
UKAEA-STEP-PR(23)02

Julita Inca, Andrew Davis, Aleksander Dubas

Benchmarking preconditioners

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

Benchmarking preconditioners

Julita Inca, Andrew Davis, Aleksander Dubas

This is a preprint of a paper submitted for publication in
Physics of Plasmas

Plasma Physics and Controlled Fusion, May 2021

Benchmarking Preconditioners

Julita Inca Chiroque1, Andrew Davis1 and Aleksander Dubas1

1 United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham, Abingdon, UK

Reception date of the manuscript: dd/mm/aaaa
Acceptance date of the manuscript: dd/mm/aaaa

Publication date: dd/mm/aaaa

Abstract— Preconditioners are meant to improve both, the efficiency and robustness of iterative techniques while solving very large
linear systems on a Krylov subspace. However, determining which preconditioner is suitable to be applied on a certain multiphysic
simulation requires a combination of knowledge of preconditioning matrices techniques, types of matrices, Krylov subspaces, iterative
methods, among other Linear Algebra’s foundation. The present work provides a benchmark of the most popular preconditioners available
today, emphasising their respective performance in terms of time of solution of the Finite Element problem, usage of memory, number
of iterations, the value of |R| achieved when converged. The performance evaluation is made using the University Cambridge Research
Computing Service (CDS3) using Message Passing Interface (MPI) implementations that allows parallelisation using 2 nodes of the cluster.
The overview is restricted to three phenomema solved by Partial Differential Equations (PDEs) with the Finite Elements Method taking
into consideration million Degrees of Freedom (DoF) to be solved. Along with the preconditioners, a variety of options were tested to
optimise its performance.

Keywords— preconditioners, MOOSE, HPC, Heat Conduction 2D, Compute Finite Strain Elastic Stress 3D, Navier Stokes 3D

I. INTRODUCTION

S olving a Partial Differential Equation (PDE) involves at
some point, if using the Finite Element Method (FEM),

the resolution of large sparse linear equation system.
To solve a large sparse linear equation system, iterative

methods have been used for many years. Lately, a wide-
ranging of preconditioners have been developed to speed up
the convergence of iterative methods; even more, the purpose
is to make them converged.

At the moment, it is still questionable whether or not it is
possible to apply a specific preconditioner to a certain type of
PDE. This is a desired goal for many researchers nowadays.

This work provides benchmark measurements of precon-
ditioners that helps the simulation of basic multiphysic phe-
nomena to be used in the future, in the simulation of complex
systems as part of a Tokamak at UKAEA.

The physic phenomena problems are the Heat Conduction
2D, Compute Finite Strain Elastic Stress 3D and the Incom-
pressible Navier Stoke 3D.

The benchmark combines a variety of preconditioners
such as the Additive Schwartz Method (ASM), Lower Upper
Method (LU), Incomplete Lower Upper actorization Method
(ILU), Block Jacobi Method (Bjacobi), Jacobi Method, Ge-
ometric Algebraic Multigrid Method (GAMG), and the Par-
allel Algebraic Multigrid (HypreBoomerAMG).

Contact data: Julita Inca Chiroque, julita.incachiroque@ukaea.uk

The set of benchmark problems also take into considera-
tion the Newton method, the Preconditioned Jacobian-Free
Newton Krylov (PJFNK) and the use of 112 MPI cores (2
nodes of a cluster) to test parallelisation performance.

The Krylov Subspace assessed in this work to perform the
benchmark are as follows: Conjugate Gradient (cg), BiCon-
jugate Gradient (bcg), Conjugate Gradient Squared (cgs),
Biconjugate Gradient Stabilized (bcgs), Conjugate Resid-
ual (cr), Minimum Residual (minres), Generalized Minimal
Residual (gmres), Flexible Generalized Minimal Residual
(fgmres), Chebyshev, Richardson, PREONLY, Transpose-
Free Quasi-Minimal Residual (1) (tfqmr), Transpose-Free
Quasi-Minimal Residual (2) (tcqmr), Least Squares (lsqr).

This paper primarily presents results of the faster precon-
ditioners, including its optimisation flags, while converging
a solution for the multiphysic phenomena already described.

These results are in regards of the total execution time of
the simulation, the time of the calculation of the Finite Ele-
ment problem (represented by the FEProblem::solve pa-
rameter), the memory usage for the entire simulation, the
time that the preconditioner used for the simulation, the value
of the norm of the residual (|R|), and the number of iterations.

The findings of this work reinforces two foundations: pre-
conditioners perform better while parallelising the execution,
and the use of the optimisation flags of the preconditioners
speed up the time and helps converging solutions of the large
sparse linear equation system.

PRECONDITIONERS FOR LARGE GEOMETRIES INCA, DAVIS AND DUBAS

II. THE CLUSTER

This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3) oper-
ated by the University of Cambridge Research Computing
Service [1], provided by Dell EMC and Intel using Tier-
2 funding from the Engineering and Physical Sciences Re-
search Council (capital grant EP/P020259/1), and DiRAC
funding from the Science and Technology Facilities Coun-
cil [2]. CSD3 is a our new Cascade Lake cluster that con-
tains 112 nodes dedicated to UKAEA. Each node consists
of 56 cores Intel Xeon Platinum 8276 CPU @ 2.20GHz,
and 192GB of memory. The interconnection uses Mellanox
HDR100 with full-bandwidth, via fat tree with 3:1 over-
subscription.

III. THE MULTIPHYSIC FRAMEWORK

Multiphysic Object Oriented Simulation Environment
(MOOSE) is a framework which is built using many
software libraries like PETSc (Portable, Extensible Toolkit
for Scientific Computation), HYPRE (High Performance
Preconditioners) and libMesh (Mesh generator). MOOSE
provides packages that represent multiphysic phenomena
based on solutions of PDEs, in a form of Kernel.

The computational toolkit MOOSE allows simulation of a
PDE by creating the mesh of the phenomena using LibMesh;
and using PETSc to calculate the unknown variables of a
problem. MOOSE supports HPC using the MPI library.
PETSc already comprises software to use different numeri-
cal elements such as Krylov subspaces, solver types, differ-
ent types of matrices, and preconditioning iterative methods.
The combination of these elements are crucial to solve a sys-
tem of linear equations [3].

IV. THE PRECONDITIONERS

A linear system equation is commonly defined by the for-
mula: A~x =~b; where A is a quadratic matrix, b is a known
vector, and x is a vector to be solved. In this scenario,
MOOSE supports through PETSc, the construction of the
matrix, the organization of the entries while solving the lin-
ear equation system, and the solver type to the linear equation
system. In this case, it was tested: NEWTON and PJFNK.
Whenever this formula does not convergence due to condi-
tion or nature of the matrix, a preconditioner comes in the
form of a matrix by helping the convergence of the linear
equation system. Different preconditioners transform the ini-
tial matrix calculation by applying different algorithms. One
parameter to choose the best approximation of the simulation
is the value of the norm of the residual |R|.
Conforming to [4], the PETSc software comprises of 42
types of preconditioners. This list was obtained from the its
database by using the output of the command pc_type:

asm, bjacobi, cholesky, eisenstat, exotic, gamg,
hypre, hypre_boomeramg, hypre_euclid, composite,
hypre_parasails, hypre_pilut, icc, ilu, jacobi,
ksp, lu, mg, ml, none, pfmg, redundant, sor, tfs,
telescope, , pbjacobi, vpbjacobi, shell, mat, nn,
fieldsplit, galerkin, cp, patch, lsc, svd, bddc,
redistribute, kaczmarz, gasm, syspfmg, lmvm

V. THE SIMULATIONS

a. Heat Conduction 2D (steady state)

This simulation allows a mechanism of distributing heating
in a certain two dimensional domain without a production of
internal heat. It is governed by the Laplace equation (1) to
find out the Temperature of each point of a mesh.

∂ 2T
∂x2 +

∂ 2T
∂y2 = 0 (1)

This elliptic PDE can be solve by using finite differences
for the second derivative as it is stated in (2).

ux,y+h +ux,y−h +ux+h,y +ux−h,y −4ux,y = 0 (2)

where u(x,y)≈ T (x,y), h = 20/n, n = size of an interval.

The MOOSE’s Kernel that solves this simulation is the
Heat Conduction [5]. The type of element set is QUAD4
which indicates a form of square, and the calculation of
the temperature has to be done in the 4 vertex (node of the
square). A first order of Lagrange is also configured for the
solution.

Fig.1 shows the conditions set in the first experiment. The
temperature that is going to be spread throughout the steel
square of 1m x 1m is constricted to the temperatures defined
in the Boundary Conditions (BC). On the top, the Dirichlet
BC was imposed with a fixed temperature of 373o. In the
bottom, another Dirichlet BC was fixed to 298o. On the left,
a Neumann BC that uses Heat Flux is defined to disperse the
temperature in the Y axis from 3000o. On the right, another
Neumann BC is establish to use the adiabatic mode with not
heat transfer.

Fig. 1: Boundary Conditions for Heat Conduction 2D

Additional configuration:

Heat capacity of steel is 460 J/(kg°C)
Thermal conductivity of steel is 29.7

b. Compute Finite Strain Elastic Stress 3D

One of the most performed calculations in the fusion engi-
neering are coupled thermo-mechanical simulations, where
the displacement field is directly related to the absolute tem-
perature.

The material’s properties utilizes in this experiment are:
density steel, stress, strain, and the elasticity tensor steel. The
stress of the material is calculated on each point of the mesh,
as well as the displacement suffered on each direction (x, y,
z).

Plasma Physics and Controlled Fusion, May 2021

The governing equation for this thermo-mechanical problem
are defined in the Small Linearized Total Strain formula (3),
and the calculation of Compute Linear Elastic Stress Stresses
(4) in Tensor Mechanics:

ε =
1
2
(u∇+∇u)when

∂u
∂x

<< 1 (3)

σi j =Ci jklε
total
kl (4)

The stress and the displacement are configured in MOOSE
by using [6] [7] [8] and the kernel Rank Two Scalar Aux [9].
The second order of Lagrange is configured for the solution,
and the type element is HEX20 where the element is a cube
with 20 points distributed as 3 nodes per side of the cube.

Fig.2 shows that the DirichletBC is used for the three di-
rections. On x, it is set that there is not going to be a displace-
ment, as well as in the z direction. On y, it is set a slightly
deformation of −0.01

Fig. 2: Boundary Conditions for the Compute Finite Strain Elastic
Stress 3D

Additional configuration:

Density of steel is 7800
Youngs modulus is 200e9
Poissons ratio is 0.3

c. The Incompressible Navier Stoke 3D

This simulation allows a mechanism of distributing a viscous
incompressible fluid in a certain three dimensional domain.
It is governed by the following equations (c) (c) (c) to find
out the Velocity in the three dimensions of each point of a
mesh.

ρ

(
∂vx
∂ t + vx

∂vx
∂x + vy

∂vx
∂y + vz

∂vx
∂ z

)
=

µ

[
∂ 2vx
∂x2 + ∂ 2vx

∂y2 + ∂ 2vx
∂ z2

]
− ∂P

∂x +ρgx

ρ

(
∂vy
∂ t + vx

∂vy
∂x + vy

∂vy
∂y + vz

∂vy
∂ z

)
=

µ

[
∂ 2vy
∂x2 +

∂ 2vy
∂y2 +

∂ 2vy
∂ z2

]
− ∂P

∂y +ρgy

ρ

(
∂vz
∂ t + vx

∂vz
∂x + vy

∂vz
∂y + vz

∂vz
∂ z

)
=

µ

[
∂ 2vz
∂x2 + ∂ 2vz

∂y2 + ∂ 2vz
∂ z2

]
− ∂P

∂ z +ρgz

In order to represent the continuity equation that allows
the conservation of the fluid is calculated with (5):

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z
= 0 (5)

The MOOSE’s kernel that solves these equations on the
three dimensions (x, y, z) is called INSMomentumLaplace-
Form [10]. The corresponding MOOSE’s kernel to calculate
the pressure is INSMass [11].

The type element set is HEX8 that represents a cube with
eight nodes where the calculation of the velocity and the
pressure, is done.

Fig.3 shows the Boundary Conditions (BC) configuration.
The DirichletBC is used for the six walls on each dimension.
On x, the velocity is set with zero on the top, bottom, front
and back. On the left, the velocity is set to 0.005 and on
the right, the pressure is set to zero. For the y dimension,
the velocity is set to zero to all the walls (top, bottom, front,
back, left, right). Similarly, on the z direction, the velocity is
set to zero for all its sides.

Fig. 3: Boundary Conditions for Incompressible Navier Stoke 3D

One way to solve Navier Stokes is by applying the Stream-
line upwind Petrov–Galerkin pressure-stabilizing (SUPG-
PSPG) method to achieve stabilization in the solution ob-
tained. The integration by parts for the Pressure calculation
is disabled.

Additional configuration:

Density is 1000
Viscosity is 0.001

VI. THE EXPERIMENT

a. Applying KSP options to preconditioners

According to [12], for large-scale sparse linear systems,
Krylov-subspace methods are among the most powerful tech-
niques. Then, a combination of 360 options were performed
along the preconditioners in this experiment. As follows, the
list of KSP and KSP options tested:

• Conjugate Gradient (cg)

• BiConjugate Gradient (bcg)

• Conjugate Gradient Squared (cgs)

• Biconjugate Gradient Stabilized (bcgs)

• Conjugate Residual (cr)

• Minimum Residual (minres)

• Generalized Minimal Residual (gmres)

• Flexible Generalized Minimal Residual (fgmres)

• Chebyshev

• Richardson

• PREONLY

• Transpose-Free Quasi-Minimal Residual (1) (tfqmr)

• Transpose-Free Quasi-Minimal Residual (2) (tcqmr)

• Least Squares (lsqr)

PRECONDITIONERS FOR LARGE GEOMETRIES INCA, DAVIS AND DUBAS

Additionally, other configurations are set such as the posi-
tioning of the KSP type (right, left, or left - right). The Scal-
able Nonlinear Equations Solvers (SNES) type such Newton
based nonlinear solver that uses a line search (newtonls) and
Newton based nonlinear solver that uses a trust region (new-
tontr) were tested. In regards to the tolerances, MOOSE pro-
vides limits for both, the absolute and relative tolerance in
the linear and non-linear calculations respectively.

b. Applying options of the preconditioners

Seven preconditioners were selected to do the benchmark

• Additive Schwartz Method (ASM)

• Lower Upper Method (LU)

• Incomplete Lower Upper actorization Method (ILU)

• Block Jacobi Method (Bjacobi)

• Jacobi Method

• Geometric Algebraic Multigrid Method (GAMG)

• Parallel Algebraic Multigrid (HypreBoomerAMG)

c. Getting the best options for preconditioners

Having the faster results from the combination of the KSP
types and SNES options; the outcome is tested along the
own options of the preconditioners already listed. Finally,
the faster results are performed for millions of DoFs cases.

VII. RESULTS

a. Heat Conduction 2D

The faster times and number of solve converged outputs are
getting by using the NEWTON method over the PJFNK
method. Likely, the MPI performed better among the other
modes such OpenMP and Hybrid (OpenMP+MPI). Then,
the results shown as follows are restricted to these conditions:

DoF: 163865601
Mesh Size: 12800 x 12800
MPI cores: 112 (2 nodes)
Solve Type: NEWTON

HypreBommerAMG is the fastest preconditioner that helps
converging. It is configured with FGMRES, CGS and CG:

Preconditioner with KSP options Execution T(s)
(FE solve) (s)

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_right -ksp_type=fgmres

213.35
(67.033)

-pc_type=hypre -pc_hypre_type=boomeramg
-pc_factor_shift=NONZERO -ksp_type=cgs

-snes_type=newtonls

219.75
(69.514)

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_right -pc_factor_shift=NONZERO

-ksp_type=cg -snes_type=newtontr

220.20
(69.951)

Later, the following options of the HypreBommerAMG
preconditioner are tested along with the FGMRES method,
using right preconditioning; as the CG, and the CGS method.

-pc_hypre_boomeramg_strong_threshold=0.25
-pc_hypre_boomeramg_max_levels=15
-pc_hypre_boomeramg_max_levels=20
-pc_hypre_boomeramg_agg_nl=2
-pc_hypre_boomeramg_agg_nl=3
-pc_hypre_boomeramg_agg_num_paths=4
-pc_hypre_boomeramg_agg_num_paths=5
-pc_hypre_boomeramg_agg_num_paths=6
-pc_hypre_boomeramg_truncfactor=0.2
-pc_hypre_boomeramg_truncfactor=0.3
-pc_hypre_boomeramg_truncfactor=0.4
-pc_hypre_boomeramg_P_max=2

Then, the best combination tested that accomplishes the best
time for solving the Heat Conduction 2D is:
hypre:

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_right -pc_factor_shift=NONZERO
-ksp_type=cg -snes_type=newtontr
-pc_hypre_boomeramg_truncfactor=0.4

Similarly, it is listed the best combination of options for:

bjacobi:

-pc_type=bjacobi -ksp_type=cg -snes_type=newtontr

asm:

-pc_type=asm -ksp_type=cgs -snes_type=newtonls
-pc_asm_overlap=32 -pc_asm_type=interpolate

gamg:

-pc_type=gamg --pc_factor_shift=NONZERO --ksp_type=cg

jacobi:

-pc_type=jacobi --ksp_left --ksp_type=tcqmr

ilu:

-pc_type=ilu -ksp_left -ksp_type=cr
-pc_type_ilu_levels=32

lu:

-pc_type=lu -ksp_left -ksp_type=fgmres

Fig. 4: Resources to solve Heat Conduction 2D

HypreBoomerAMG is ≈ 40 times faster than Bjacobi.
HypreBoomerAMG is ≈ 60 times faster than ASM.

Plasma Physics and Controlled Fusion, May 2021

Preconditioner Execution Time (s) FEProblem Time(s) Total Memory (MB) Preconditioner Memory (b) |R| Iterations
hypre 214.225 68.045 584.015 1688 2.13E-06 15
bjacobi 2793.066 2648.299 887.941 2056 2.51E-05 13669
asm 4188.600 4041.613 1773.483 2136 3.62E-05 7521

Walltime for this experience: 2 hours | Hypre times is the Average of 4runs | Bjacobi times is the Average of 3 runs) | ASM time has 1 run

TABLE 1: BENCHMARKING OF HEAT CONDUCTION 2D

As it is seen in Fig. 4 and in Table 1, the computational
resources are better used by the HypreBoomerAMG
preconditioner. Both, the total of memory and the memory
of the preconditioner are less in comparison to the other two
preconditioners, Bjacobi and ASM.

HypreBoomerAMG uses ≈ 300MG less than Bjacobi.
HypreBoomerAMG uses ≈ 1.2GB less than ASM.

In regards to the norm of the residual |R|, HypreBoomer-
AMG achieves the less value; as well as the number of iter-
ations spent to converge a solution.

b. Compute Finite Strain Elastic Stress 3D

The benchmarking for this PDE also included the previous
statements as in the Heat Conduction 2D. Once again, the
NEWTON method defeats the PJFNK method in execution
time. The MPI performed better among the other paralleli-
sation modes such OpenMP and Hybrid (OpenMP+MPI).
Formerly, the results for this experience are constrained to:

DoF: 4000083
Mesh Size: 200 x 40 x 40
MPI cores: 112 (2 nodes)
Solve Type: NEWTON

One more time, HypreBommerAMG is the fastest precon-
ditioner that helps converging the Displacement 3D when it
is configured with KSP types: GMRES and FGMRES as it
is shown as follows:

Preconditioner with KSP options Execution T(s)
(FE solve) (s)

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_type=fgmres -ksp_right

231.300
(177.401)

-pc_type=hypre -pc_hypre_type=boomeramg
-pc_factor_shift=NONZERO -ksp_type=gmres

-snes_type=newtonls

232.225
(179.325)

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_left -ksp_type=gmres

-pc_factor_shift=NONZERO

252.775
(200.313)

The options for HypreBommerAMG are tested along
with the options of the FGMRES and GMRES method:

-pc_hypre_boomeramg_strong_threshold=0.70
-pc_hypre_boomeramg_max_levels=15
-pc_hypre_boomeramg_max_levels=20
-pc_hypre_boomeramg_agg_nl=2
-pc_hypre_boomeramg_agg_nl=3
-pc_hypre_boomeramg_agg_num_paths=4

-pc_hypre_boomeramg_agg_num_paths=5
-pc_hypre_boomeramg_agg_num_paths=6
-pc_hypre_boomeramg_truncfactor=0.2
-pc_hypre_boomeramg_truncfactor=0.3
-pc_hypre_boomeramg_truncfactor=0.4
-pc_hypre_boomeramg_P_max=2

The parameter -pc_hypre_boomeramg_strong_threshold
changed from the previous experience (Heat Conduction
2D) because this time, the experiment is in 3D. Finally, the
best combination tested that accomplishes the best time is:
hypre:

-pc_type=hypre -pc_hypre_type=boomeramg
-ksp_left -pc_factor_shift=NONZERO
-ksp_type=gmres -pc_hypre_boomeramg_P_max=2

For the rest of preconditioners, the best combinations are:

gamg:

-pc_type=gamg -pc_factor_shift=NONZERO -ksp_right
-ksp_left -ksp_type=bcgs -pc_gamg_agg_nsmooths=1

jacobi:

-pc_type=jacobi -ksp_left -ksp_type=cg
-pc_jacobi_rowmax

bjacobi:

-pc_type=bjacobi -ksp_right -ksp_type=cg
-snes_type=newtonls

asm:

-pc_type=asm -ksp_type=bcgs
-snes_type=newtonls -pc_asm_type=interpolate

Fig. 5: Resources to solve Compute Finite Strain Elastic Stress 3D

HypreBoomerAMG is ≈ 2 times faster than GAMG.
HypreBoomerAMG is ≈ 3 times faster than Jacobi.
HypreBoomerAMG is ≈ 4 times faster than Bjacobi.
HypreBoomerAMG is ≈ 8 times faster than ASM.

PRECONDITIONERS FOR LARGE GEOMETRIES INCA, DAVIS AND DUBAS

Preconditioner Execution Time (s) FEProblem Time(s) Total Memory (MB) Preconditioner Memory (b) |R| Iterations
hypre 185.275 89.535 816.027 1688 0.002418092 115
gamg 334.725 238.929 1145.523 22648 0.002295673 366
jacobi 390.825 296.396 806.058 920 0.002461506 8030
bjacobi 472.550 378.296 911.490 2056 0.002443643 5521
asm 861.075 767.257 1117.737 2136 0.00111105 3967
- indicates that either the execution was killed due to lack of memory, not converged, nor in walltime (an hour and 10 minutes) | Execution Time and FEProblem Time are the

average of 4 runs

TABLE 2: BENCHMARKING OF COMPUTE FINITE STRAIN ELASTIC STRESS 3D

As it is seen in Fig. 5 and in Table 2, the computational
resources are better used by the HypreBoomerAMG pre-
conditioner. Both, the total of memory and the memory of
the preconditioner are less in comparison to the best second
option: the GAMG preconditioner.

HypreBoomerAMG uses ≈ 300MG less than GAMG.
In regards to the norm of the residual |R|, HypreBoomer-
AMG achieves approximately the same value as the follow-
ing three best times’s preconditioners.

In terms of the number of iterations, the HypreBoomer-
AMG utilizes less number of iterations in comparison to the
rest preconditioners shown in Table 2.

c. Incompressible Navier Stokes 3D

The results
DoF: 4545964
Mesh Size: 600 x 30 x 60
MPI cores: 112 (2 nodes)
Solve Type: NEWTON

Preconditioner with KSP options Execution T(s)
(FE solve) (s)

-pc_type=asm -ksp_type=cgs
-snes_type=newtonls

294.65
(256.809)

-pc_type=asm -ksp_type=gmres
-ksp_gmres_restart=100

-snes_type=newtonls

425.35
(387.943)

-pc_type=asm -ksp_type=gmres
-ksp_gmres_modifiedgramschmidt

1289.00
(1251.671)

The ASM preconditioners’s options that are tested along
with the CGS and GMRES KSP types are listed as follows:

-pc_asm_type=basic
-pc_asm_type=restrict
-pc_asm_type=interpolate
-pc_asm_type=none
-pc_asm_overlap=4
-pc_asm_overlap=16
-pc_asm_overlap=32
-pc_asm_overlap=64
-sub_pc_type=lu

Lastly, the final combination that provides the best time to
solve converged is:

asm:

-pc_type=asm -pc_asm_type=interpolate
-ksp_type=cgs -snes_type=newtonls

The rest of preconditioners that converges and accom-
plishes the best times using the combination of KSP types
and preconditioner’s options are:

hypre:

-pc_type=hypre -pc_hypre_type=boomeramg
-pc_hypre_boomeramg_strong_threshold=0.7
-ksp_type=gmres -snes_type=newtonls
-pc_hypre_boomeramg_agg_nl=3

bjacobi:

-pc_type=bjacobi

lu:

-pc_type=lu -ksp_type=cg -snes_type=newtonls

ilu:

-pc_type=ilu -ksp_type=gmres
-ksp_gmres_restart=400 -snes_type=newtonls

Fig. 6: Resources to solve the Incompressible Navier Stokes 3D

ASM is ≈ 1.3 times faster than HypreBoomerAMG.
ASM is ≈ 24 times faster than LU.

As it is seen in Fig. 6 and in Table 3, the fastest compu-
tational time is achieved by the ASM preconditioner. How-
ever, the amount of memory spent is not the more conve-
nient if comparing with the second best choice precondi-
tioner HypreBoomerAMG preconditioner. HypreBoomer-
AMG uses ≈ 100MG less than ASM.
In regards to the norm of the residual |R|, ASM achieves good
approximation, and in terms of the number of iterations, the
ASM utilizes more iterations as it is shown in Table 3.

One fact in this last experience is that is not necessarily
to combine the options of the preconditioners aside the
KSP type options. The time achieved in both cases are very
similar. Specially for the FEM solving time: 256.809 (with
KSP types) versus 258.066 (preconditioner’s options).

Plasma Physics and Controlled Fusion, May 2021

Preconditioner Execution Time (s) FEProblem Time(s) Total Memory (MB) Preconditioner Memory (b) |R| Iterations
asm 295.450 258.066 283.683 2136 1.23E-19 1273
hypre 375.825 338.721 103.233 1688 1.47E-19 170
lu 6464.000 6424.620 94.745 1064 2.10E-21 8

Walltime for this experience: 2 hours | ASM and HypreBoomerAMG (4 runs) | LU (2 runs)

TABLE 3: BENCHMARKING OF INCOMPRESSIBLE NAVIER STOKES 3D

VIII. CONCLUSIONS

The benchmarking of the preconditioners is done with the
following preconditioners: hypre_boomeramg, bjacobi,
asm, gamg, jacobi, lu and ilu. The experiment is performed
using 2 nodes (112 MPI cores) in the CSD3 cluster, and
the use of the NEWTON’s solver type. Then, it is concluded:

1.- The preconditioner hypre_boomeramg demonstrates
better performance and usage of computational resources to
solve the Heat Conduction 2D problem with more than 160
millions of DoFs. Due to the small difference (in seconds), it
is recommendable to use the following combinations:

• -pc_type=hypre -pc_hypre_type=boomeramg
-ksp_type=fgmres -ksp_right

• -pc_type=hypre -pc_hypre_type=boomeramg
-ksp_type=cg -ksp_right
-pc_factor_shift=NONZERO -snes_type=newtontr
-pc_hypre_boomeramg_truncfactor=0.4

2.- The best preconditioner to converge a solution for
the Compute Finite Strain Elastic Stress 3D phenomena
is hypre_boomeramg when solving more than 4 millions
DoFs. The following combination reaches the best time:

• -pc_type=hypre -pc_hypre_type=boomeramg
-ksp_type=gmres -ksp_left
-pc_factor_shift=NONZERO
-pc_hypre_boomeramg_P_max=2

3.- The best preconditioner to converge a solution for the
Incompressible Navier Stokes 3D phenomena is asm when
solving more than 4 millions DoFs. The following combina-
tion reaches the best time:

• -pc_type=asm -ksp_type=cgs
-snes_type=newtonls

• -pc_type=asm -ksp_type=cgs
-pc_asm_type=interpolate -snes_type=newtonls

IX. DISCUSSION AND FURTHER WORK

The Heat Conduction 2D ends up with a convergence by us-
ing the CG and FGMRES KSP types. CG usually helps the
solution of symmetric matrix, specially Symmetric Definite
Positive, whereas FGMRES is a KSP type prone to solve
non-symmetric. In this matter, a further research involves
to find out the type of the matrix in this problem and what is
the impact of adding internal heating.

The other two 3D problems converged by using both, the
HypreBoomerAMG and the ASM. A deep analysis of these
two algorithms are essential to understand the blocks for
ASM and how it is distributed when larger geometries and
transient systems are involved.

X. ACKNOWLEDGMENT

This document is intended for publication in the open liter-
ature. It is made available on the understanding that it may
not be further circulated and extracts or references may not
be published prior to publication of the original when appli-
cable, or without the consent of the UKAEA Publications
Officer, Culham Science Centre, Building K1/0/83, Abing-
don, Oxfordshire, OX14 3DB, UK.

REFERENCES
[1] www.csd3.cam.ac.uk.

[2] www.dirac.ac.uk.

[3] S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith,
and H. Zhang, “Petsc/ts: A modern scalable ode/dae solver library,”
arXiv preprint arXiv:1806.01437, 2018.

[4] https://www.mcs.anl.gov/petsc/documentation/tutorials/HandsOnExercise,
“PETSc Users Manual,” Mathematics and Computer Science Division,
vol. Revision 3.15, no. 1, pp. 8–11, 2021.

[5] https://mooseframework.inl.gov/source/kernels/HeatConduction.html.

[6] https://mooseframework.inl.gov/modules/tensor_mechanics/Strains.html.

[7] https://mooseframework.inl.gov/modules/tensor_mechanics/Stresses.html.

[8] https://mooseframework.inl.gov/modules/tensor_mechanics/StressDivergence.html.

[9] https://mooseframework.inl.gov/source/auxkernels/RankTwoScalarAux.html.

[10] https://mooseframework.inl.gov/source/kernels/INSMomentumLaplaceForm.html.

[11] https://mooseframework.inl.gov/source/kernels/INSMass.html.

[12] A. Ghai, C. Lu, and X. Jiao, “A Comparison of Preconditioned Krylov
SubspaceMethods for Large-Scale Nonsymmetric Linear Systems,”
p. 4, 2018.

