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Critical current density of superconducting-normal-superconducting Josephson
junctions and polycrystalline superconductors in high magnetic fields

2

3
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We investigate the in-field critical current density Jc(B) of superconducting-normal-superconducting (SNS)
Josephson junctions (JJs) and polycrystalline superconducting systems with grain boundaries modeled as
Josephson-type planar defects, both analytically and through computational time-dependent Ginzburg-Landau
(TDGL) simulations in two and three dimensions. For very narrow SNS JJs, we derive analytic expressions for
Jc(B) that are high-field solutions for Jc(B) for JJs across the entire applied field range up to the effective upper
critical field B∗

c2. They generalize the well-known (low-field) exponential junction thickness dependence for Jc1
from de Gennes, often used in the Josephson relation. We then extend our analytic expressions to describe wider
junctions using physical arguments, and we confirm their agreement with TDGL simulations. These results are
then compared with the current densities found in superconductors optimized for high-field applications. They
provide an explanation for the Kramer field dependence and inverse power-law grain size dependence widely2
found in many low-temperature superconductors, and the power-law field dependence Jc(B) ∼ B−0.6 found
at intermediate fields in some high-temperature superconductors including powder-in-tube Bi2Sr2Ca2Cu3Ox

and RBa2Cu3O7 tapes (R = rare earth). By reanalyzing critical current density data using the mathematical
framework derived here and confirmed using TDGL, we enable an analysis of Jc data that provides the local
properties of grain boundaries in high-field superconductors and hence a deeper understanding of how grain
boundaries influence Jc in high magnetic fields.
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I. INTRODUCTION25

Probably the most important challenge in high-field super-26

conductivity is to understand and control the critical current27

density Jc of superconducting materials in high magnetic28

fields. The enormous dissipationless currents that technolog-29

ical superconducting materials can carry have made them30

essential components in large-scale high-field magnet sys-31

tems, such as those used for high-resolution nuclear magnetic32

resonance (NMR) or to confine fusion plasmas [1].33

However, a quantitative description of Jc in high fields34

for these materials is limited by our understanding of the35

so-called “grand summation problem”: the problem of how36

the local vortex-vortex and vortex-pin interactions should be37

summed in order to obtain the macroscopic average Jc. For38

example, the proportion of vortices that are pinned at pinning39

sites, or how vortices relax after being depinned, remains40

unknown. Without such knowledge, our understanding of41

the vortex pinning and Jc remains qualitative at best and42
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has prevented us from relating Jc to the underlying spatially 43

varying properties of superconductors with strong pinning, 44

which is needed to further optimize these materials. Here, we 45

follow those approaches that have used Josephson junctions 46

(JJs) as analogs of grain boundaries for the basis of descrip- 47

tions of flux flow and pinning in polycrystalline materials, 48

computationally [2], and experimentally in both low and high- 49

temperature superconductors [3–5]. There have been some 50

high-field approximations proposed for very narrow junctions 51

that lack vortices in the junction region [6,7]. However, to 52

our knowledge, there are no detailed analytic expressions 53

for Jc for JJ in high fields up to the effective upper critical 54

field B∗
c2 (of any width) that can address the complexity of 55

vortices entering the superconducting electrodes [8,9]. Here, 56

we provide an analytic framework that describes Jc in high 57

fields up to B∗
c2 for systems that have many vortices both 58

inside the junctions and in the superconducting electrodes. 59

Necessarily, our work solves the grand summation prob- 60

lem within the critical Josephson junction region itself, by 61

including the nonuniform distribution of vortices in the junc- 62

tions at Jc [8,10]. Our approach is to derive one-dimensional 63

(1D) results for very narrow junctions and then use physi- 64

cal arguments to find expressions that describe Jc in wider 65

junctions. In both cases, we confirm the validity of the ex- 66

pressions produced using time-dependent Ginzburg-Landau 67

(TDGL) simulations. TDGL theory has been used to model 68

the critical current density as a function of applied field for 69

a wide range of superconducting systems that contain normal 70

material [2,11–14]. 71
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We first outline the computational method used to obtain72

critical current density as a function of applied field and73

validate it against the canonical low-field expressions for the74

critical current density of junctions. We then present our an-75

alytic solutions for the critical current density of very narrow76

superconducting-normal-superconducting (SNS) junctions in77

all applied magnetic fields up to the upper critical field of78

the system, by extending the approach of Fink used in low79

fields [15] and developing the methodology of Refs. [16,17]80

to account for the suppression of superconductivity in the su-81

perconducting electrodes in high fields. Next, we use physical82

arguments to extend these very narrow width in-field expres-83

sions for critical current density to describe wider, so-called84

narrow JJs, up to the scale of λs, and confirm their agreement85

with TDGL. Finally, we present 3D TDGL simulations and86

visualizations of equiaxed polycrystalline systems with grain87

boundaries that are SNS Josephson junctions. We discuss the88

qualitative agreement between the 3D TDGL simulations, the89

analytic expressions derived, and the widely observed experi-90

mental results for Jc(Bapp), namely, the Kramer dependence91

[18] for low-temperature superconductors such as Nb3Sn92

[19,20], Nb3Al [21], and PbMo6S8 [22] throughout most of93

the magnetic field range, and the power-law dependence [i.e.,94

Jc(Bapp) ∼ B−0.6
app ] observed at intermediate fields of several95

teslas for several high-temperature superconductors such as96

powder-in-tube Bi2Sr2Ca2Cu3Ox [23] and RBa2Cu3O7 tapes97

[5].98

II. TIME-DEPENDENT GINZBURG-LANDAU THEORY99

In this paper, we analyze Josephson junction systems100

entirely within the framework of the TDGL equations for101

gapless s-wave superconductors in the dirty limit [24], which102

can be written as [25,26]103

η(∂t + ıμ)ψ =
[∑

i

(∂i − ıAi )m
−1
i (r)(∂i − ıAi )

+ α(r) − β(r)|ψ |2
]
ψ, (1)

∂t Ai + ∂iμ = −κ2mi(r)(∇ × ∇ × A)i + Im[ψ∗(∂i − ıAi )ψ],
(2)

where ı = √−1 is the imaginary unit; we take the (real) dirty-104

limit value of η = 5.79 obtained by Schmid [27], and all other105

parameters have their usual meaning. For simplicity, we shall106

take mi(r) and α(r) to be the only spatially varying material-107

dependent parameters and assume the nonlinearity parameter108

β to be constant across the system. The condensation term α is109

expressed in terms of the system temperature T and the local110

critical temperature Tc(r) relative to the critical temperature of111

the reference superconductor Tc,s as112

α(r) = T − Tc(r)

T − Tc,s
(3)

such that α is unity in the reference superconductor and nega-113

tive in normal (nonsuperconducting) materials. The associated114

boundary conditions are 115

(∇ × A − Bapp) × n̂ = 0, (4)

(∇ − ıA)ψ · n̂ = −	DGψ, (5)

where the surface parameter 	DG is the reciprocal of de 116

Gennes’s extrapolation length in units of the coherence length 117

[28] and has the limiting values of 0 for an interface with an 118

insulating surface (or vacuum) and ±∞ for the interface with 119

a highly conductive surface [29]. 120

However, for many systems of experimental interest that 121

operate in high magnetic fields, Eqs. (1) and (2) are com- 122

putationally expensive to solve, and a further mathematical 123

simplification is needed for 3D simulations. Fortunately, in 124

all high-field materials, the (effective) penetration depth is 125

often much larger than all other length scales in the system, 126

and the self-field can be neglected relative to the applied 127

magnetic field and current densities, such that the TDGL 128

equations in the high-κ limit apply [25]. In this high-κ approx- 129

imation, for an applied magnetic field Bapp in the z direction, 130

the normalized magnetic vector potential in the Coulomb 131

gauge (∇ · A = 0) is expressed as A = −Bapp(y − w/2)î − K, 132

where K = K (t )î is a spatially invariant parameter required to 133

enforce the Coulomb gauge constraint and w is the width of 134

the system in the y direction. The gauge constraint K can be 135

used to determine the average electric field across the domain, 136

since ∂t K = 〈E〉. The only spatially dependent material pa- 137

rameter in this model is α(r). This formulation is particularly 138

useful for our 3D simulations of superconducting systems as 139

the time dependence of the electromagnetic fields is coupled 140

only through the spatially invariant gauge parameter K, reduc- 141

ing the computational cost of developing the superconducting 142

state in time [25]. 143

III. NUMERICAL METHODS FOR SOLVING THE TDGL 144

EQUATIONS FOR JUNCTION SYSTEMS 145

In this paper we use two main simulation codes to solve 146

the TDGL equations for SNS junction systems in simple 147

geometries. For small system sizes in 2D, we will solve the 148

general equations (1) and (2) using our TDGL-2D code, based 149

on the algorithm developed by Refs. [30,31]. We apply the 150

“link variable” approach used in the explicit method [32] 151

together with the semi-implicit spatial discretization scheme 152

for the TDGL equations [31] that is generalized to include 153

a spatially dependent effective mass. However, although the 154

time evolution of the order parameter ψ is carried out using 155

an adapted version of the Crank-Nicolson algorithm [31], the 156

two components of the magnetic vector potential are then 157

developed in time simultaneously for greater stability when 158

simulating systems with low κ . For larger systems, and in 159

3D, we shall solve the simplified TDGL equations in the 160

high-κ limit, on a graphics processing unit (GPU) using our 161

TDGL-HIκ code, an implementation of the 3D TDGL solver 162

developed in Ref. [25]. For evolving {a, ψ} (where a is a 163

link variable associated with the magnetic vector potential), 164

the adapted Crank-Nicolson algorithm [31] is known to be 165

003000-2
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FIG. 1. Schematic of the 2D computational domain of width w and periodic length l used to model the junction system. The domain is
subdivided into three sections; the main superconducting region, S, in which the normalized Ginzburg-Landau temperature parameter α = 1
and normalized effective mass m = 1, a normal region, N, described by the normalized Ginzburg-Landau temperature parameter and effective
mass αn and mn, respectively, and a coating region, marked in light gray, in which α = −10.0 and m = 108 when modeling junctions with
insulating coatings. The applied field Bapp and current I are controlled by fixing the local magnetic field at the edges of the computational
domain in the y direction. The junction thickness in the direction of current flow is denoted d , and the junction width is denoted ws. Exploded
view: schematic showing the discretized order parameter ψi, j and modified link variables ax

i, j and ay
i, j relative to the underlying computational

grid. Unless otherwise stated, the grid step size is typically taken to be hx = hy = 0.5ξs in these simulations.3

unconditionally stable for purely linear sets of equations [33],166

although stability is not guaranteed in the nonlinear case.167

Unlike the explicit scheme of Gropp et al. [32], which uses168

the computational variables {U } = {exp (−ıa)} instead of {a}169

directly, numerical errors of schemes based on Ref. [31] will170

increase for long simulations of periodic systems in resistive171

states, as the magnitude of {a} can grow large over time172

and slow or even prevent convergence. However, as we are173

predominantly interested in the critical current density Jc and174

the onset of persistent resistive states in the system, this does175

not significantly limit the simulations presented here, and this176

consideration is outweighed by the reduction in simulation177

time possible using the longer time steps that the Crank-178

Nicolson approach permits as a result of its greater stability179

properties. Computation efficiencies were achieved by solving180

Eq. (1) directly in two steps using the method of fractional181

steps. We also avoided solving Eq. (2) in two iteration steps182

[31], as the timescales for the evolution of {ax} and {ay} are of183

similar magnitudes, and in these calculations led to oscillatory184

behavior of the iteration scheme with a block Gauss-Seidel185

approach and unreliability of convergence [33]. Convergence186

was considered satisfied when changes in the normalized187

link variable and order parameter were < 10−7 at each time188

step.189

Typically, TDGL-2D is used to solve the TDGL equa-190

tions for systems that are periodic in the direction of current191

flow in the x direction with periodicity l , and bounded in the y192

direction with a width w such that y ∈ [−w
2 , w

2 ], at the extrem-193

ities of which we impose the insulating boundary condition194

	DG = 0 using Eq. (5). A schematic of the computational grid195

and the relevant dimensions used are presented in Fig. 1 for196

the system used to model a typical periodic array of SNS197

junctions each of thickness d . Inside this domain, we specify198

three regions: a superconducting region of width ws where199

(|y| < ws
2 , |x| > d

2 ) and in which α(r) = mi(r) = 1; a junction200

region (|y| < ws
2 , |x| < d

2 ) in which α(r) = αn and mi(r) = 201

mn; and a coating region ( ws
2 < |y| < w

2 ) of width wcoat = 202

(w − ws)/2 either side of the junction in which α(r) = αcoat 203

and mi(r) = mcoat. For the 2D simulations presented in this 204

paper, wcoat = 5.0ξs, αcoat = −10.0, and mcoat = 108ms unless 205

otherwise specified. 206

In order to extract values for the critical current density 207

Jc, we followed the experimental approach [34] and used 208

an arbitrary electric field criterion Ec written in terms of 209

ED, which corresponds to the average electric field in the 210

system when the superconductor is normal and carrying the 211

zero-field Ginzburg-Landau depairing current density JD, such 212

that 213

ED = κ2ρx
avJD, (6)

where 214

ρx
av = w

ws

1

nx

nx∑
i=1

ny∑ny

j=1

[
(m−1)x

i, j

] , JD = 2

3
√

3
J0, (7)

where ρx
av represents the average resistivity of the system 215

in the x direction, normalized to the resistivity of a system 216

in the x direction containing only the superconductor in its 217

normal state. The supercurrent Js is normalized in units of 218

J0 = Bc2/κ
2μ0ξs, where μ0 is the permeability of free space, 219

and the electric field is normalized in units of J0ρs. As the 220

critical current density of the superconductor can be highly 221

hysteretic, the system was always first initialized in the Meiss- 222

ner state throughout (ψ = 1, A = 0) for all simulations. The 223

external magnetic field B(y = ±w
2 ) was then increased at a 224

rate of 5 × 10−2Bc2τ
−1 up to the desired value Bapp. Following 225

this magnetic field ramp, for our 2D (3D) simulations the 226

applied current density Japp was increased (decreased) in a 227

003000-3
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FIG. 2. Typical simulation data used to extract Jc at the applied field Bapp = 0.3Bc2. Bottom: distribution of the normalized Cooper pair
density |ψ̃ |2 at the critical current Jc, for a simulated junction with periodic length l = 100ξs, thickness d = 0.5ξs, junction width ws = 16.0ξs,
and Ginzburg-Landau temperature parameter in the normal region αn = −20. Top left: The applied current density Japp normalized by the
depairing current density JD vs time t normalized in units of the characteristic timescale τ . Top center: The average electric field in the x
direction 〈Ex〉 normalized by the characteristic electric field ED as a function of time t . Top right: The normalized average electric field in the x
direction as a function of the applied current density. The applied current density when E < Ec = 10−5ED, and Jc is determined as the lowest
current at which E > Ec for a duration exceeding thold = 5 × 103τ .

series of logarithmically spaced steps, starting from 10−6JD.228

If the average electric field in the system exceeded the electric229

field criterion, typically Ec = 10−5ED, the applied current was230

held constant. When the average electric field continued to231

persist above Ec for longer than the hold time thold, typically232

taken as 5 × 104τ , the system was determined to have entered233

a persistent resistive state, and Japp at this point is taken to be234

the critical current density of the system.235

An example of the time evolution of the applied current236

density and average electric field used to extract Jc from the237

simulation is displayed in Fig. 2. The rapid jumps in the238

average electric field in the system 〈Ex〉 below the critical239

current (t < 1.1 × 104) are associated with the imposed cur-240

rent steps and the associated steps in the rate of change of the241

magnetic field in the system. To make the generation of a full242

Jc(Bapp) characteristic more efficient, we also simulate Jc at243

different applied fields in parallel, since the simulations for244

the critical current at given applied fields are independent of245

one another.246

For the computationally expensive 3D systems, we use247

TDGL-HIκ using the scalable GPU accelerated algorithm248

developed in Ref. [25]. The order parameter ψ , the electro-249

static potential μ, and the gauge parameter K are updated250

successively at each time step, with ψ and μ solved for itera-251

tively as described in Ref. [25] until |ψn+1 − ψn|2 < 10−5 and252

|∇2μ − ∇ · Im[ψ∗(∇ − ıA)ψ]|2 < 10−5 at every mesh point.253

K is integrated forward in time using a second-order Runge-254

Kutta algorithm [35]. Local order parameter fluctuations were255

also included and set to be sufficiently small so as to minimize256

creep effects that may complicate the determination of Jc257

and correspond to nearly zero thermal noise for vortex flow258

[36], but sufficiently large to speed up relaxation of the order259

parameter when the system is out of equilibrium, such as260

immediately after initialization. Insulating or (quasi)periodic 261

boundary conditions can be applied at the edges of the sim- 262

ulation domain in any (or all) spatial dimensions [25]. For 263

a periodic domain of size Lx, Ly, Lz in the x, y, and z di- 264

mensions, respectively, with a magnetic field applied along 265

the z axis, periodic boundary conditions can be applied to 266

ψ at the edges of the domain in the x and z dimensions, 267

and quasiperiodic boundary conditions (QBCs) on ψ in the 268

y dimension, as described in Ref. [25] (and not implemented 269

in previous work [37]), were used to eliminate surface effects 270

from masking bulk critical currents. For 3D simulations, we 271

follow the Jc determination method employed in Ref. [38], 272

and ramp the applied current down in steps from the resistive 273

to the superconducting state. At each current step, the current 274

is held for thold, and the spatially averaged electric field in 275

the superconductor Ex is averaged over the second half of the 276

hold step, after transient effects from stepping the current have 277

decayed away. Typically, thold = 10.0τ . The critical current 278

density Jc is then taken to be the highest current at which 279

the time-averaged and spatially averaged Ex is less than the 280

electric field criterion Ec = 10−5ρJ0. 281

IV. WEAKLY COUPLED SNS JUNCTIONS IN MAGNETIC 282

FIELDS (αnd � ξs ) 283

Following Clem’s consideration of films, Eqs. (1) and (2) 284

can be rewritten in terms of gauge-invariant variables: the 285

Cooper pair density |ψ |2, the (super)current density Js, and 286

the gauge-invariant phase γ [8]. When mi(r), α(r), β(r) are 287

only functions of x, and solutions for the order parameter are 288

considered in the form ψ = |ψ |eiθ , where θ is the (non-gauge- 289

invariant) phase of the order parameter, the time-independent 290

003000-4
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Ginzburg-Landau (GL) equations are [16]291 [ ∑
i

(
∂i

[
m−1

i (x)∂i
] − m−1

i (x)(∂iγ )2)

+ α(r) − β(r)|ψ |2
]
|ψ | = 0, (8)

Js = m−1
i (x)|ψ |2∇γ , (9)

where292

∇γ = ∇θ − A. (10)

Although Clem’s original work was developed for thin293

films, it remains valid for the narrow 2D systems considered294

here since in both cases, ψ is independent of z and the local295

magnetic field can be taken to be equal to the applied field296

as w < λs. Clem’s low-field solutions for the gauge-invariant297

phase difference �γ (y) and average critical current density298

across a narrow junction [8] are given by299

�γ (y) = �γ (0) + Bappydeff + 8Bapp

ws

∞∑
n=0

(−1)n

k3
n

× tanh(knls/2) sin(kny), kn = (2n + 1)π/ws,

(11)

Jc = max
ϕ(0)

{
1

ws

∣∣∣∣ ∫ ws/2

ws/2
dy[JDJ(0) sin[�γ (y)]]

∣∣∣∣}, (12)

where JDJ(0) is the current density in zero field. In this case,300

γ (0) = ±π/2 when the current through the junction is maxi-301

mized for all ratios of ls/ws [8]. In order to improve agreement302

between our computation and Eq. (11), we have included a303

term for the effective junction thickness deff (which we find304

below to be deff ≈ 2ξs in the weak-coupling limit). This term305

accounts for the finite size of the junction and the reduction306

in the order parameter on a length scale of order ξs close to307

the junction. This addition better describes thin junctions (i.e.,308

the limit considered in Ref. [8]). For consistency, we define309

the effective length of the S regions in the direction of current310

flow to be ls = l − deff.311

To identify the fraction of the width contributing to the net312

critical current, we suggest that the maxima of Eq. (12), Jpeak
c ,313

can be approximated using314

Jpeak
c ≈ c0

(
φ0

Bw2
s

)c1

JDJ(0). (13)

We find empirically that over a large range of aspect ratios,315

the field dependence of Jpeak
c most closely follows the Bessel316

function field dependence, where, for example, when ws ≈ ls,317

c0 ≈ c1 ≈ 0.6, the distance between the cores of the vortices318

in the junction, aJ, is given by aJ ≈ 1.84φ0/Bappws and over a319

range of aspect ratios for the electrodes, c0 ≈ 0.35/c1 is quite320

robust. As noted in Refs. [10,39], the reduction of the critical321

current with applied field when many vortices are present322

in the junction is slower when ws � ls and the asymptotic323

behavior is a Bessel-like function where Jc ∼ B−1/2
app , com-324

pared with when ls � ws and a sinc-like behavior Jc ∼ B−1
app325

is found.326

A comparison between the critical current density deter-327

mined from Eqs. (11) and (12) and the critical current density328

FIG. 3. Simulations of Jc(B) of narrow, very thin, weakly cou-
pled junctions with different widths ws. The system size in the x
direction is l = 6.0ξs (a) and 100.0ξs (b). The junction thickness d
was taken to be dmin = 0.5ξs, αn = −20.0, and κ = 40.0. (a) Jc(B) as
calculated using the TDGL-2D code (circles) and TDGL-HIκ code
(triangles), with the hold time and time step for the TDGL-2D simu-
lations set to thold = 5 × 103τ and δt = 0.5τ , and for the TDGL-HIκ
simulations set to thold = 10τ and δt = 0.1τ , respectively. (b) Jc(B)
as calculated using the TDGL-2D code with hold time thold = 103τ

and time step 0.1τ . Dashed lines in both panels are given by Eqs. (11)
and (12) with deff = 2ξs.

obtained from our 2D TDGL simulations is shown in Fig. 3 for 329

a system with ws � ls [Fig. 3(a)] and ws � ls [Fig. 3(b)]. In 330

both cases, we take deff ≈ 2ξs. The 2D TDGL simulations Jc 331

from both TDGL-2D and TDGL-HIκ show excellent agree- 332

ment with each other and the analytic expressions derived 333

from Eqs. (11) and (12) in low fields. At these applied fields, 334

no vortices exist in the S regions, and current flow is laminar 335

within them. In Fig. 3(b), simulations of Jc obtained from 336

TDGL-2D for larger system widths at B = 0.2Bc2 still follow 337

the prediction of Eqs. (11) and (12), but with larger scatter 338

as a consequence of vortices in the S regions that distort the 339

interference pattern of the computed system from the analytic 340

prediction [39]. 341

For completeness, we checked our results against a smaller 342

grid step size 0.1ξs and confirmed little change in Jc(B) 343

values. Throughout this paper, a standard grid step size of 344

0.5ξs was chosen since it gave the optimal trade-off be- 345

tween accuracy and computation time. We also checked the 346

sensitivity of the results in this section to having a highly 347

resistive coating, rather than an insulator, at the edges of the 348
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FIG. 4. Simulations of the critical current of a very thin junction
in the weak-coupling limit with the Ginzburg-Landau temperature
parameter in the normal region αn = −20.0, a junction thickness
d = 0.5ξs smaller than the superconducting coherence length ξs, and
a width ws = 16ξs much smaller than the Josephson penetration
depth λJ for varying coating effective mass (proportional to the
coating resistivity) with a coating thickness of 5ξs. The periodic
system size in the x direction is l = 6.0ξs, and the Ginzburg-Landau
parameter and friction coefficient in the superconductor are κ = 40.0
and η = 5.79, respectively, throughout. For this system, coating
masses below ∼30ms show distortion of the Fraunhöfer pattern, with
reduced zero-field Jc and increased spacing between minima in the
Jc characteristic relative to the insulating coating limit (mcoat → ∞).
Remaining computational parameters are as described in the text.
The dashed line is given by Eqs. (11) and (12) with deff = 2ξs.

junction system. This coating allows the order parameter at349

the superconductor/coating interface to decay into the coating350

region which affects the critical current characteristics in field.351

The simulation data shown in Fig. 4 show that insulating352

surface conditions are found if the effective mass in the coat-353

ing material is greater than around 30 times the maximum354

effective mass in the rest of the system.355

A. Very narrow junctions in high fields356

In this section, we derive analytic expressions for the crit-357

ical current density of very narrow Josephson junctions (w <358

ξs) that are valid across the entire range of applied magnetic359

fields, up to the upper critical field of the system. Consider360

first the current flow within the junction from screening cur-361

rents and from the injected currents. Integrating around a thin362

closed rectangular loop inside the system using Eq. (10) with363

the lower path along the x axis and the upper path at y gives364 ∮
∇γ · dl =

∮
∇θ · dl −

∮
B · dS (14)

after applying Stokes’s theorem to the magnetic vector poten-365

tial term. For any choice of gauge, the first closed integral on366

the right-hand side in θ is 2πn, where n is the number of vor-367

tex cores inside the closed contour, from the requirement that368

the order parameter magnitude be a single valued function. We369

can integrate Eq. (8) over the junction width in the y direction,370

apply the mean value theorem, and replace ψ with its average371

in the y direction f = 1
w

∫ w/2
−w/2 |ψ | dy and the components of372

Js by their equivalent average 〈 js
i 〉 = 1

w

∫ w/2
−w/2(Js

i ) dy. We as-373

sume that the order parameter magnitude is symmetric about 374

both the y axis and the x axis, that the screening currents and 375

hence ∂yγ are both antisymmetric about these axes, and that 376

to first order the transport current is uniform along the y axis, 377

such that 〈 js
x〉 = m−1

x (x) f 2∂xγ (y = 0) from Eq. (9). Given 378

that no vortex cores exist in the narrow system (n = 0), and 379

taking the sections of the contour in Eq. (14) that are parallel 380

to the x axis to be sufficiently short relative to the coherence 381

length ξ , we arrive at the gauge-invariant result 382

∂xγ (y) −
〈
js
x

〉
f 2m−1

x (x)
= Bappy

Bc2ξs
. (15)

We also assume that for narrow junctions, given the bound- 383

ary conditions at the insulating surfaces and the requirement 384

for current continuity across the S-N internal interface, js
y(x) 385

can be taken to be zero. Equation 15 describes the transport 386

current density and the screening currents that flow within 387

the junction itself. We have not included the small self-field 388

corrections to the net field, which describe the currents as- 389

sociated with a vortex-antivortex pair at the edges, since we 390

assume that the self-field is much smaller than the applied 391

field. Substituting our new expression for ∂xγ (y) into Eq. (8) 392

gives 393

∂x
(
m−1

x (x)∂x f
) +

[
α(x) − m−1

x q2 − β(x) f 2

−
〈
js
x

〉2
f 4 m−1

x (x)

]
f = 0, (16)

where integrating and averaging over the y direction gives 4394

q2 = ( Bappws√
12Bc2ξs

)2. Equation 16 represents a generalization of 395

Fink’s zero-field results for very narrow junctions to all ap- 396

plied fields Bapp. We can now solve for the critical current 397

when the N region is thin (i.e., d � ξs) and when the N region 398

is thick (i.e., d � ξs). 399

1. Thin junctions in high fields d � ξs 400

Consider first the thin-junction limit, where d � ξs. As- 401

suming that β(x) and m−1
x (x) are constant across the system 402

for simplicity, we rescale Eq. (16) by x̃ = x
√

1 − q2, f̃ = 403

f /
√

1 − q2, and j̃x = 〈 js
x〉(1 − q2)−3/2 to give 404

∂2
x̃ f̃ +

[
1 − 1 − α(x)

1 − q2
− f̃ 2 − j̃2

x

f̃ 4

]
f̃ = 0. (17)

Since f̃ and j̃x are continuous across the S/N interface, we 405

find a constraint between ∂x̃ f̃ and f̃ at the interface in the 406

limit where d � ξs, by integrating Eq. (17) across the nor- 407

mal region, where |x̃| < d
√

1 − q2/2, and assuming that f̃ is 408

symmetric across the junction: 409

2 f̃ ′
d/2 = d

1 − αn√
1 − q2

f̃d/2, (18)

where f̃d/2 = f̃ (x = d/2) and f̃ ′
d/2 = ∂x̃ f̃ (x = d/2). The re- 410

mainder of the derivation now follows the zero-field approach 411

[40]; by substituting Eq. (18) into Eq. (17) and neglect- 412

ing the highest-order terms in the new small parameter 413

V −1
0 =

√
1 − q2/d (1 − αn), we find the necessary condition 414
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FIG. 5. Simulations of Jc(B) of very narrow, thin, weakly cou-
pled junctions as a function of αn where −250 � αn � −50. The
width ws = 0.5ξs, and the junction thickness d = dmin = 0.1ξs. The
periodic system length in the x direction l = 12.0ξs, and κ = 5.
The effective mass in the normal region was taken to be mn = ms.
The grid spacing was chosen to be hx = hy = 0.1ξs, the time step
δt = 0.5τ , and the hold time thold = 5 × 103τ . Dashed lines are given
by Eq. (19).

for a solution to exist as j̃x < 1/2V0. In standard units, this415

corresponds to the critical current density JDJ,416

lim
d�ξs

{JDJ(Bapp)} = J0
ξs

2d (1 − αn)
(1 − q2)2, (19)

where q2 = (Bappws/
√

12Bc2ξs)2 and J0 = Bc2/κ
2μ0ξs as be-417

fore. The applied field at which the critical current density of418

the system is zero is given by q2 = 1. This is equivalent to an419

applied field equal to the parallel critical field420

Bapp(q2 = 1) =
√

12ξs

ws
Bc2. (20)

This expression has previously been found by Tinkham to421

be the upper critical field of a thin-film superconductor of422

thickness ws when the applied magnetic field is parallel to the423

film surface, provided the film is thinner than approximately424

1.8ξs [41]. Equation 19 is compared with simulation data from425

TDGL-2D in Fig. 5, showing excellent agreement across the426

whole field range.427

We note that the junctionless case, where V0 = 0, can triv-428

ially be considered also, as the rescaling used in Eq. (17)429

is equivalent to rescaling the Ginzburg-Landau equations in430

terms of a field-dependent coherence length in the supercon-431

ductor ξ̃s = ξs/
√

1 − q2. In this case, the critical current of the432

thin-film system becomes JD(1 − q2)3/2 [41].433

2. Thick junctions in high field d � ξs434

For thick junctions, we rescale Eq. (16) into a similar form435

to that studied for zero field by Fink [15]. In the superconduct-436

ing regions, we rescale by x̃ = x
√

1 − q2, f̃s = f /
√

1 − q2,437

and j̃x = 〈 js
x〉(1 − q2)−3/2 to give438

∂2
x̃ f̃s +

[
1 − f̃ 2

s − j̃2
x

f̃ 4
s

]
f̃s = 0. (21)

Inside the normal region, we rescale Eq. (16) by439

ũ = x
√

mn
ms

(−αn + ms
mn

q2), f̃n = − f
√
βn/(−αn + ms

mn
q2), and440

j̃u = 〈 js
x〉βn

√
mn/ms(−αn + ms

mn
q2)−3/2 to give a form that is 441

again similar to Fink’s zero-field results, 442

−∂2
ũ f̃n +

[
1 − f̃ 2

n + j̃2
u

f̃ 4
n

]
f̃n = 0. (22)

The critical current in field can now be obtained following 443

the procedure used by Ref. [15] for zero field, but with the 444

new, field-dependent rescaled variables. In usual units, the 445

critical current of this narrow junction system in applied fields 446

is given by 447

lim
d�ξs>ws

{JDJ(Bapp)} = 4J0(1 − q2)
3
2

1 −
√

1 − s̃ f̃ 2
d/2

s̃ṽ

× exp

(
− d

ξ̃n

)
, (23)

where 448

f̃ 2
d/2 = ṽ2 + 1 −

√
ṽ2(2 − s̃) + 1

ṽ2 + s̃
, ṽ = mnξ̃n

msξs

√
1 − q2,

q2 = B2
appw

2
s

12
, s̃ = βn(1 − q2)(

αn − ms
mn

q2
) ,

× ξ̃n =
√

ms

mn

1( − αn + ms
mn

q2
)ξs, (24)

and J0 = Bc2/κ
2μ0ξs. Once again, here we take βn = 1, and 449

so when the effective mass of the N region is the same 450

as that of the superconductors, ṽ2 → −s̃, and f̃ 2
d/2 → (1 − 451

q2)/2(1 − αn). Equation 23 is compared with the critical cur- 452

rent densities obtained from TDGL-2D in Fig. 6. Excellent 453

agreement between Eq. (23) and TDGL-2D is observed across 454

the entire field range, and across the parameter space for 455

d > ξs, αn < −1.0, and 0.1ms < mn < 6.0ms. 456

In the limit where f̃ 2
d/2 → 0, and when mn = ms, Eq. (23) 457

reduces to the simpler form 458

lim
d�ξs>ws

{JDJ(Bapp)} = J0
(1 − q2)2

√
1 − αn

exp

(
− d

√
1 − αn

ξs

)
,

(25)
which provides the general field-dependent form for de 459

Gennes’s famous result for SNS junctions in zero field [42]. 460

In general, weakly coupled junctions with f̃ 2
d/2 → 0 for any 461

thickness of junction with mn = ms can be described by the 462

single expression 463

lim
ξs>ws

{JDJ(Bapp)} = J0
(1 − q2)2

2
√

1 − αn sinh(d
√

1 − αn/ξs)
, (26)

where Eq. (19) is recovered in the limit d
√

1 − αn/ξs → 0 464

and Eq. (25) is recovered in the limit d
√

1 − αn/ξs � 1. 465

The full-field approximation for Jc given in Eq. (23) has the 466

same leading-order monotonically decreasing behavior in low 467

field as predicted by the authors of Refs. [16,17,43] using 468

a model of an SNS Josephson junction from the linearized 469

Usadel equations, including the applied magnetic field as an 470

effective spin-flip scattering rate. Indeed, Eq. (23) can be 471

viewed as an extension to this result that describes fields 472

approaching the parallel critical field of the superconductor. 473
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FIG. 6. Simulations of Jc(B) for very narrow, thick, weakly cou-
pled junctions. The width ws = 0.5ξs, the periodic system length
in the x direction l = 12.0ξs, and κ = 5. The grid spacing was
hx = hy = 0.1ξs, the time step δt = 0.5τ , and the hold time thold =
5 × 103τ . (a) The effective mass in the normal region was taken
to be mn = ms, αn = −1.0, and the junction thickness d was var-
ied. (b) mn = ms, αn was varied, and d = 2.0ξs. (c) mn was varied,
αn = −1.0, and d = 2.0ξs. Dashed lines in all panels are given by
Eq. (23).

Experimental measurements of SNS junctions consisting of474

superconducting nanowires in this monotonically decaying475

regime that have been carried out in Refs. [44,45] show good476

agreement with Eq. (23) for both the magnitude and magnetic477

field dependence, as shown in Fig. 7 with reasonable estimates478

for the coherence length in the superconducting nanowires.479

The approach provided here can be extended to consider thick480

FIG. 7. Comparison of Eq. (23) with experimental data on Al-
Au-Al nanowire junctions measured in Ref. [45]. The junction
thickness d varied between 900 and 1300 nm, and all junctions were
ws = 125 nm wide. The coherence length ξn in the Au region was
taken to be 10 μm as suggested by weak localization experiments
below 50 mK. The critical current at zero field I (0) was fixed at
the maximum measured current, and the coherence length of the Al
superconductor ξs and the ratio of the effective mass of a Cooper pair
in Au and in Al, mn/ms, were left as free parameters for the fit.

clean junctions [46], but further work is needed to accurately 481

describe the effective thickness of the barrier, when the long 482

conduction-carrier scattering length in very clean barriers be- 483

comes comparable to the barrier’s thickness. 484

B. Narrow junctions 485

We now extend our new solutions for Jc(Bapp) in very 486

narrow junctions to describe the qualitative behavior of wider 487

2D systems, so-called narrow junctions, with widths up to the 488

length scale of the superconductor penetration depth λs, in 489

arbitrary applied magnetic fields. In low fields, Eq. (13) ac- 490

counts for the role of the phase in determining the equivalent 491

fraction of the total width of the junction over which current 492

density flows. This fraction follows from the distribution of 493

vortices inside the junction and the (cancellation of) local 494

currents flowing in opposite directions. The form of Eq. (13) 495

can be compared with either the second Ginzburg-Landau 496

equation in gauge-invariant form [Eq. (9)] or the Josephson 497

relation J = JDJ sin �ϕ [40] (where the current density J be- 498

tween two points of interest is related to the gauge-invariant 499

phase difference between them, �ϕ). In both cases there are 500

two factors, one associated with the magnitude of the or- 501

der parameter and the other with phase. If we consider the 502

Josephson relation averaged over the junction, we can replace 503

the phase term with Clem’s power-law term [Eq. (13)]. This 504

ensures that Jc(Bapp) reproduces Clem’s results in low fields, 505

when the applied field is far below the upper critical magnetic 506

field of the junction. In high fields, the order parameter is 507

depressed within the superconducting electrode, and we need 508

a field-dependent form for JDJ to account for this. In a narrow 509

junction, both the order parameter and the local current den- 510

sity vary approximately on a length scale of the order of the 511

vortex-vortex spacing a∗
0, instead of the junction width ws. We 512

therefore replace the zero-field JDJ term in Eq. (13) with our 513

new analytic field-dependent JDJ expressions [Eqs. (19) and 514

(23)] with the width ws replaced by the vortex-vortex spacing. 515
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FIG. 8. Simulations of the critical current of a narrow, thin
junction in the weak-coupling limit with the Ginzburg-Landau tem-
perature parameter in the normal region αn = −40.0, a junction
thickness d = 0.25ξs smaller than the superconducting coherence
length ξs, and a width ws much smaller than the Josephson pene-
tration depth λJ but much larger than ξs. The periodic system size
in the x direction l = 100.0ξs, and the Ginzburg-Landau parame-
ter and friction coefficient in the superconductor are κ = 40.0 and
η = 5.79, respectively, throughout. The grid spacing was chosen
to be hx = hy = 0.25ξs, and the time step δt = 0.5τ . Dashed lines
represent Eq. (28) for the example parameters B∗

c2 = 1.8Bc2 and c0 =
c1 = 0.58. Remaining computational parameters are as described in
the text. Inset: Kramer plot of data shown in the main plot.

This yields our approximation for Jc for narrow junctions over516

the full field range as517

Jc(Bapp) = c0

(
φ0

Bappw2
s

)c1

JDJ(Bapp,ws → a∗
0 ), (27)

where we set q2 = Bapp/B∗
c2 and JDJ is taken to be Eq. (19) and518

Eq. (23) in the thin limit and in the thick limit, respectively.519

We have replaced Bc2 by B∗
c2 to include junctions such as that520

considered above, where there is an insulating surface barrier521

along the edge of both the superconductor and the junction522

and at fields between B∗
c2 and Bc2 current only flows along523

the edges [47]. In the case of a simple thin film between two524

insulators, the result Jc ≈ JD(1 − Bapp/B∗
c2)3/2 is obtained, as525

found previously by Abrikosov [48] and Boyd [49] close to526

the effective upper critical field of the system. For junctions527

with normal barrier coatings, Jc(Bapp = B∗
c2) = 0 as required.528

In the weak-coupling limit, Eq. (27) for thin junctions takes529

the form530

Jc(Bapp) = J0
c0ξs

2d (1 − αn)

(
φ0

Bappw2
s

)c1
(

1 − Bapp

B∗
c2

)2

, (28)

whereas for thick junctions,531

Jc(Bapp) = J0
c0√

1 − αn
exp

(
− d

√
1 − αn

ξs

)
×

(
φ0

Bappw2
s

)c1
(

1 − Bapp

B∗
c2

)2

. (29)

Two-dimensional simulations for two narrow junctions in high532

field are plotted in Fig. 8 and compared with Eq. (28) with533

c0 = c1 = 0.58 and B∗
c2 set to 1.8Bc2. Excellent agreement is534

seen between the analytic functional form and the simulated535

TABLE I. Material parameters for the reference 3D polycrys-
talline system for the 3D Jc investigations. Jc is decreased by 2.5% at
each current step.

Parameter Value

h{x,y,z}/ξs(T ) 0.5
Lx/ξs(T ) 150.0
Ly/ξs(T ) 150.0
Lz/ξs(T ) 150.0
D/ξs(T ) 22.4
dGB/ξs(T ) 0.5
αGB −2.0

data, with only B∗
c2 taken as a free parameter. In this paper, we 536

have not considered the very low field, self-field regime where 537

the applied field is less than the applied field and Jc(Bapp ∼ 0) 538

is broadly field independent [50]. For the high-temperature su- 539

perconductors, we also set aside magnetic fields close to B∗
c2, 540

where variations in Tc and thermal activation play a role [51]. 541

At intermediate fields (i.e., B ∼ B∗
c2/5), Eqs. (28) and (29) 542

both simplify to power-law behavior. For high-temperature 543

superconductors, although there are a wide range of pinning 544

landscapes that can produce a wide range of field dependen- 545

cies [52], we note that power-law dependence with c1 ≈ 0.6 546

has been clearly observed in many powder-in-tube and tape 547

high-temperature superconductors at intermediate magnetic 548

fields [23,50,53,54]. 549

V. 3D POLYCRYSTAL FLUX FLOW AND CRITICAL 550

CURRENT SIMULATIONS 551

The morphology of grain boundaries in real 3D systems 552

is significantly more complex than that considered in the 2D 553

Josephson junction simulations of Sec. IV. Here, we inves- 554

tigate the critical current density that can be carried by a 555

3D polycrystalline system containing Josephson-junction-like 556

grain boundaries using the TDGL-HIκ algorithm [25]. 557

A. Polycrystalline simulations 558

To create our model polycrystalline material for criti- 559

cal current and flux pinning simulations, we first generate 560

a 3D tessellation of equiaxed grains, periodic in all three 561

dimensions, with grain sizes corresponding to a typical log- 562

normal grain size distribution for a grain growth system, using 563

the NEPER software package v3.5.0 [55,56]. 564

For use as a simulation output, this tessellation is post- 565

processed, with every mesh point in the superconducting 566

volume within a distance D/2 of a face of a crystal grain 567

assigned grain boundary properties with α = αGB. In this 568

manner, a rasterized approximation to an equiaxed polycrystal 569

is constructed, with grain boundaries given degraded super- 570

conducting properties with αGB < 1. The base parameters of 571

our model polycrystalline system are given in Table I. We 572

consider Nb3Sn at T = 4.2 K with a critical temperature of 573

Tc,s = 17.8 K, a coherence length ξs(4.2 K) ≈ 3.12 nm, a size 574

for the base system of 468 × 468 × 468 nm, and a mean grain 575

size D = 70 nm. An example distribution of grain bound- 576

aries for this set of parameters, along with distributions of 577
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FIG. 9. A snapshot of the time-dependent simulation at Japp = 10−2JD and Bapp = 0.2Bc2 for the base system described in Table I. Top
left: grain boundary network of the periodic physical system. Bottom left: distribution of the magnitude of the order parameter |ψ | across the
surfaces of the computational domain. The cores of the fluxons are clearly observable within the grains [64]. Right: distribution of vortices
around an example grain in the system. The surface of the region enclosing points where |ψ | < 0.25 is displayed in red, and the grain boundary
regions are shown in black.

|ψ | over the simulation domain and close to a representative578

grain, is presented in Fig. 9. The flux pinning force per unit579

volume Fp = JcBapp as a function of reduced field, for poly-580

crystalline material with different grain boundary parameters581

αGB, obtained from TDGL-HIκ , is shown in Fig. 10(a). For582

consistency, we have confirmed that in homogeneous systems583

with no flux pinning structures present, no significant critical584

current densities are found in these simulations. The optimum585

flux pinning forces occur when the grain boundary thick-586

ness dGB is close to the effective (normal metal) coherence587

length in the grain boundary ξGB = √−αGBξs (defined when588

αGB < 0), although we note that the spatial extent of the nor-589

mal properties associated with the local strain and electronic590

properties of the grain boundary may extend well beyond591

its chemical or structural thickness [57]. For more degraded592

boundaries, Jc decays approximately exponentially at a rate593

proportional to dGB/ξGB for dGB/ξGB > 1, and for αGB <594

−4.0 the maximum in the flux pinning force Fp ∝ JcBapp595

is found at higher reduced field values. For more weakly596

degraded grain boundaries (αGB > −4.0), we find a Kramer597

dependence [18,58] such that the maximum flux pinning force598

per unit volume is close to 0.2Bc2 and consistent with the599

field dependence of other computational results obtained us-600

ing a different polycrystalline grain morphology [2]. Both the601

magnitude of Jc with a grain size of 70 nm at 10−3JD and602

the Kramer field dependence are similar to those observed603

experimentally in optimized polycrystalline Nb3Sn [1] sug-604

gesting that the simulations capture the important physical605

processes in these systems. In the time-dependent simulations606

when J > Jc (i.e., showing continuous vortex movement), we607

see significant differences in the curvature of moving vortices,608

above and below the optimum. In strongly degraded bound-609

aries when αGB < −4.0, vortices are significantly curved and610

follow grain boundaries, being preferentially held at points611

where two or more grain boundaries meet, whereas for αGB >612

−2.0, vortices remain mostly straight, aligned along the ap-613

plied field in the z axis. Experimental and simulation flux 614

pinning curves for different mean grain sizes are presented 615

and compared in Fig. 11. In Fig. 11(b) the maximum flux 616

pinning force per unit volume as a function of grain size is 617

similar to the experimental values for D > 100 nm. However, 618

for very small grain sizes, our simulations show F max
p values 619

that are larger than observed in experiment. The reduction 620

in Jc found in fine-grained materials has been noted before 621

and was attributed to degraded grain boundaries, stress in 622

the superconducting layer generated during the fabrication 623

process, and/or degraded (off-stoichiometric) grains [59]. Our 624

computational results (that show no such reduction) enable 625

us to tune grain boundary properties and morphologies that 626

provide estimates for improved small-grained polycrystalline 627

materials. Although we have found similar field dependencies 628

in 3D polycrystalline systems before [37], these simulations 629

display the increase of F max
p with decreasing grain size D in 630

bulk materials. This qualitative agreement with experiment is 631

important because historically, an increase in Jc for reduced 632

grain size has been considered the primary signature of flux 633

pinning. 634

B. Flux pinning in polycrystalline materials 635

The Kramer-like field dependence implied by Eq. (28) 636

has been widely observed in low-temperature polycrystalline 637

superconductors such as Nb3Sn [20] up to Bc2, and the w−1.2
638

factor in Eq. (27) is reminiscent of the inverse grain size 639

dependence observed for Jc experimentally [60] and in our 640

simulations (Fig. 11). Pinning functions similar to the Kramer 641

field dependence, calculated for different pinning landscapes 5642

by researchers such as Hampshire and Taylor [61] and Dew- 643

Hughes [62], have been used extensively for the last 50 years 644

to describe experimental Jc data. This approach has had the 645

long-standing limitation that the pinning parameters derived 646

in such analysis cannot easily be related to local properties 647
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FIG. 10. (a) Normalized flux pinning force Fp/10−3JDBc2 for the
polycrystalline 3D system described in Table I with varying αGB at
various applied magnetic fields. The maximum in the flux pinning
force is found close to Bapp = 0.2Bc2 for αGB > −4.0 but moves to
higher fields as the grain boundaries become more strongly normal
(as αGB decreases). Solid lines are fits to Eq. (30) with r = 1.1.
Crosses represent a comparison with typical experimental data for
bronze-route Nb3Sn, taken from Ref. [1]. Inset: fitting parameters
for Eq. (30) as a function of αGB. (b) Maximum flux pinning force
F max

p /JDBc2 as a function of
√

1 − αGB. Line fits are comparisons
with Eq. (30) with A = 0.25, r = 0.6, p = 0.5, and q = 2, and with
Eq. (27).

of grain boundaries. Motivated by such considerations, we648

propose an expression for the flux pinning force per unit vol-649

ume for a polycrystalline system with weakly coupled grains650

(with highly degraded grain boundaries) based on Eq. (27)651

that enables comparison between the results provided here652

with a functional form similar to the widely used flux pinning653

formulism, where654

Fp(Bapp) ≈ J0Bc2A

(
φ0

B∗
c2D2

)r

(b∗)p(1 − b∗)q f (αGB) (30)

and we have replaced ws by the grain size D, defined the655

pinning parameters p ≈ 1 − c1 and q ≈ 2, introduced the new656

empirical parameters A and r, and made the weak-coupling657

approximations that f (αGB) = ξs/2d (1 − αGB) in the thin658

limit and f (αGB) = exp (−d
√

1 − αGB/ξs)/
√

1 − αGB in the659

thick-junction limit for the grain boundary (GB). The empir-660

ical parameters A and r account for the fraction of the total661

vortex length that is held within grain boundaries. F max
p is662

FIG. 11. (a) Normalized flux pinning force Fp/10−3JDBc2 for a
polycrystalline 3D system with varying mean grain size D. All other
system parameters are set to the values given in Table I. Solid lines
are fits to Eq. (30) with r = 1.1. Crosses represent a comparison
with typical experimental data for bronze-route Nb3Sn, taken from
Ref. [1]. Inset: critical current density Jc as a function of applied
field for varying grain size. (b) Maximum flux pinning force F max

p 6
for the polycrystalline 3D system described in Table I with varying
grain size D compared with experimental data for the maximum flux
pinning force measured in experimental Nb3Sn samples taken from
Ref. [65]. The dashed line represents the fit to Eq. (30) with p = 0.5
and q = 2 with remaining free parameters found to be A = 0.09
and r = 0.6. Experimental data: Schauer and Schelb [59], West and
Rawlings [66], Scanlan et al. [67], Shaw [68], Bonney et al. [65], and
Marken [69]. 7

found as usual at the field b∗ = p/(p + q). In standard flux 663

pinning analysis, p and q are usually expected to be constant 664

for a single flux pinning mechanism [63]. Figures 10 and 11 665

show that these parameters can vary significantly among ma- 666

terials that have a single grain boundary mechanism operating. 667

Comparisons of Eq. (30) in the thick-junction limit with 668

our TDGL results are presented in Figs. 10(a) and 11(a). A, p, 669

and q were taken to be free parameters for each flux pinning 670

curve, and r = 1.1 was obtained as a global fit parameter 671

from the combined set of simulations. The maximum in the 672

flux pinning force per unit volume, F max
p , has been com- 673

pared with a constrained form of Eq. (30) in Figs. 10(b) and 674

11(b), in which the pinning parameters are restricted to their 675

Kramer-like values p = 0.5, q = 2. The decrease in critical 676

current density as the grain boundary properties degrade (as 677
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√
1 − αGB increases) in the weak-coupling limit of grains678

appears to be well represented by Eq. (30) and f (αGB) taken679

from Eq. (25). In this case, the parameters A and r are closely680

related to their 2D equivalents in Eq. (29), with r ≈ c1 ≈ 0.6681

and in the limit of strongly degraded grain boundaries, A ≈682

c0/3, as shown by Fig. 10. The observation that the prefactor683

c0 in the 2D junction simulations is approximately three times684

larger than the prefactor A in the 3D simulations here may685

partly be due to the stronger surface barrier existing in the686

junction system at the junction-insulator interface. The sur-687

face barrier at the grain-grain boundary interface in the 3D688

simulations is generally weaker as a result of the proximity689

effect limiting supercurrents at the interface, similar to the ef-690

fect observed at metallic interfaces. For the polycrystal system691

in Table I, which lies close to the peak Fp,max in Fig. 11, Jc ∼692

b−0.4(1 − b)2.7 (p = 0.6, q = 2.7), close to the Kramer-like693

field dependence of the critical current density Jc ∼ b−0.5(1 −694

b)2 (p = 0.5, q = 2). Deviations of p and q from predictions695

can occur due to multiple pinning mechanisms contributing to696

Jc concurrently; indeed, videos of the simulated vortex state in697

motion (not shown here) show complex vortex depinning from698

grain boundaries, line intersections, and triple points across699

the range of αGB in Fig. 10.700

VI. DISCUSSION AND CONCLUSIONS701

It is important to note that all the polycrystalline simula-702

tions carried out in this work are in the high-κ limit, when703

the local magnetic field is equal to the applied magnetic field704

in the system at every point. Nevertheless, we expect the re-705

sults to be qualitatively accurate for real systems of materials706

such as Nb3Sn, since the penetration depth in such materials707

λs ≈ 100 nm is still of the order of the grain size [1], and so708

in high fields, the field from the magnetization of grains will709

still be small relative to the applied magnetic field. The same710

is not necessarily true in very weak applied fields though, and711

thus care should be taken interpreting results in weak applied 712

fields as a result. Nevertheless, large-scale TDGL simulations 713

provide an essential complementary tool for time-consuming 714

and expensive experiments studying systematic variations in 715

grain size in real materials. We derived expressions for the 716

critical current density as a function of field from a junction- 717

based model, used physical arguments to extend their range 718

of validity, and confirmed the results obtained using TDGL. 719

The equations obtained qualitatively agree with experimental 720

data for polycrystalline superconductors such as Nb3Sn and 721

existing models based on flux shear through grain boundaries 722

[60]. We have also performed 3D simulations of equiaxed 723

polycrystalline systems in the high-κ limit, which show, for 724

a complex polycrystalline system, an increase in the critical 725

current density of the system with decreasing grain size in 726

qualitative agreement with experiment [59]. Such simulations 727

predict that maximum critical currents are achieved when the 728

grain boundary thickness is similar to the effective coherence 729

length in the grain boundary region. 730

Data are available on the Durham Research Online website 731

[70]. The code is available on request from D.P.H. 732

ACKNOWLEDGMENTS 733
FQ

This work is funded by EPSRC Grant No. EP/L01663X/1, 734

which supports the EPSRC Centre for Doctoral Training in 735

the Science and Technology of Fusion Energy. This work 736

has been carried out within the framework of the EUROfu- 737

sion Consortium and has received funding from the Euratom 738

Research and Training Programme 2014–2018 under Grant 739

Agreement No. 633053. This work made use of the facilities 740

of the Hamilton HPC Service of Durham University. The au- 741

thors would like to thank M. Raine, A. Smith, J. Greenwood, 742

S. Chislett-McDonald, C. Gurnham, B. Din, and P. Branch in 743

Durham and E. Surrey and F. Schoofs at UKAEA for their 744

support and useful discussions. 8745

[1] G. Wang, M. J. Raine, and D. P. Hampshire, How resistive must
grain-boundaries be to limit JC in polycrystalline superconduc-
tors? Supercond. Sci. Technol. 30, 104001 (2017).

[2] G. J. Carty and D. P. Hampshire, Visualising the mechanism
that determines the critical current density in polycrystalline su-
perconductors using time-dependent Ginzburg-Landau theory,
Phys. Rev. B 77, 172501 (2008).

[3] A. Gurevich and L. D. Cooley, Anisotropic flux pinning in a
network of planar defects, Phys. Rev. B 50, 13563 (1994).

[4] D. P. Hampshire and S.-W. Chan, The critical current density
in high fields in epitaxial thin films of YBa2Cu3O7: Flux pin-
ning and pair-breaking, J. Appl. Phys. (Melville, NY) 72, 4220
(1992).

[5] P. Sunwong, J. Higgins, Y. Tsui, M. Raine, and D. P. Hampshire,
The critical current density of grain boundary channels in poly-
crystalline HTS and LTS superconductors in magnetic fields,
Supercond. Sci. Technol. 26, 095006 (2013).

[6] L. Dobrosavljević-Grujić and Z. Radović, Magnetic field de-
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M. M. Doria, L. Covaci, and F. M. Peeters, Dynamic and static
phases of vortices under an applied drive in a superconducting
stripe with an array of weak links, Eur. Phys. J. B 85, 130
(2012).

003000-12

https://doi.org/10.1088/1361-6668/aa7f24
https://doi.org/10.1103/PhysRevB.77.172501
https://doi.org/10.1103/PhysRevB.50.13563
https://doi.org/10.1063/1.352325
https://doi.org/10.1088/0953-2048/26/9/095006
https://doi.org/10.1016/0921-4534(91)91281-8
https://doi.org/10.1088/0953-2048/6/7/015
https://doi.org/10.1103/PhysRevB.81.144515
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1103/PhysRevB.78.020510
https://doi.org/10.1103/PhysRevLett.107.177008
https://doi.org/10.1140/epjb/e2012-30013-7


XK10560W PRRESEARCH April 22, 2022 13:32

CRITICAL CURRENT DENSITY OF … PHYSICAL REVIEW RESEARCH 00, 003000 (2022)

[13] G. Kimmel, I. A. Sadovskyy, and A. Glatz, In silico optimiza-
tion of critical currents in superconductors, Phys. Rev. E 96,
013318 (2017).

[14] A. E. Koshelev, I. A. Sadovskyy, C. L. Phillips, and A. Glatz,
Optimization of vortex pinning by nanoparticles using simu-
lations of the time-dependent Ginzburg-Landau model, Phys.
Rev. B 93, 060508(R) (2016).

[15] H. J. Fink, Supercurrents through superconducting-normal-
superconducting proximity layers. I. Analytic solution, Phys.
Rev. B 14, 1028 (1976).

[16] F. S. Bergeret and J. C. Cuevas, The vortex state and Josephson
critical current of a diffusive SNS junction, J. Low Temp. Phys.
153, 304 (2008).

[17] J. C. Cuevas and F. S. Bergeret, Magnetic Interference Patterns
and Vortices in Diffusive SNS Junctions, Phys. Rev. Lett. 99,
217002 (2007).

[18] E. J. Kramer, Scaling laws for flux pinning in hard supercon-
ductors, J. Appl. Phys. (Melville, NY) 44, 1360 (1973).

[19] D. M. J. Taylor and D. P. Hampshire, The scaling law for the
strain dependence of the critical current density in Nb3Sn super-
conducting wires, Supercond. Sci. Technol. 18, S241 (2005).

[20] S. A. Keys and D. P. Hampshire, A scaling law for the critical
current density of weakly and strongly-coupled superconduc-
tors, used to parameterise data from a technological Nb3Sn
strand, Supercond. Sci. Technol. 16, 1097 (2003).

[21] S. A. Keys, N. Koizumi, and D. P. Hampshire, The strain and
temperature scaling law for the critical current density of a
jelly-roll Nb3Al strand in high magnetic fields, Supercond. Sci.
Technol. 15, 991 (2002).

[22] N. Cheggour, M. Decroux, Ø. Fischer, and D. P. Hampshire,
Irreversibility line and granularity in Chevrel phase supercon-
ducting wires, J. Appl. Phys. (Melville, NY) 84, 2181 (1998).

[23] L. Le Lay, C. M. Friend, T. Maruyama, K. Osamura, and D. P.
Hampshire, Evidence that pair breaking at the grain boundaries
of Bi2Sr2Ca2Cu3Ox tapes determines the critical current density
above 10 K in high fields, J. Phys.: Condens. Matter 6, 10053
(1994).

[24] N. B. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford University Press, Oxford, 2009).

[25] I. A. Sadovskyy, A. E. Koshelev, C. L. Phillips, D. A. Karpeyev,
and A. Glatz, Stable large-scale solver for Ginzburg–Landau
equations for superconductors, J. Comput. Phys. 294, 639
(2015).

[26] J. Fleckinger-Pelle and H. G. Kaper, Gauges for the
Ginzburg-Landau equations of superconductivity, Report No.
ANL/MCS/CP-87416, Argonne National Laboratory, Lemont,
IL (1995).

[27] A. Schmid, A time dependent Ginzburg-Landau equation and
its application to the problem of resistivity in the mixed state,
Phys. Kondens. Mater. 5, 302 (1966).Q

[28] P. G. de Gennes, Superconductivity of Metals and Alloys
(Perseus Books, Boulder, CO, 1999).

[29] S. J. Chapman, Q. Du, and M. D. Gunzburger, A Ginzburg-
Landau type model of superconducting/normal junctions in-
cluding Josephson junctions, Eur. J. Appl. Math. 6, 97 (1995).

[30] S. J. Chapman, Superheating field of Type-II superconductors,
SIAM J. Appl. Math. 55, 1233 (1995).

[31] T. Winiecki and C. S. Adams, A fast semi-implicit finite differ-
ence method for the TDGL equations, J. Comput. Phys. 179,
127 (2002).

[32] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M.
Palumbo, and V. M. Vinokur, Numerical simulation of vortex
dynamics in Type-II superconductors, J. Comput. Phys. 123,
254 (1996).

[33] W. F. Ames, Numerical Methods for Partial Differential Equa-
tions (Academic, San Diego, CA, 1992).

[34] T. Boutboul, V. Abaecherli, G. Berger, D. P. Hampshire, J.
Parrell, M. J. Raine, P. Readman, B. Sailer, K. Schlenga, M.
Thoener, E. Viladiu, and Y. Zhang, European Nb3Sn super-
conducting strand production and characterization for ITER
TF coil conductor, IEEE Trans. Appl. Supercond. 26, 6000604
(2016).

[35] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in Fortran: The Art of Scientific
Computing, 2nd ed. (Cambridge University Press, Cambridge,
1992).

[36] I. A. Sadovskyy, A. E. Koshelev, W.-K. Kwok, U. Welp, and
A. Glatz, Targeted evolution of pinning landscapes for large
superconducting critical currents, Proc. Natl. Acad. Sci. USA
116, 10291 (2019).

[37] G. J. Carty and D. P. Hampshire, The critical current density
of an SNS junction in high magnetic fields, Supercond. Sci.
Technol. 26, 065007 (2013).

[38] I. A. Sadovskyy, A. E. Koshelev, A. Glatz, V. Ortalan, M. W.
Rupich, and M. Leroux, Simulation of the Vortex Dynam-
ics in a Real Pinning Landscape of YBa2Cu3O7−δ Coated
Conductors Coated Conductors, Phys. Rev. Appl. 5, 014011
(2016).

[39] J. R. Clem, Effect of nearby Pearl vortices upon the Ic ver-
sus B characteristics of planar Josephson junctions in thin
and narrow superconducting strips, Phys. Rev. B 84, 134502
(2011).

[40] A. Volkov, Theory of the current-voltage characteristics of one-
dimensional SNS and SN junctions, Zh. Eksp. Teor. Fiz. 66, 758
(1974). Q

[41] M. Tinkham, Introduction to Superconductivity, 2nd ed.
(McGraw-Hill, Singapore, 1996).

[42] P. G. de Gennes, Boundary effects in superconductors, Rev.
Mod. Phys. 36, 225 (1964).

[43] J. C. Hammer, J. C. Cuevas, F. S. Bergeret, and W. Belzig,
Density of states and supercurrent in diffusive SNS junctions:
Roles of nonideal interfaces and spin-flip scattering, Phys. Rev.
B 76, 064514 (2007).

[44] F. Chiodi, M. Ferrier, S. Guéron, J. C. Cuevas, G. Montambaux,
F. Fortuna, A. Kasumov, and H. Bouchiat, Geometry-related
magnetic interference patterns in long SNS Josephson junc-
tions, Phys. Rev. B 86, 064510 (2012).

[45] L. Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. Guéron,
H. Bouchiat, and J. C. Cuevas, Proximity dc squids in the long-
junction limit, Phys. Rev. B 77, 165408 (2008).

[46] T. Y. Hsiang and D. K. Finnemore, Superconducting crit-
ical currents for thick, clean superconductor-normal-metal-
superconductor junctions, Phys. Rev. B 22, 154 (1980).

[47] L. Burlachkov, A. E. Koshelev, and V. M. Vinokur, Trans-
port properties of high-temperature superconductors: Surface vs
bulk effect, Phys. Rev. B 54, 6750 (1996).

[48] A. A. Abrikosov, Concerning surface superconductivity in
strong magnetic fields, Sov. Phys. JETP 20, 480 (1965). Q

[49] R. G. Boyd, Longitudinal critical current in Type-II supercon-
ductors, Phys. Rev. 145, 255 (1966).

003000-13

https://doi.org/10.1103/PhysRevE.96.013318
https://doi.org/10.1103/PhysRevB.93.060508
https://doi.org/10.1103/PhysRevB.14.1028
https://doi.org/10.1007/s10909-008-9826-2
https://doi.org/10.1103/PhysRevLett.99.217002
https://doi.org/10.1063/1.1662353
https://doi.org/10.1088/0953-2048/18/12/005
https://doi.org/10.1088/0953-2048/16/9/323
https://doi.org/10.1088/0953-2048/15/7/301
https://doi.org/10.1063/1.368358
https://doi.org/10.1088/0953-8984/6/46/022
https://doi.org/10.1016/j.jcp.2015.04.002
https://doi.org/10.1017/S0956792500001716
https://doi.org/10.1137/S0036139993254760
https://doi.org/10.1006/jcph.2002.7047
https://doi.org/10.1006/jcph.1996.0022
https://doi.org/10.1109/TASC.2015.2512386
https://doi.org/10.1073/pnas.1817417116
https://doi.org/10.1088/0953-2048/26/6/065007
https://doi.org/10.1103/PhysRevApplied.5.014011
https://doi.org/10.1103/PhysRevB.84.134502
https://doi.org/10.1103/RevModPhys.36.225
https://doi.org/10.1103/PhysRevB.76.064514
https://doi.org/10.1103/PhysRevB.86.064510
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1103/PhysRevB.22.154
https://doi.org/10.1103/PhysRevB.54.6750
https://doi.org/10.1103/PhysRev.145.255


XK10560W PRRESEARCH April 22, 2022 13:32

A. I. BLAIR AND D. P. HAMPSHIRE PHYSICAL REVIEW RESEARCH 00, 003000 (2022)

[50] C. Gurnham and D. P. Hampshire, Self-field effects in a Joseph-
son junction model for Jc in REBCO tapes, IEEE Trans. Appl.
Supercond. 32, 8000205 (2022).

[51] M. Roulin, A. Junod, and E. Walker, Flux lattice melting tran-
sition in YBa2Cu3O6.94 observed in specific heat experiments,
Science 273, 1210 (1996).

[52] R. Willa, A. E. Koshelev, I. A. Sadovskyy, and A. Glatz,
Strong-pinning regimes by spherical inclusions in anisotropic
Type-II superconductors, Supercond. Sci. Technol. 31, 014001
(2018).

[53] P. Sunwong, J. S. Higgins, and D. P. Hampshire, Probes for
investigating the effect of magnetic field, field orientation, tem-
perature and strain on the critical current density of anisotropic
high-temperature superconducting tapes in a split-pair 15 T
horizontal magnet, Rev. Sci. Instrum. 85, 065111 (2014).

[54] C. Senatore, C. Barth, M. Bonura, M. Kulich, and G.
Mondonico, Field and temperature scaling of the critical current
density in commercial REBCO coated conductors, Supercond.
Sci. Technol. 29, 014002 (2016).

[55] R. Quey, P. R. Dawson, and F. Barbe, Large-scale 3D random
polycrystals for the finite element method: Generation, meshing
and remeshing, Comput. Methods Appl. Mech. Eng. 200, 1729
(2011).

[56] R. Quey and L. Renversade, Optimal polyhedral description
of 3D polycrystals: Method and application to statistical and
synchrotron X-ray diffraction data, Comput. Methods Appl.
Mech. Eng. 330, 308 (2018).

[57] H. Hilgenkamp and J. Mannhart, Grain boundaries in high-Tc

superconductors, Rev. Mod. Phys. 74, 485 (2002).

[58] E. J. Kramer, Microstructure - critical current relationships in
hard superconductors, J. Electron. Mater. 4, 839 (1975).

[59] W. Schauer and W. Schelb, Improvement of Nb3Sn high field
critical current by a two-stage reaction, IEEE Trans. Magn. 17,
374 (1981).

[60] D. Dew-Hughes, The role of grain boundaries in determining Jc

in high-field high-current superconductors, Philos. Mag. B 55,
459 (1987).

[61] R. Hampshire and M. Taylor, Critical supercurrents and pinning
of vortices in commercial Nb-60 at. percent Ti, J. Phys. F: Met.
Phys. 2, 89 (1972).

[62] D. Dew-Hughes, Flux pinning mechanisms in Type II supercon-
ductors, Philos. Mag. 30, 293 (1974).

[63] D. Dew-Hughes and M. J. Witcomb, The effect of dislocation
tangles on superconducting properties, Philos. Mag. 26, 73
(1972).

[64] D. Roditchev, V. Brun, L. Serrier-Garcia, J. C. Cuevas, V. H. L.
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