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Abstract: Industrial applications involving hazardous materials often require inspection within
confined interiors, posing significant engineering challenges due to restricted access
and complex geometries. Long-reach mechatronic systems are essential for these
tasks, yet their kinematic design is typically ad hoc. This paper presents a task-driven
design synthesis framework to address this gap, focusing on the optimization of
manipulators for full-surface inspection inside the vacuum vessel of a nuclear fusion
reactor.
To facilitate 3D surface service for use in the kinematic optimization pipeline, a
methodology is introduced that employs unsupervised surface clustering of CAD-
derived geometry. This clustering extracts a compact set of reachability targets while
maintaining coverage. Additionally, a lightweight method for 2D plane projection of the
clusters enables fast collision pre-checks. Using this reduced task set, a multi-objective
NSGA-II simultaneously optimizes kinematic type and dimensions, minimizing total link
length and static joint torques, while ensuring position-and-orientation reachability, joint
limits, and collision constraints.
A representative vessel case study demonstrates that the framework achieves
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collision-free, full-surface coverage through a narrow access port and identifies
consistent designs with fewer test points. Surface clustering-based reduction lowers
computational costs by up to 60% relative to finer clustering, while maintaining task-
space coverage quality. The results demonstrate a systematic and computationally
efficient approach to the early-stage design of long-reach manipulators for access-
limited environments. Although developed for fusion-vessel inspection, the approach is
versatile and can adapt to changes in geometry, constraints, and inspection
requirements.
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Highlights

• Task-based kinematic topology optimisation for fusion-vessel inspection
robots.

• Long-reach manipulator kinematic optimisation pipeline for confined
task space.

• Unsupervised surface clustering of dense vessel geometry reduces task
dimensionality.

• Bridges task abstraction and design for systematic, efficient kinematic
synthesis.

• Collision-free coverage; adaptable to vessel shape and evolving opera-
tional needs.
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Abstract

Industrial applications involving hazardous materials often require inspec-
tion within confined interiors, posing significant engineering challenges due to
restricted access and complex geometries. Long-reach mechatronic systems
are essential for these tasks, yet their kinematic design is typically ad hoc.
This paper presents a task-driven design synthesis framework to address this
gap, focusing on the optimization of manipulators for full-surface inspection
inside the vacuum vessel of a nuclear fusion reactor.

To facilitate 3D surface service for use in the kinematic optimization
pipeline, a methodology is introduced that employs unsupervised surface
clustering of CAD-derived geometry. This clustering extracts a compact set
of reachability targets while maintaining coverage. Additionally, a lightweight
method for 2D plane projection of the clusters enables fast collision pre-
checks. Using this reduced task set, a multi-objective NSGA-II simultane-
ously optimizes kinematic type and dimensions, minimizing total link length
and static joint torques, while ensuring position-and-orientation reachability,
joint limits, and collision constraints.

A representative vessel case study demonstrates that the framework achieves
collision-free, full-surface coverage through a narrow access port and identi-
fies consistent designs with fewer test points. Surface clustering-based re-
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duction lowers computational costs by up to 60% relative to finer clustering,
while maintaining task-space coverage quality. The results demonstrate a
systematic and computationally efficient approach to the early-stage design
of long-reach manipulators for access-limited environments. Although devel-
oped for fusion-vessel inspection, the approach is versatile and can adapt to
changes in geometry, constraints, and inspection requirements.

Keywords: Kinematic design optimization, Long-reach manipulators, Task
Space Clustering, Confined-space inspection, Nuclear fusion maintenance

1. INTRODUCTION

Engineering applications for inspection and maintenance of interior sur-
faces in large, confined spaces, such as industrial tanks and vessels with
restricted access, pose significant challenges, especially due to hazardous en-
vironments. Mechatronic systems, commonly robotic arms, have been widely
utilized and developed in industrial practice, as highlighted in [1], with similar
challenges related to confined and hazardous environments. Among various
service applications in the manufacturing, transportation, and nuclear sectors
(see recent advancements in [2, 3, 4] respectively), the fusion reactor vessels
are one of the most challenging confined environments due to their limited ac-
cess ports, complex geometries, and collision-free reachability requirements,
all while maintaining the generality of design challenges and solutions.

During the operation of a fusion power plant, plasma is confined within
a toroidal vacuum vessel (VV) by strong magnetic fields [5]. Plasma-facing
components are exposed to high levels of radiation and high temperatures.
These conditions result in the activation and damage of materials and compo-
nents, necessitating a planned maintenance schedule. Routine maintenance
must be carried out as efficiently as possible to maximize plant availability
[6]. However, human entry into a fusion VV is prohibited due to hazards
such as radiation. Consequently, as in other confined industrial environ-
ments containing hazardous materials (e.g., oil refineries, chemical plants),
robotic systems are indispensable for performing inspection and maintenance
within the VV, a highly constrained space with limited access. Remote ser-
vice manipulators operating in the VV are exposed to high radiation, high
temperatures, and strong magnetic fields, rendering conventional architec-
tures unsuitable. In addition, the VV geometry, with narrow access ports
and large workspaces, necessitates long-reach, slender manipulators. Such
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designs face significant mechanical challenges, including structural compli-
ance, large joint torque, and reduced stiffness. Representative systems such
as the Super Dragon [7], developed for decommissioning tasks, and the Ar-
ticulated Inspection Arm (AIA) [8] developed by CEA, exemplify the need
for bespoke mechatronics and system designs tailored to these constraints.

Despite extensive research on task-based kinematic optimization, includ-
ing approaches that combine dimensional synthesis, multi-objective opti-
mization, and advanced computational methods, current literature has not
addressed the unique requirements of long-reach, slender manipulators oper-
ating in confined industrial environments, such as fusion reactors. In [9], a
task-oriented dimensional synthesis method is proposed for robotic manip-
ulators with limited mobility, optimizing both geometry and joint variables
to minimize pose errors in constrained environments. The study also com-
bines the path planning algorithm and dimensional synthesis to optimize
both robot geometry and pose for a set of points. The method was validated
on a 4-DoF system for laser operations in aero engines and reported an im-
proved performance in narrow spaces compared to conventional approaches.
For another task-oriented case study in a confined environment, [10] devel-
oped a steel arch looping manipulator designed for tunnel boring machines.
Their method decomposes the manipulator design into modular components
using an exponential product model to optimize kinematic and dynamic per-
formance. In [11], a framework is developed for the combined structural
and dimensional synthesis of parallel robots, focusing on cryogenic handling
tasks. Using multi-objective particle swarm optimization (PSO), they opti-
mized various parallel robot structures’ kinematic and dynamic parameters
to minimize actuator force and enhance performance in constrained environ-
ments.

Recent research in robotic design optimization has explored diverse strate-
gies to improve manipulator performance, adaptability, and workspace. In
[12], authors demonstrate how modular robotic architectures can be opti-
mized for automation tasks, highlighting the value of flexible structures that
can be tailored to specific operational requirements. In [13], novel local and
global performance indices are introduced for workspace optimization, pro-
viding quantitative tools to evaluate and improve manipulator reachability
and efficiency. In [14], the authors present a biologically inspired approach to
design and optimize a monopod robot, emphasizing task-specific mechanical
innovations that can improve dynamic performance. Similarly, [15] investi-
gates multi-objective optimization for a hybrid robotic machine tool, inte-
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grating performance mapping with trade-off analysis to balance competing
design criteria.

In [16], a unified approach is proposed to combine structural and di-
mensional synthesis, optimizing manipulators with six degrees of freedom
(DoF). Their approach incorporates particle swarm optimization to achieve
task-specific configurations, demonstrating improved kinematic performance
indices during pick-and-place tasks. The use of computational tools has sig-
nificantly advanced robotic design optimization. For instance, [17] introduces
a method that utilizes modular components and a heuristic-guided search to
create robots capable of tracking specified motion trajectories.

Although optimizing with a single objective function while combining
multiple objectives with pre-assigned weights is possible, multi-objective op-
timization frameworks have been used to balance competing design goals.
In [18], black-box optimization of multiple objectives is adopted to minimize
the end effector error while achieving task-specific configurations for assistive
robots. In [19], a multi-objective optimization approach is proposed to de-
sign a shift manipulator for robot drivers, incorporating both kinematic and
dynamic performance evaluations. Their method employs a Simulated An-
nealing Particle Swarm Algorithm (SA-PSA) to optimize the manipulator’s
design variables.

Using a kinematic redundancy resolution technique, a multi-objective de-
sign optimization approach is proposed in [20] for robotic arms. By intro-
ducing virtual joints, they transformed a non-redundant manipulator into
a kinematically redundant one, enabling redundancy resolution methods to
optimize structural parameters. As a result, the optimization goal is to deter-
mine the optimum values of the virtual joints. Their study demonstrates the
effectiveness of this method in enhancing manipulability and minimizing con-
dition numbers for surgical robotic applications. In another multi-objective
optimization study [21], deep reinforcement learning is used to optimize mod-
ular manipulator designs, allowing efficient search and performance evalua-
tion in a high-dimensional design space.

To illustrate how different objective function evaluations impact optimiza-
tion, [22] presents a methodology for the optimal design of assistive robots
comparing three different torque indices. Their approach aimed to minimize
joint torque consumption while maximizing the robot’s workspace. Using
a genetic algorithm, they optimized a 6-DoF wheelchair-mounted robot and
demonstrated that each torque index yields distinct design trade-offs between
torque efficiency and workspace coverage.
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In the context of robot design optimization, the kinematic design of ar-
ticulated arms for inspection tasks in power plants has not been extensively
studied using task-based approaches. Only a few works address applications
in nuclear environments, particularly decommissioning. For example, in [23],
a mobile platform equipped with two seven-DoF arms is developed, deriving
both forward and inverse kinematics to support decommissioning operations
in nuclear facilities.

Similarly, in [24], a cable-driven hyper-redundant manipulator (SLIM)
is designed to navigate confined industrial environments, aiming to balance
reachability and dexterity for inspection task planning. Their study outlines
the requirements that guided the design, the main mechanical and electronic
subsystems, the control architecture, and results from preliminary experi-
ments with a physical prototype. The 15-DoF robot is capable of positioning
its tool centre point within a two-dimensional Cartesian workspace and is
designed to operate in harsh environments and high temperatures, achieving
a maximum deployment length of approximately 4.8 m.

In [25] the theoretical calculations, kinematic analyses, and structural in-
tegrity evaluations for the in-vessel inspection system (IVIS) are presented.
The study also explores strategies for design optimization based on these
findings and conducts a feasibility assessment to evaluate the suitability of
selected technologies for operation under vacuum and high-temperature con-
ditions.

From this analysis, it is clear that kinematic optimization has been ex-
tensively investigated in robotics, encompassing dimensional synthesis, mul-
tiobjective optimization, and advanced computational methods. However,
existing research rarely addresses the distinctive requirements of confined
environments, where both reachability and orientation relative to complex
surfaces are critical. Most studies assume a fixed set of task poses rather than
deriving a compact yet representative task set that guarantees full task-space
coverage.

To address this research gap, a new framework is proposed to extract
dense task points, comprising positions and surface normals, directly from the
vessel geometry. A surface-clustering procedure is then applied to condense
these into a reduced set of representative poses, thereby bridging task ab-
straction and manipulator design while reducing computational cost. Based
on this reduced task set, a kinematic optimization process determines the
manipulator topology and geometry [26], with the objectives of minimizing
the number of degrees of freedom, total manipulator length, and static joint
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torques, while ensuring collision-free operation. The framework is inherently
adaptable and can accommodate variations in vessel geometry, operational
constraints, or evolving inspection and maintenance requirements.

The structure of this study is outlined as follows. Section 2 introduces the
details of the use case, workspace environment details, and constraints of the
kinematic optimization. Section 3 presents the details of the surface cluster-
ing, reachability point selection, optimization algorithm, including objective
functions, multi-objective optimization, and algorithm steps. The results are
presented in Section 4, in which the best solutions are presented along with
the Parent front approach used to obtain the best kinematics configuration.
Finally, Section 5 presents conclusions and future work.

2. Problem Statement and Design Constraints

The problem can be summarised as the design of an articulated mecha-
tronic system capable of operating within industrial confinements through
constrained access ports. Its kinematic chain must enable the end effector
to reach designated operational positions distributed across the interior sur-
face of the confinement. This study adopts the representative environment
of the VV of a nuclear fusion reactor as a case study to illustrate the design
problem, without loss of generality. Specifically, the design task is defined
as identifying an optimized kinematic chain for an articulated robotic arm
performing visual inspection within the VV. The robot is intended to inspect
the inner surface of the vessel for potential defects after reactor shutdown.
Parameters related to visual inspection, such as viewing distance and angle,
are treated as fixed specifications rather than optimization variables, allowing
flexibility across different use cases and sensor technologies. This assump-
tion is generally valid, because such parameters are typically dictated by the
service instrument’s design requirements.

Fig. 1 shows the toroidal geometry of the simplified VV considered. The
minor radius, r1, of the VV is set to 4.60 m, the centerline radius, r2, is 6.80
m, and the major radius, r3, is 9 m. The total maximum height of the cross
section, h, is 8.47 m.

The deployment port, through which the manipulator is inserted inside
the VV, is highlighted with a red circle in Fig. 1 and has a radius of 300 mm.
When not in use, the robot is stored in a cask outside the deployment port
and can access the reactors by actuating a first prismatic joint. To prevent
collision with the environment, the revolute joints can be actuated only when
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Figure 1: Simplified geometry of the VV (h: height, r1 minor radius, r2 center line, r3
major radius)

0.3 m inside the VV. If any joint remains within the cask, its movement is
restricted, and the robot will attempt to reach a position with only the DoF
inside the VV.

Fig. 2 shows reachability test points (green markers) and their associated
surface normals (red arrows) on the VV first wall, obtained by intersecting the
geometry with a section plane. For this case, a multi-DOF robot is visualized
inside the VV. The first link (black) acts as a prismatic joint that positions
the robot within the vessel. The blue links denote the link dimensions to
be optimized, while the purple joints represent the revolute joints treated as
kinematic optimization variables.

The problem is to find optimized link lengths and robot joint types to
align the tip of the robot with the selected reachability test points and,
consequently, design a robot capable of inspecting the surface of the vessel.
However, such an optimization would be very costly if all the points on the
surface are selected as reachability test points in the optimization process.
The challenge of this study is to identify a limited number of reachability
test points that ensure sufficient coverage without creating a prohibitively
expensive algorithm to optimize the robot’s kinematics.

For application-specific optimization of the link length and joint type
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Figure 2: A cross-section of the 3D geometry defined by a blue plane, showing reacha-
bility test points (green markers) with normals (red arrows) on the surface. The multi-
DOF robot within the VV features a black prismatic joint for positioning, blue links for
optimized dimensions, and purple revolute joints for kinematic parameter optimization,
illustrated in 3D top and side views.

synthesis, the following constraints are considered:

First Prismatic Joint. The first prismatic joint allows the manipulator to
be deployed from the storage cask into the VV. The joint can extend from a
position 2.7 m inside the cask, i.e. outside the VV, up to the center line of the
VV torus (indicated by the yellow dashed line in Fig. 1), reaching 2.2 m inside
the vessel from the entrance port, for a total maximum travel of 4.9 m. Such
prismatic mechanisms are commonly adopted to provide sufficient insertion
depth for service systems operating within confined industrial environments.

Degrees of Freedom and Joint Types. To ensure reachability in both position
and orientation, a minimum of 6 DoF is considered with additional redun-
dant DoFs potentially added during the optimization of the kinematic enu-
meration (nDoF ) to enable avoidance of self-collision and collision with the
environment. To simplify the actuation, the robot is designed to have only
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revolute joints configured with yaw and pitch, following the first prismatic
joint. Throughout the paper, the configurations of the revolute joints will be
identified using binary codes; yaw joints will be labeled 1 and pitch joints
0. For example, a configuration code of 1010 for a 5-DoF robot indicates a
sequence of yaw, pitch, yaw, pitch joints following a prismatic joint.

Link Lengths and Joint Limits. The link length li (i = 1, 2, ., nDoF ) is con-
strained in the range 0.3 m ≤ li ≤ 1.5 m for ease of deployment and ma-
neuverability inside the VV. Likewise, the rotation range for the revolute
joints θi is constrained in the range −90◦ ≤ θi ≤ 90◦. In addition, to prevent
collision with the entrance port, the revolute joints can initiate motion only
after being 0.3 m inside the vessel.

Static Torque Calculation. To calculate the required joint torques under
static conditions for a given configuration of the manipulator, a payload of
10 kg at the tip of the last link is considered. This value, as shown in other
studies [7, 8], is an estimate in excess of the majority of the end-effector tools,
e.g, cameras, used to inspect and maintain fusion reactors. The gravitational
contribution of each link is modelled as a linear function of its length, so that
longer links will have higher static torque requirements within the optimiza-
tion. For reference, in a similar system, [27] reports each section (1.2 m in
length) having a mass of 6 kg. During optimization, link lengths are updated
dynamically, and their corresponding masses are adjusted accordingly.

3. Methodology

The initial part of the methodology presents a new pipeline that reduces
the number of reachability test points in kinematic optimization, while pre-
serving the geometric and directional variety of the surface to be examined.
This approach aims to accelerate optimization without sacrificing coverage
quality, especially in restricted geometries such as the interior of a nuclear
fusion vessel. Then, a kinematic optimisation with two objectives, the total
link length and the sum of joint torque requirements in static conditions, is
introduced to ensure the robot can reach all the target points in position
and orientation. For this, the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [28] is employed, which is a widely used multi-objective optimiza-
tion algorithm that utilizes a crowding distance mechanism to maintain a
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diverse set of Pareto-optimal solutions. This method efficiently balances ex-
ploration by preserving solution diversity while converging toward the Pareto
front.

3.1. Surface Clustering and Reachability Point Selection
Evaluating reachability against every discretized surface point is compu-

tationally prohibitive for kinematic optimization in confined geometries. The
approach consists of three integrated stages: (i) clustering the surface using a
hybrid metric combining position, surface orientation, and distance-to-port;
(ii) selecting a globally aware but compact set of representative reachability
points per cluster via a diversity-optimized scoring; and (iii) building the
PCA-based 2D boundary hulls for fast collision screening. This reduces the
number of test points while maintaining coverage of geometric and directional
variation relevant to optimization.

The procedure begins with the extraction of points from the mesh file
generated from the CAD model. Each extracted point is represented by the
following data:

{(pi,ni, di)}Ni=1 (1)

where pi ∈ R3 are Cartesian coordinates, ni ∈ R3 are unit normals, and di ∈
R is the signed distance to the manipulator entrance port. For a case-specific
demonstration, the export mesh file and the surface normals directed towards
the operation space of the vessel are extracted from the model represented
in Fig. 1.

3.1.1. Hybrid k-means Surface Clustering
Clustering is a fundamental unsupervised learning technique used to par-

tition data into groups based on feature similarity. A popular approach is k-
means clustering, which aims to minimize the within-cluster sum of squared
distances (variance) to cluster centroids. This method is widely employed
because of its relative computational efficiency and conceptual simplicity,
especially in large-scale applications like segmentation and vector quanti-
zation [29]. Standard k-means uses a unimodal distance metric (typically
Euclidean), which limits its applicability when data exhibit multiple features
that distinguish them or when similarity cannot be captured by spatial dis-
tances alone. In such cases, a hybrid distance metric that combines multiple
features can enable more semantically meaningful clusters.
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In the methodology, the distance metric is defined as:

∆hyb(i, j) = wpos∆pos(i, j) + wang∆ang(i, j) + wdist∆dist(i, j),

where ∆pos is the Euclidean position distance that groups spatially ad-
jacent regions (curvature/extension), ∆ang accounts for the normal vector
angular difference which groups similarly oriented patches (tooling/view rel-
evance), and ∆dist refers to differences in signed distance to a reference point
which emphasizes accessibility from the entry port with a hybrid distance
that balances spatial proximity, local orientation, and accessibility. These
terms are defined as follows:

∆pos(i, j) = ∥pi − pj∥2, (2)
∆ang(i, j) = arccos(n̂⊤

i n̂j) (3)
∆dist(i, j) = |di − dj|, (4)

(5)

where wpos, wang, wdist are empirically chosen weights. Clustering is ini-
tialised via k − means + + [30] and updated iteratively using the hybrid
distance metric. This hybrid metric ensures that clusters are coherent in
terms of both spatial proximity and surface orientation, while also grouping
points with similar accessibility from the robot base. This weighted combi-
nation enables clustering that balances spatial, orientational, and functional
relevance, aligning clusters more closely with the kinematic task context. In-
stead of relying solely on aggregated inertia, the surface normal is encoded
with similarity and distance-to-port constraints, thus leveraging rich geomet-
ric and task-specific information in the clustering process. In the k-means
procedure, each point is assigned to the nearest cluster using the hybrid dis-
tance ∆hyb. The centroid of each cluster Cm is then updated iteratively based
on the combined feature vector [p̄m n̄m d̄m].

Fig. 3 shows the outcome of the proposed hybrid k-means surface cluster-
ing for three different numbers of clusters. Each color represents a distinct
cluster derived from the CAD-based task surface. For each cluster, a local
Principal Component Analysis (PCA) is performed on the point coordinates
to identify its dominant tangent directions. Specifically, PCA decomposes
the local point distribution into orthogonal components: the first and sec-
ond principal components, span the best-fit tangent plane, while the third
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(a) k = 8

(c) k = 32

(b) k = 16

Figure 3: Hybrid clustering results for (a) k = 8, (b) k = 16, and (c) k = 32 . Colors
denote clusters. Local PCA axes per cluster are overlaid to indicate dominant tangent
directions used later for boundary-hull construction.

component corresponds to the surface normal direction (v1, v2, v3). The
local PCA axes are overlaid as line segments in the plots to visualise these
dominant directions, which are later used to construct the boundart hulls for
collision and reachability checks.

3.1.2. Globally Aware Iterative Selection from each Cluster
To ensure that the kinematic optimization is driven by a workspace repre-

sentation that is both locally accurate and globally comprehensive, a globally
aware selection strategy is applied to the clustered task-surface points. While
hybrid k-means surface clustering ensures that points within each cluster are
spatially coherent, purely local sampling can overlook coverage gaps in the
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global workspace. To address this, a selection process that evaluates candi-
date points not only by their proximity to the cluster centroid but also by
their global diversity in position is used.

After the surface clustering is completed, a fixed number of representative
points is selected from each cluster for subsequent reachability test point
selection. For each cluster, the aim is to have one center and select k test
points, ensuring radial extent, global coverage, and directional spread. To
ensure cluster diversity, a sequential adjacency-aware selection algorithm is
proposed. This approach maintains local diversity by favouring points with
distinct radial and angular properties with respect to the cluster center, while
introducing a lightweight awareness term that penalises redundancy with
recently selected test points in neighbouring clusters.

Let Cm = {pm,i}Nm
i=1 denote the set of Nm points in cluster m, and p̄m its

centroid:

p̄m =
1

Nm

Nm∑
i=1

pm,i (6)

For each point pm,i its radial distance is defined from the centroid:

rm,i = ∥pm,i − p̄m∥2 (7)

and its unit direction vector:

ûm,i =
pm,i − p̄m

rm,i

, rm,i > 0 (8)

If unit surface normals n̂m,i are available from the mesh geometry, they are
normalized and associated with each point.

The first representative point for each cluster is the medoid, selected by:

argmin
i
∥pm,i − p̄m∥2 (9)

This ensures that the local cluster center is always represented in the reach-
ability test points.

For the choice of the additional k points within each cluster, a scoring
function is created:

Sm,i = λrRm,i + λaAm,i − wpPprox(m, i) (10)

where λr and λa are the radial and angular weight terms, and wp adja-
cency weight penalty.
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Rm,i =
rm,i

r90m
, r90m = percentile90({rm,i}) (11)

Here, r90m denotes the 90th percentile of radial distances within a cluster,
which reflects the typical outer extent of each clusters.

For a candidate with direction ûm,i and already-selected local directions
{ûm,j}:

Am,i = 1−max
j

∣∣û⊤
m,iûm,j

∣∣, (12)

This term encourages wide angular separation within the same cluster. In
this iterative adjacency penalty addition, only previously processed clusters
within an adjacency window L are considered. Let Pprox denote the set
of representative points selected in the last L clusters, with positions qℓ

denoting the set of representative points already selected across the clusters
up to iteration k, ensuring global awareness during selection.

The penalties are computed as:

Pprox(m, i) = max
k

exp

[
−
(
∥pm,i − qk∥2

σd r90m

)2
]
. (13)

where σd can be used to control the decay with distance and angular differ-
ence.

Fig. 4 illustrates the reachability points obtained using the procedure
proposed for k = 8, k = 16, and k = 32 clusters. In each case, the algorithm
selects one central point (located near the cluster centroid p̄m) and selects
5 points with iterative selection from each cluster that are radially extended
and angularly diverse. For lower cluster counts (k = 8), the selected points
are more widely spaced, producing a coarse but well-distributed coverage
of the vessel surface. As k increases to 16 and 32, the point distribution
becomes denser and more locally refined, with boundary points capturing
finer geometric detail while maintaining global spread through adjacency-
aware penalisation.

3.1.3. Collision Plane Generation and Collision Checking in the VV
During the next stage, where the kinematic optimization algorithm is

run, collision checking is necessary to ensure the robot configuration can
reach the chosen points safely. To perform this efficiently, the clusters pre-
viously created are used, and the 3D points are projected onto a 2D planar
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(a) k = 8

(c) k = 32

(b) k = 16

Figure 4: Representative reachability points after globally aware selection. For each clus-
ter: one center (near p̄m) and 5 points selected with the algorithm for boundary repre-
sentation. The set is radially extended, globally spread, and angularly diverse, providing
a compact but informative test set for optimization.

representation, which enables a fast, approximate check for potential colli-
sions.

For each Cm, PCA on any pi yields an orthonormal basis (v1,v2,v3)
where (v1,v2) span the dominant tangent plane and v3 approximates the
local normal. The projected coordinates are:

ui = (pi − p̄m)
⊤v1, vi = (pi − p̄m)

⊤v2, wi = (pi − p̄m)
⊤v3. (14)

A 2D boundary hull Hm is computed from (ui, vi) to form a conservative
guard band H+

m. A joint position x ∈ R3 is mapped to:

ux = (x− p̄m)
⊤v1, vx = (x− p̄m)

⊤v2, wx = (x− p̄m)
⊤v3, (15)

In Fig. 5, a representative cluster taken from the processed VV with a
hybrid k-means surface clustering algorithm is shown alongside the plane and
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the 2D boundary projected onto the plane, which is used for reducing the
dimensionality of 3D scattered points.

Figure 5: PCA-plane and boundary generated for a representative cluster. Left: projection
of cluster points onto (v1,v2). Right: boundary Hm and outward expansion H+

m used for
fast collision screening of joint positions.

Fig. 6 shows the resulting collision surfaces generated for the VV geometry
partitioned into 16 clusters. Each cluster and its boundaries are represented
with red lines, which show the result of the algorithm to generate the reduced
surface representation of each cluster for the VV to be used for collision
detection.

An additional rule-based gate is used to check if any joint of the robot
inside the vessel is in contact or close to any 2D collision planes. For each joint
position in Euclidean space, represented with q = [qx, qy, qz], the collision of
each joint with the surface is checked with Algorithm 1.
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Figure 6: 2D Boundary generated for the k=16 Cluster case

Algorithm 1 PCA-Plane Hull Collision Check for a Joint Position
Require: Joint position q ∈ R3; cluster j data: centroid µ′

j, PCA basis
(v1,v2,v3), boundary hull H′

j of each cluster
Ensure: Collision ∈ {true, false}
1: Plane distance: d⊥ ← v⊤

3 (q− µ′
j)

2: Projection to plane: qΠ ← q− d⊥v3

3: Local 2D coords:
4: u← (qΠ − µ′

j)
⊤v1, v ← (qΠ − µ′

j)
⊤v2

5: Hull inclusion: h← InPolygon
(
(u, v), H′

j

)
6: Decision:
7: if |d⊥| < d0 ∧ h = true then
8: return true {collision}
9: else

10: return false
11: end if

3.2. Optimization Method
Two objectives, f1 and f2, are defined as the cost functions for each

candidate solution ξ ∈ P in the population:

f1 =

nDoF∑
i=1

li, (16)
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f2 =
1

m

m∑
j=1

∥τ (j)∥, (17)

where f1 represents the total link length (sum of link lengths li), f2 the
average norm of the static joint torque vector τ (j) evaluated at each config-
uration j = 1, . . . ,m, and m the number of reachability test points used in
the optimization.

The two objectives are evaluated together as the objective vector:

(f1, f2) = FF (Tj , ξ,v), (18)

where Tj ∈ R4×4 is the homogeneous transformation matrix representing the
end-effector pose for task point j, and v denotes design variables such as link
lengths and joint types.

The values of candidate solutions ξ generated by the genetic algorithm
(GA) represent the kinematic tree and are characterized by nDoF +1 param-
eters:

ξ =
[
ξ1...ξnDoF+1

]
(19)

For each candidate solution, the first nDoF parameters are subjected to the
constraint defined in equation (20), with lb representing the lower bound and
ub representing the upper bound for the link lengths, as detailed in Section 2:

lb < ξ(1,...,nDoF ) < ub (20)

The last parameter, ξnDoF+1, uses binary coding. The decimal values
ranging from 0 to 2nDoF − 1 each represent a unique configuration of the
kinematic tree, incorporating variations in yaw and pitch joints, as discussed
in Section 2. This approach enables the representation of all joint types
within the kinematic tree through a single variable.

3.3. Fitness Function Algorithm
Algorithm 2 provides a schematic overview of the optimization workflow

to calculate the cost of both objectives for each candidate solution generated
by the GA, which focuses on finding the solution for each reachability point
and computing the f1 and f2. An inverse kinematics solver (IKS) is applied
to each generated kinematic structure to test the reachability points and
to determine its feasibility for optimization. The IKS employs a weighted
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least-squares formulation to minimize task-space errors while accommodating
redundancy and complex kinematic structures. This study utilizes the solver
to optimize the robot’s joint positions while ensuring compliance with design
constraints.

The necessary optimization of kinematic enumeration is represented for
nDoF + 1 variables in vector form by (19). The IKS provides a numeri-
cal optimization-based approach to compute joint configurations within the
limits. The IKS employs a weighted least-squares formulation to minimize
task-space errors while accommodating redundancy and complex kinematic
structures. This study utilizes the solver to optimize the robot’s joint posi-
tions while ensuring compliance with design constraints. Given the desired
pose of an end-effector, the inverse kinematics solver computes the joint con-
figurations that realize the desired end-effector pose.

The fitness evaluation function FF is designed to assess the performance
of a kinematic structure by determining its ability to reach specified target
points while avoiding collisions within a predefined workspace. The algo-
rithm takes as inputs the kinematic parameters ξ, a set of target points Tj,
additional variables v related to the kinematic tree configuration, and the
geometric model Geo representing the environment.

The process begins with the initialization of the kinematic structure by
generating an n-degree-of-freedom (DoF) kinematic tree based on the pro-
vided parameters. An initial joint configuration θinit is set, and a tolerance
threshold is defined to assess the reachability accuracy. The algorithm then
iterates through each reachability test point Tj to find a feasible joint con-
figuration using an IKS. Once a solution θsol,i is obtained, the algorithm,
referred as CollCheck in 2, checks whether the forward kinematics (FK)
solution meets the predefined error tolerance. If the solution falls within the
tolerance range, the collision detection step is performed using the algorithm
introduced in section 3.1.3 to perform collision checking of each joints po-
sition in the 3D space and ensure the joint configuration does not violate
environmental constraints. The process is repeated for each joint’s position
in 3D space. In that case, the initial joint configuration is updated within
allowable joint limits, and the process is repeated until a feasible, collision-
free solution is found. The algorithm terminates the search for that target
point if no viable solution is achieved within a set number of iterations.

In cases where no valid solution is found within the workspace, the al-
gorithm introduces a randomization step to explore alternative joint con-
figurations. If no feasible solution is identified within a limited number of
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Algorithm 2 Evaluation of the Fitness Function
Require: ξ , Tj , v , Geo
Ensure: f1, f2
1: Initialization:
2: Generate nDoF kinematic tree with ξ, v
3: Set initial joint configuration θinit and reachability error tolerance
4: i = 1, ., nDoF
5: for j = 1 to np do
6: Solve inverse kinematics: θisol ← IKS(Tj, θinit)
7: if ∥Tj − FK(θisol)∥ ≤ tolerance then
8: while CollCheck(θisol,Geo) == true do
9: Update θiinit with joint limits of link exceeding the boundary

10: if no feasible solution within limited iterations then
11: break
12: end if
13: end while
14: if CollCheck(θsol,i,Geo) == false then
15: Calculate ∥τ ij∥ for jth point
16: end if
17: else
18: Attempt randomization for a limited number of steps
19: if no feasible solution within operational space then
20: break
21: end if
22: end if
23: end for
24: Calculate fitness objectives f1, f2
25: Return f1, f2
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randomization attempts, the process for that specific target point is stopped
and the configuration is discarded. When a valid, collision-free solution is
successfully identified, the fitness objectives f1 and f2 are calculated based
on the achieved kinematic performance. Finally, the algorithm returns the
computed fitness values, which are used to find the dominant solutions in the
genetic algorithm.

4. Results and Discussion

The algorithm is implemented and tested in MATLAB R2024a using the
multi-objective NSGA-II function [31], executed for a maximum of 50 gen-
erations with a population size of 70, function tolerance is set to 0.005, and
maximum stall generations is set to 5 for stopping conditions. These values
are selected based on a balance between computational efficiency and solution
quality, ensuring sufficient exploration of the search space without sacrificing
too much computational cost. The Pareto fraction is set to 0.35, provid-
ing a balanced selection of non-dominated solutions. A crossover fraction of
0.8 is applied to promote genetic diversity while maintaining a reasonable
convergence speed. As previously described, for each candidate solution, a
kinematic tree is generated, and the cost function is evaluated as detailed in
Section 3 and with constraints mentioned in Section 2.

A 6-DoF case is initially evaluated to meet the design objectives; how-
ever, no feasible solution is obtained because reachability points near the
entrance port resulted in collisions with the environment. It is concluded
that the manipulator must necessarily accommodate at least a redundant
degree of freedom to comply with the shape of the operational space and
design constraints. The redundancy also contributes to finding a solution for
any reachability point without self-collision and collision with the environ-
ment.

The optimization results for the 7 DoF case are presented in Fig. 7. In
this figure, the x-axis represents the first objective value, which is the sum of
the link lengths, while the y-axis represents the second objective, which is the
total torque requirement at all reachable points under static conditions. The
blue points indicate all candidate solutions with a valid inverse kinematic
solution under the specified constraints, while the green point represents the
Pareto front solution obtained with the GA.

In each case, the reachability points are obtained by clustering the CAD-
derived surface points and the associated normals as described in Section 2.
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(c) k = 32

Figure 7: Pareto fronts for k = 8, k = 16, and k = 32 cluster cases, showing the distribution
of feasible solutions in the (f1, f2) objective space. Red markers indicate the elbow point
solution in each case.

In each plot of Fig. 7, the elbow point (trade-off solution) is highlighted,
representing a balanced compromise between minimizing f1 and f2. This
is selected using Chebyshev scalarization method [32], in which each Pareto
solution is normalized, and the one minimizing the maximum of the two
normalized objectives is chosen [33].

In all three cases, the optimal solutions exhibit proximal placement of
yaw joints, which reduces actuator torque requirements by transferring grav-
itational loads to the manipulator structure instead of the actuators. This
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observation is consistent with the trends identified for the 7 DoF configu-
ration results, reinforcing the design principle that proximal yaw joints are
beneficial in long-reach manipulators.

In terms of computational cost, the number of clusters directly correlates
with the time per generation, as the forward and inverse kinematic checks
must be repeated for a larger set of reachability points. However, the added
task-space resolution for k = 16 and k = 32 enables more informed opti-
mization decisions, reducing the likelihood of design candidates failing to
reach certain regions. This increase is expected, as each additional cluster
adds both local search within the cluster and cross-cluster penalty evaluation
steps. While k = 32 have the most detailed representation of the vessel sur-
face due to its higher number of test points, it requires approximately 160%
more computation time than k = 8, providing improved spatial resolution at
substantially higher runtime. In contrast, k = 8 achieves consistent design
patterns at about 38% of the computational cost of k = 32. Additionally,
k = 16 requires approximately 90% more computation time than k = 8,
offering a balance between fidelity and runtime.

4.1. Comparative Results for k = 8, k = 16, and k = 32

To provide a consistent benchmark across cluster cases, the elbow-point
(trade-off) solution from each Pareto front is presented. Table 1 summarises
the elbow-point (trade-off) solutions obtained for k = 8, k = 16, and k = 32
clusters. All three elbow-point solutions converge to similar joint-types, re-
flecting a strong bias towards proximal yaw joints interleaved with distal
pitch joints. This structure supports the earlier observation that yaw joints
placed proximally reduce actuator torque demands by leveraging gravita-
tional support. Across all cases, the total manipulator length stabilises
around 5.5–5.7m, while the static torque requirement remains consistently
high (∼640–650Nm). The binary joint-type encodings show that yaw joints
(1) dominate the proximal links, with pitch joints (0) used sparingly in the
middle of the chain. The similarity of f1 and f2 across k indicates that the
optimization pipeline converges to structurally consistent designs regardless
of the cluster resolution, suggesting robustness of the methodology.

The Pareto fronts for the three clustering levels (k = 8, 16, 32) reveal a
consistent trade-off between total link length (f1) and static torque (f2). In
the k = 8 case, solutions span the sum of link lengths from approximately
5.15 m up to 6.55 m, with torque values decreasing from nearly 888 Nm to
around 486 Nm.

23



Table 1: Elbow-point (trade-off) solutions across k

k f1 (m) f2 (Nm) Joint Type (binary) Link Lengths (m)
8 5.70 642.05 1011011 1.2017 0.7887 0.5093 0.8044 0.6234 0.7692 0.9973
16 5.61 650.96 1011011 1.0346 0.5656 0.5974 0.6328 0.7389 0.8157 1.2197
32 5.52 651.52 1011101 0.8516 0.4422 0.5679 0.7770 0.5583 1.0145 1.3037

The distributions of f1 and f2 for each cluster size are shown in Fig. 8.
The box plots indicate that, while the median link lengths remain close to
5.3–5.6 m across all cluster numbers, the torque distributions are wider for
larger k, reflecting the increased difficulty of satisfying more densely sam-
pled workspace constraints. It should also be noted that each clusters have
different test points selected.

When evaluating three cluster resolutions, k = 8, 16, 32, chosen to double
the test points while systematically monitoring convergence, the aim is to
identify the smallest k that preserves pose coverage (within position/normal
tolerances) and yields a stable Pareto front. Increasing k from 8 to 16 im-
proved task-space coverage and partially refined both the elbow configura-
tion and the spread of Pareto-optimal solutions, as shown in Fig. 7. Moving
from 16 to 32 produced only marginal shifts in (f1, f2) and did not improve
reachability in infeasible regions, while incurring near-linear runtime growth.
Therefore, for the selected geometry and tolerances, k = 8 provides the
fastest scan, while k = 16 can be reserved for cases requiring exceptionally
fine surface detail and to observe the spread over a large number of test
points. On the other hand, k = 32 demonstrates that an unnecessarily dense
selection of points does not contribute to improving results while increasing
the computational cost. This result confirms that the conventional approach
of selecting a large number of uniformly sparse test points is unnecessary and
often undesired.

The Pareto fronts across the three clustering cases (k = 8, 16, 32) reveal
clear structural trends linking torque, manipulator length, and joint-type
composition.

• Low-torque, long-length solutions (f2 ≈ 166–178 Nm) consistently
require manipulators with total lengths of f1 ≈ 6.0–6.4 m. These de-
signs typically incorporate multiple consecutive yaw joints in proximal
positions, which provide greater mechanical leverage and reduce static
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Figure 8: Box plot distributions of optimization results for different numbers of clusters.
Left: total link length f1. Right: total static torque f2.

torque at the expense of a larger envelope.

• High-torque, short-length solutions (f1 ≈ 5.2 m, f2 ≳ 350 Nm)
tend to begin with a pitch joint near the base. While this improves
compactness, it increases torque requirements due to reduced ability to
counteract gravitational loads through structural leverage.

• Elbow-point (trade-off) designs for each k value fall consistently
around f1 ≈ 5.5–5.7 m and f2 ≈ 640–650 Nm. These configurations are
characterised by a prismatic insertion joint followed by alternating yaw
and pitch joints, where yaw remains dominant in the proximal portion
of the chain. This structure balances reachability and torque efficiency,
yielding compact yet mechanically feasible manipulators.

Figure 9 illustrates the solution at the elbow point for the k = 8 cluster.
In the visualisation, yaw joints are shown in yellow and pitch joints in green,
while the manipulator tip is represented by a cone indicating the field of
view. On the CAD-extracted vessel surface, the designated entrance port
is marked by a circle, through which the robot is deployed using the base
prismatic actuator.
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Figure 9: Different configurations for reachability test points of the optimized manipulator
given in 1 for k=8 .

To demonstrate that the selected elbow-point solution can cover the task
surface without colliding with the vessel, the robot configuration correspond-
ing to the k = 8 elbow point is tested for three angular cross-sections of
the vacuum vessel (0◦, 15◦, and 30◦). For each cross-section, the inverse
kinematics is solved for all associated surface points, and the resulting end-
effector poses are plotted. The tip positions are visualised with yellow cones
in Fig. 10, showing that the robot can align within tolerance limits for both
position and surface normal orientation across all tested sections.

5. Conclusion

This study presented a kinematic optimization framework for long-reach
articulated mechatronic systems, i.e., robotic manipulators, specialised for
service applications inside industry confinements through port access. The
proposed design framework is presented based on the use case of inspection
inside a fusion vacuum vessel. The core novelty lies in a hybrid surface-
clustering of CAD geometries (combining position, normal, and distance-
to-port) with a globally aware selection of a specific number of points, and
a lightweight PCA-plane projected collision checking. With these, the kine-
matic optimization pipeline with NGSA-II is introduced to ensure these com-
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Figure 10: Validation of the k = 8 clustered surface elbow-point solution. The robot
end-effector is shown for three vessel cross-sections (0◦, 15◦, 30◦). Yellow cones represent
feasible tip orientations, demonstrating collision-free coverage within position and normal
tolerances.

ponents produce compact, coverage-preserving reachability sets that signifi-
cantly reduce computational cost while maintaining task fidelity.

On these reduced reachability test points, a multi-objective NSGA-II
jointly optimizes kinematic design, minimizing total length and static torque
under reachability, orientation, joint limit, and collision constraints. Within
k = 8, 16, 32 clusters, Pareto–elbow solutions converge to total link lengths
of ∼5.3–5.7m and torque f2 of ∼640–650Nm, with consistent design trends:
yaw-dominant proximal joints lower torque, whereas pitch-first chains are
more compact but torque-costly.

The clustering results provide a practical guideline. Doubling k from
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8→16 improves coverage and refines the elbow only slightly; increasing to
k = 32 yields only marginal shifts in (f1, f2) and no new infeasible regions,
while computational costs increase accordingly. Thus, k = 16 offers a bal-
anced default for this geometry and tolerances; k = 8 is a fast coarse scan.
The clustering results provide a practical guideline. Doubling k from 8→16
improves coverage and refines the elbow only slightly; increasing to k = 32
yields only marginal shifts in (f1, f2) and no new infeasible regions, while
computational costs increase accordingly. Thus, k = 16 offers a balanced
default for this geometry and tolerances; k = 8 is a fast coarse scan.

Once Pareto outcomes stabilize with respect to k, the designer can fix
the smallest cluster count that preserves coverage and then efficiently ex-
plore kinematic constraints (e.g. changing maximum allowed link lengths,
inspection tolerances, or viewing distances) at substantially reduced compu-
tational cost.

The framework demonstrates that clustering-based task reduction facili-
tates systematic, early-stage kinematic synthesis for confined environments,
while remaining adaptable to changes in vessel geometry, constraints, or in-
spection requirements.

Future work will integrate structural deflection and actuator limits, and
explore hybrid/learning-based optimizers to further improve convergence and
robustness.
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