”. In: The International Journal of Robotics
Research 27.6 (2008), pp. 647–665.

[81] Jonas Frey et al. “Fast Traversability Estimation for
Wild Visual Navigation”. In: Robotics: Science and
Systems XIX. Robotics: Science and Systems Founda-
tion, July 2023.

[82] Michal Staniaszek et al. “Difficulty-Aware Time-
Bounded Planning Under Uncertainty for Large-Scale
Robot Missions”. In: 2023 European Conference on
Mobile Robots (ECMR). 2023, pp. 1–7.

[83] Nick Hawes, Michael Zillich, and Patric Jensfelt.
“Lessons Learnt from Scenario-Based Integration”.
In: Cognitive Systems. Ed. by Henrik I. Christensen,
Geert-Jan M. Kruijff, and Jeremy L. Wyatt. Vol. 8.
Cognitive Systems Monographs. Springer Berlin Hei-
delberg, Apr. 2010, pp. 423–438.

[84] Pat Marion et al. “Director: A User Interface Designed
for Robot Operation with Shared Autonomy”. In:
Journal of Field Robotics 34.2 (2017), pp. 262–280.
eprint: https : / / onlinelibrary.wiley. com/doi /pdf /10 .
1002/rob.21681.

22 VOLUME ,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21681
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21681

