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Abstract

The importance of parallel magnetic field perturbations in gyrokinetic simulations of electromagnetic instabilities
and turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak
STEP is discussed. Previous studies have revealed the presence of unstable hybrid kinetic ballooning modes (KBMs) and
subdominant microtearing modes (MTMs) at binormal scales approaching the ion-Larmor radius. Crucially, it was found that
the hybrid kinetic ballooning mode requires the inclusion of parallel magnetic field perturbations for instability. Here, the extent
to which the inclusion of parallel magnetic field perturbations can be relaxed is explored through gyrokinetic simulations. In
particular, the frequently used MHD-approximation (setting the ∇B drift frequency equal to the curvature drift frequency) is
discussed and simulations explore whether this approximation is useful for modelling STEP plasmas. If it were valid for STEP,
the MHD-approximation would facilitate higher fidelity analysis using present day tools and models. It is shown that the one
implementation of the MHD-approximation can reproduce some of the linear properties of the full STEP gyrokinetic system,
but nonlinear simulations using the MHD-approximation result in a very different transport states. Unstable modes with very
long binormal wavelengths (which are stable when the MHD-approximation is used) are identified as being responsible for
this difference.

1. INTRODUCTION

Understanding and predicting turbulent transport in next-generation spherical tokamaks (STs) is critical for the
optimisation of their performance. The UK STEP programme aims to generate net electric power Pel > 100MW
from fusion [1], by developing a compact prototype power plant, STEP, based on the ST concept. The first phase
of this ambitious programme is to provide a conceptual design of a STEP prototype plant and a reference plasma
equilibrium.

Modelling turbulent transport and optimising the plasma scenario in devices such as STEP is a complex challenge
due to the higher β accessible to STs, where β = 2µ0p/B

2 is the ratio of the total plasma pressure p to the
magnetic field energy B2/(2µ0), with B the magnetic field strength and µ0 the permeability of free space. High-
β equilibria can be unstable to microinstabilities which are electromagnetic in character, such as kinetic ballooning
modes (KBMs) and microtearing modes (MTMs). These electromagnetic modes, less well understood than their
electrostatic counterparts such as ion-temperature-gradient (ITG) driven modes and trapped-electron driven modes
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(TEMs), are often not captured in the most advanced reduced core transport models and are thus difficult to model
in STEP. Fortunately, all microinstabilities share broad characteristics which are well described by local linearised
gyrokinetics provided that k⊥ρs ∼ 1 and ρ⋆s ≪ 1, where ρ⋆s is the ratio of the species thermal gyroradius ρs to a
typical equilibrium length scale a and k⊥ is the perpendicular wavelength of the instability. Thus, we can exploit
high fidelity gyrokinetic (GK) simulations to try to assess microinstability and predict the turbulent transport that
might be expected in designs proposed for conceptual reactors like STEP.

The first gyrokinetic analyses of the preferred flat-top operating point in STEP have revealed the presence of
unstable hybrid-KBMs and subdominant MTMs at binormal scales approaching the ion-Larmor radius [2, 3]. In
[3] it was shown that nonlinear gyrokinetic simulations suggest the existence of a transport steady state for a local
equilibrium at mid-radius in the STEP-EC-HD flat-top operating point if equilibrium flow shear and/or β′ (the
radial derivative of β) stabilisation are sufficient. However, it was left unclear as to whether a viable route to
accessing such a burning flat top can be found, due in part to the nature of the turbulence at lower β′ en route to
the flat top. At lower β′, and in the absence of developed equilibrium flow shear, hybrid-KBMs were found to
drive very large turbulent transport in all channels. The local gyrokinetic simulations performed in [3] found that
the hybrid-KBM can drive heat fluxes that exceed the available heating power by orders of magnitude. This state
of large transport is characterised by turbulent eddies that are highly extended radially meaning that turbulence
driven by these hybrid-KBMs may not be well described by the local gyrokinetic model.

In this paper, we concern ourselves with these hybrid-KBMs and their sensitivity to the inclusion of parallel mag-
netic field perturbations δB∥. In [2] (see also discussion in Section 2 of this paper), it was found that including
δB∥ was essential for capturing this instability. However, δB∥ physics is often simply missing from many gyroki-
netic codes and modelling tools. Instead, in gyrokinetic theory and simulations of microinstabilities, it is common
practice to neglect the parallel magnetic perturbation δB∥ and to compensate for this by modifying the magnetic
drift velocity (see Section 3.1). In this work, we will refer to this compensation as the MHD-approximation (see
e.g. [4, 5, 6]). The remainder of this work is structured as follows. We begin in Section 2 by introducing the STEP
equilibria and the associated plasma parameters (the details can be found elsewhere [2, 3]). We also demonstrate
the sensitivity of the hybrid-KBM to δB∥ and discuss the motivation for using the MHD-approximation. In Sec-
tion 3, we give a very brief review of electromagnetic δf gyrokinetics and discuss how the MHD-approximation
fits into this framework and how the approximation is implemented in gyrokinetic codes. In Section 4, we perform
linear and nonlinear gyrokinetic simulations with and without the MHD-approximation and explore to what extent
the approximation is a suitable model for STEP. Finally, we present our conclusions in Section 5.

2. THE HYBRID-KBM AND PARALLEL MAGNETIC FIELD PERTURBATIONS

Important to this current work, and to understanding the gyrokinetic simulations in [2, 3], is the hybrid nature of
the KBM identified in STEP. In particular, we are interested in the properties of this mode, identified in Section
4 of [2], which distinguish it from other KBMs described in the literature (see e.g. [7] and references therein).
Of most interest to us is that the mode requires access to δB∥ drive to be unstable. The precise meaning of this
statement, and the importance of δB∥, can be seen from numerical results using the δf gyrokinetic code GENE
[8].

2.1. LINEAR GYROKINETIC SIMULATIONS OF THE HYBRID KBM

In this work, we focus on a single equilibrium flux-surface taken from close to mid-radius (q = 3.5,Ψn = 0.49) in
a conceptual STEP flat-top operating point plasma, which we refer to as STEP-EC-HD-v5 (hereinafter STEP-EC-
HD). A Miller parameterisation [9] was used to model the local plasma equilibrium, and the shaping parameters
were fitted to the chosen surface using Pyrokinetics [10], a Python library developed to facilitate pre- and post-
processing of gyrokinetic analysis performed using a range of different GK codes. Table 1 provides the values
of various local equilibrium quantities at the flux surface examined in this paper, including magnetic shear, ŝ;
safety factor, q; normalised minor radius, ρ/a; elongation and its radial derivative, κ and κ′; triangularity and
its radial derivative, δ and δ′; the radial derivative of the Shafranov shift, ∆′; and the normalised inverse density
and temperature gradient scale lengths of species s, a/Lns and a/LTs respectively. Included also is the binormal
wavenumber kn=1

y ρD corresponding to the toroidal mode number n = 1. Our simulations evolve three species,
electrons, deuterium, and tritium and neglect entirely any impact of impurities or fast particles. The interested
reader is referred to [2, 3] for more details on the equilibrium and on the setup of the computational grids, which
are identical to those used in the aforementioned works.

Previous linear analysis shows that the hybrid-KBM is the dominant ion-scale instability on this surface, with a
subdominant MTM also found to be unstable on a subset of these binormal scales (see [2], Figure 19 and Figure
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TABLE 1. LOCAL PARAMETERS AT THE STEP MID-RADIUS FLUX SURFACE CONSIDERED IN THIS
PAPER (q = 3.5

Parameter Value Parameter Value
Ψn 0.49 ρ/a 0.64
q 3.5 ŝ 1.2
β 0.09 β′ -0.48
κ 2.56 κ′ 0.06
δ 0.29 δ′ 0.46
kn=1
y ρD 0.0047 ∆′ -0.40
a/Lne

1.03 a/Lne
1.03

a/LnD
1.06 a/LTD

1.82
a/LnT

0.99 a/LTe 1.58

20). No unstable microinstabilities are observed at the electron Larmor radius scale. The dominant hybrid-KBM
and the subdominant MTM can both be recovered physically; that is, one can recover the subdominant mode
by either forcing the parity of the perturbed distribution function in an initial value calculation or by using an
eigenvalue solver to return the unstable linear spectrum. However, importantly for our work, it was also shown
that it is possible to recover the subdominant mode simply by artificially suppressing δB∥ (thus stabilising the
hybrid-KBM).

FIG. 1. Growth rate (left) and mode frequency (right) as functions of the binormal wavenumber from linear
simulations of the dominant instability in STEP-EC-HD on a mid-radius flux surface. Simulations are shown both
with, fB = 1 (blue), and without, fB = 0 (orange), δB∥. The two simulations are otherwise identical. This figure
is adapted from [2].

Fig 1 shows the linear growth rate and frequency (normalised to the deuterium sound speed, cD =
√
Te/md,

divided by the minor radius of the last closed flux surface) as functions of the binormal wavenumber kyρD =
nρ∗Ddρ/dΨn. Simulations are shown both including, fB = 1 (blue), and neglecting, fB = 0 (orange), δB∥
fluctuations. The simulations are otherwise identical. Importantly, we see from Fig 1 that if δB∥ is artificially
excluded from calculations (this is routinely assumed in a number codes and modelling tools) then we recover the
previously subdominant MTM (note the change in frequency) as the fastest growing unstable mode in the system.
Succinctly, the hybrid-KBM is linearly stable on this surface (along with many others in the STEP flat top) without
δB∥.

2.2. THE MHD-APPROXIMATION FOR THE MAGNETIC DRIFT FREQUENCY

In gyrokinetic theory and simulations of microinstabilities, it is common to neglect the (typically destabilising)
parallel magnetic perturbation δB∥ at low β and to erase the typically stabilising pressure gradient contribution to
the ∇B drift by either removing it entirely or by correcting the ∇B drift by a term proportional to ∇p so that it is
equal in magnitude to the curvature drift and points in the same direction as the curvature drift. Indeed, this latter
treatment of the gyrokinetic drifts, hereinafter referred to as the MHD-approximation1, is the recommended setting

1Later, in Section 3.1, it will be convenient to describe two separate “MHD-approximations”, based on the two different prescriptions of
the magnetic drift velocity described above, which we will refer to as “MHD-1” and “MHD-2”.

3
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in many gyrokinetic codes when parallel magnetic perturbations are neglected. The merits, or lack thereof, of the
MHD-approximation have been discussed in different gyrokinetic simulations by various authors [11]. Whilst
proper treatment of δB∥ physics is often stressed, it should be noted that the cancellation of δB∥ and ∇p is usually
very good when calculating the growth rates of KBMs (and becomes better at longer wavelengths).

2.3. MOTIVATION FOR USING THE MHD-APPROXIMATION IN STEP

The extreme sensitivity of the hybrid-KBM mode to δB∥ poses difficulties for exploiting existing codes in mod-
elling for STEP. If valid, use of the MHD-approximation would be very attractive, for two key reasons.

Global gyrokinetic codes often neglect δB∥. Testing the potential failure of the local gyrokinetic approximation is
of high priority for the design of STEP and progress towards this goal necessitates the use of global gyrokinetic
simulations which include the effects of profile variation and provide a promising avenue for avoiding the box-
scale streamers observed in local simulations [3]. However, most global-capable codes simply do not include δB∥
at present.

Integrated modelling tools often neglect δB∥. Quasilinear turbulence models such as TGLF [12] form an integral
part of modern turbulence prediction and integrated modelling efforts, due to the rapidity with which they can
estimate turbulent transport. This is achieved by combining the properties of the linearly unstable modes with a
saturation rule, which prescribes the shape of the saturated potential spectrum of the turbulence against binormal
wavenumber. As such, these reduced models rely on both a saturation rule and accurate calculation of the linear
physics for which capturing δB∥ effects appears to be essential.

The remainder of the paper is devoted to exploring whether the MHD-approximation is appropriate for use in
STEP plasmas.

3. LINEAR ELECTROMAGNETIC GYROKINETICS AND THE MHD-APPROXIMATION

We are interested in plasmas that are well described by the gyrokinetic framework (see e.g., [13]): that is, we
are concerned with fluctuations, having characteristic frequency ω and wavenumbers k∥ and k⊥ parallel and
perpendicular to the equilibrium magnetic field direction b0 = B0/B0, that satisfy the standard gyrokinetic
ordering ω/Ωs ∼ νss′/Ωs ∼ k∥/k⊥ ∼ qsϕ/T0s ∼ δB∥/B0 ∼ δB⊥/B0 ∼ ρ/a ≡ ρ⋆,s ≪ 1, where Ωs =
qsB0/ms is the cyclotron frequency of species s with charge qs, equilibrium density and temperature n0s and
T0s, respectively, mass ms and thermal speed vths =

√
2Ts/ms, νss′ is the typical collision frequency, ρs is the

thermal Larmor radius, and a is a typical equilibrium length scale. The size of electrostatic perturbations is set by
the perturbed electrostatic potential ϕ and electromagnetic perturbations enter gyrokinetics through δB∥ and δB⊥,
the fluctuations of the magnetic field parallel and perpendicular to the equilibrium direction. Electromagnetic
effects are most conveniently described in local gyrokinetics by writing the fluctuating magnetic field δB =
∇ × (δA⊥ + δA∥b) ≃ ∇ × δA⊥ + ∇δA∥ × b, then relating its parallel component to the fluctuating vector
potential A by b · δB ≡ δB∥ ≃ b · ∇ × δA⊥.

It is convenient to write the gyrokinetic distribution function in the form fs = F0s (1− qsϕ/Ts) + gs = F0s +
δfs, δfs = −(qsϕ/Ts)F0s+gs. Here, the gyrokinetic distribution function consists of a (Maxwellian) piece F0s,
and an order ρ⋆s small perturbation δfs, with gs being the non-adiabatic part of δfs. Under the above ordering,
the collisionless, linear, gyrokinetic equation is given in Fourier space by

(ω − ωds − k∥v∥)gs =
qsF0s

Ts
(ω − ωT

⋆s)J0(bs)

[
δϕ− v∥δA∥ +

msv
2
⊥

qsB

2J1(bs)

bsJ0(bs)
δB∥

]
. (1)

where bs = k⊥v⊥/Ωs, and J0 and J1 are the Bessel functions of the first kind which arise during the gyroaverag-
ing due to finite-Larmor-radius effects. The magnetic drift frequency is given by

ωds =
1

Ωs

(
ωκv

2
∥ + ω∇B

v2⊥
2

)
(2)

where we have also introduced the ∇B drift frequency coefficient ω∇B = k · b×∇B/B, and the curvature drift
frequency coefficient ωκ = k · b × (b · ∇b). Other notation used in Equations 1 and 2 is the drive frequency
ωT
⋆s = ω⋆s

[
1 + ηs

(
v2/v2ths − 3/2

)]
, where the diamagnetic frequency ω⋆ = (k⊥Ts/qsB)d lnns/dr, and we

have defined ηs = d lnTs/dns, where r is the radial coordinate, ψ is the poloidal flux, α = ξ − q(ψ)θ − ν(ψ, θ)
the dimensionless binormal coordinate, ξ the toroidal angle, ν(ψ, θ) a periodic function of θ determined by flux-
surface shaping, and kα the dimensionless binormal wave number.
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The fluctuating field quantities appearing in the gyrokinetic equation are determined through the field equations.
The perturbed electrostatic potential ϕ is determined through quasineutrality∑

s

nsq
2
s

Ts
ϕ =

∑
s

qs

∫
d3v J0(bs)gs. (3)

The parallel magnetic vector potential A∥ is determined by parallel Ampère’s law

k2⊥A∥ = µ0

∑
s

qs

∫
d3v v∥J0(bs)gs. (4)

The magnetic fluctuation B∥ is determined by perpendicular Ampère’s law

δB∥ = −µ0

B

∑
s

δp⊥, δp⊥ =
∑
s

∫
dv3 1

2
mv2⊥gs. (5)

3.1. THE MHD-APPROXIMATION IN GYROKINETICS

The concept currently under scrutiny is that the removal of δB∥ can be compensated for by adding a pressure
gradient contribution to the ∇B drift (setting the ∇B drift equal to the curvature drift). The magnetic drift
velocity is given by

vd = vκ + v∇B =
v2∥

Ω
(∇× b) +

v2⊥
2Ω

b×∇ lnB. (6)

Starting from the perpendicular force balance of the gyrokinetic equilibrium (see e.g. equation (128) of [13]) it is
simple to show that the drift velocity is connected to the pressure gradient viz

vd = b×
[(
v2∥ +

v2⊥
2

)
∇B
B

+ v2∥
µ0

B2
∇p

]/
Ωs, (7)

or equivalently

vd = b×
[(
v2∥ +

v2⊥
2

)
b · ∇bv2⊥

µ0

2B2
∇p

]/
Ωs. (8)

The historical precedent for the MHD-approximation in gyrokinetics comes from a result of [5] showing that, in
the one fluid MHD limit (kyρD → 0), there is a cancellation of terms such that δB∥ can be dropped as long as the
∇B drift is corrected by a term proportional to ∇p so that it is equal in magnitude to the curvature drift and points
in the same direction (hereinafter referred to as “MHD-1”):

vκ+∇B = b×
[(
v2∥ +

v2⊥
2

)
∇B
B

+ v2∥
4π

B2
∇p+ v2⊥

2

4π

B2
∇p

]/
Ωs. (9)

We remark that this approximation, the recommended setting in GENE when δB∥ is neglected, is different to the
approximation implemented in [6]. Instead, [6] argues that the ∇p contribution to the magnetic drift should be
erased so that the terms proportional ∇p are removed from equation 10 (hereinafter referred to as “MHD-2”):

vκ+∇B = b×
[(
v2∥ +

v2⊥
2

)
∇B
B

]/
Ωs. (10)

We have identified two different MHD-approximations (MHD-1 and MHD-2). In this work, we use GENE which
is capable of running with either the MHD-1 approximation (vd given by equation 9) or the MHD-2 approximation
(vd given by equation 10) used in [6].

3.2. PHYSICAL INSIGHT INTO THE MHD-APPROXIMATION

We can gain some physical insight into the approximations above from equation 5 (which follows from first order
force balance) where it can be seen that δB∥ physics is needed to sustain a perpendicular pressure perturbation.
In order to drop δB∥ in the gyrokinetic equation, for consistency δp⊥ must also be negligible. The perturbed
perpendicular pressure can be calculated by solving the linear gyrokinetic equation 1 in the limit ωd,s, k∥v∥ ≪ ω
and substituting into equation 5 to give

δp⊥ =
∑
s

∫
dv3 msqsv

2
⊥

2Ts

[
1− ωT

⋆s

ω
+
ωd,s

ω

] [
ϕ− v∥A∥ +

msv
2
⊥

qsB
B∥

]
(11)

5
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Using equation 5 and evaluating the terms on the right-hand-side of this equation gives the consistency condition

2

β
(ωκ − ω∇B) = ωκ + 2ω∇B . (12)

We now simply note that ω∇B = ωκ is a solution to equation 12 in the limit β ≪ 1. That is, we can think of
either of the approximations (MHD-1 and MHD-2), both of which set ωκ = ω∇B albeit by different prescriptions
of the magnetic drift velocity, as simply being attempts to maintain a pressure that is consistent with the plasma
equilibrium in the absence of δB∥.

4. GYROKINETIC SIMULATIONS WITH THE MHD-APPROXIMATION

Having introduced two possible approximations: (i) MHD-1 (vd given by equation 9); and (ii) MHD-2 (vd given
by equation 10), we now ask whether either of these approximations are appropriate for modelling STEP plasmas.

4.1. IS THE MHD-APPROXIMATION APPROPRIATE FOR CAPTURING LINEAR PHYSICS IN STEP?

FIG. 2. Growth rate (left) and mode frequency (right) as functions of the binormal wavenumber from linear
simulations of the dominant instability in STEP-EC-HD on a mid-radius flux surface. Simulations are shown both
with, fB = 1 (blue), and without, fB = 0 (orange, green, and red), δB∥. For the simulations without δB∥,
different treatments of the drift velocity are shown: (i) the full drift velocity (vd given by equation 8 (orange)); (ii)
MHD-1 (vd given by equation 9 (green)); and MHD-2 (vd given by equation 10) used in [6].

Fig 2 shows the linear growth rate (left) and frequency (right) as functions of the binormal wavenumber for
simulations with (fB = 1 (blue)) and without (fB = 0 (orange)) δB∥ and using different prescriptions of the
magnetic drift velocity. If the pressure gradient is completely erased from the drift velocity (MHD-2, red) then
we see that the hybrid-KBM is linearly stable and we once again recover the previously subdominant MTM (note
the change in frequency) as the fastest growing unstable mode in the system (red). However, using the MHD-1
approximation (setting the ∇B drift parallel to the curvature drift (green)) does find the hybrid-KBM mode but
with a strongly reduced growth rate. These results indicate that the MHD-1 approximation is the more appropriate
treatment of the magnetic drift when δB∥ is neglected in STEP plasmas. However, we note that even though this
approximation recovers the hybrid-KBM, accurately capturing this mode clearly requires a proper treatment of
δB∥ and the full expression for the magnetic drifts (particularly at low kyρD).

4.2. IS THE MHD-APPROXIMATION APPROPRIATE FOR CAPTURING NONLINEAR PHYSICS IN
STEP?

The MHD-1 approximation results in the fastest growing linear instability being the hybrid-KBM (albeit with a
reduced growth rate). This result suggests that it might be possible to simulate hybrid-KBM driven turbulence [3]
using this version of the MHD approximation in a global code. As a first step towards this goal, we first perform
a local nonlinear simulation using the MHD-1 approximation.

Fig 3 shows time traces of the total heat flux from two nonlinear GENE simulations. The blue curve in Fig 3
includes δB∥ and uses equation 8 for the drift velocity (this simulation is identical to that shown in Fig 3a of
[3]). The orange curve in Fig 3 does not include δB∥ and instead uses the MHD-1 approximation. The simulation
using the MHD-1 approximation appears to achieve a robustly-steady saturated state at values of the heat flux
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FIG. 3. Time trace from GENE simulations of the total heat flux. Simulations are shown both with, fB = 1 (blue),
and without, fB = 0 (orange), δB∥. The case without δB∥ fluctuations uses the MHD-1 approximation with vd

given by equation 9.

around two orders of magnitude smaller than those reached by the simulation that includes δB∥. However, it is
also important to remark that the heat flux predicted using the MHD-1 approximation is still orders of magnitude
larger than the heat flux driven by the subdominant MTM (see Fig 14 of [3]) which indicates that this turbulence
is indeed still being driven by the hybrid-KBM.

The reason that we see saturation at much lower fluxes using the MHD-1 approximation in Fig 3 is revealed by
closer inspection of Fig 2a; from this figure we can see that there are long wavelength modes which are unstable
with δB∥ but are stable without δB∥ (even when the MHD-1 approximation is used). It is these unstable modes
at kyρD ≪ 1, rather than any physics specific to the hybrid-KBM, that are responsible for the lack of saturation
typically encountered in nonlinear simulations of electromagnetic turbulence. To be explicit, it appears to be
possible to find a saturated state even when hybrid-KBMs are unstable provided that they are not unstable up to
the very long wavelengths.

5. CONCLUSIONS

In this paper, we have examined the necessity of parallel magnetic perturbations (δB∥) in gyrokinetic simulations
of electromagnetic turbulence at mid-radius in the burning plasma phase of the conceptual high−β reactor-scale,
tight-aspect-ratio tokamak STEP. It has previously been reported [2] that δB∥ is essential for the hybrid-KBM
identified in STEP to be linearly unstable. It was shown that the MHD-2 approximation, standard in many gyroki-
netic codes (see [6]), finds the hybrid-KBM to be completely stable.

We find that implementing the MHD-1 approximation (compensating for the neglect of parallel magnetic pertur-
bations by correcting the ∇B drift by a term proportional to ∇p so that it is equal in magnitude to the curvature
drift and points in the same direction) was able to roughly capture the linear spectrum of the hybrid-KBM. While
the validity of the MHD-1 approximation for STEP plasmas may be questionable, it may still have some value in
integrated modelling codes in that it at least partly captures the hybrid-KBM growth rate spectrum.

However, we find that nonlinear simulations using the MHD-1 approximation do not accurately capture the non-
linear physics expected in STEP [3]. Typically, simulations which attempt to resolve the hybrid-KBM with full
physics (including δB∥) yields fluxes rising to very large values with no robustly-steady saturation period over the
time simulated (any state of saturation is always lost if the simulation is run for a sufficiently long time). When
the MHD-1 approximation is used, we find that the turbulence simulations saturate at a level around two orders
of magnitude lower than that reached by the full physics simulations in comparable time. The reason for this
difference is that there are modes in the system with very long wavelength (i.e., modes corresponding to n < 10)
that are stable when the MHD-approximation is used but are unstable otherwise. It is likely that it is these unstable
very long wavelength modes that are responsible for the lack of a saturated state, rather than anything intrinsically
linked to the hybrid-KBM. Since the problematic modes at this surface are both: (i) unstable only with δB∥ and;
(ii) unstable up to wavelengths where the local limit is questionable, this work highlights the importance and
timeliness of global gyrokinetic codes with δB∥ solvers.

7
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