3
UK Atomic

Energy
Authority

UKAEA-STEP-PR(23)09

R. W. Eardley, A. J. Dubas, A. Davis

On scalable liquid-metal MHD solvers
for fusion breeder blanket
multiphysics applications

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

On scalable liquid-metal MHD
solvers for fusion breeder blanket
multiphysics applications

R. W. Eardley, A. J. Dubas, A. Davis

This is a preprint of a paper submitted for publication in
Plasma Physics and Controlled Fusion

On scalable liquid-metal MHD solvers for fusion
breeder blanket multiphysics applications

R W Eardley, A J Dubas and A Davis
UK Atomic Energy Authority, Culham Science Centre, Abingdon, UK

E-mail: rupert.eardley@ukaea.uk

Abstract. While substantial research effort has been made recently in
the development of computational liquid-metal magnetohydrodynamics (MHD)
solvers, this has typically been confined to closed-source and commercial codes.
This work aimed to investigate some open-source alternatives. Two OpenFOAM-
based MHD solvers, mhdFoam and epotFoam, were found to show strong scaling
profiles typical of fluid dynamics codes, while weak scaling was impeded by an
increase in iterations per timestep with increasing resolution. Both were found to
accurately solve the Shercliff and Hunt flow problems for Hartmann numbers from
20 to 1000, except for mhdFoam which failed in the Hunt flow Ha = 1000 case. An
inductionless MHD solver was implemented in the Proteus MOOSE application
as a proof of concept, using two methods referred to as the kernel method and
material method. The material method was found to converge with a wider
range of preconditioners than the kernel method, however the kernel method was
found to be significantly more accurate. Future work will aim to build on these
studies, exploring more advanced OpenFOAM MHD solvers as well as improving
the Proteus MHD solver.

Keywords: liquid-metal magnetohydrodynamics, OpenFOAM, MOOSE

Submitted to: Plasma Phys. Control. Fusion

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 2

1. Introduction

A key step in accelerating the development of
magnetic confinement fusion (MCF) power plants
is developing the capability to study and design
tokamak components in silico, reducing the financial
costs of prototyping and testing through predictive
modelling [1]. Digital replicas and twins of these
components, potentially even extending to full plant
simulations, pose a significant challenge, requiring
carefully validated multiphysics software that can make
efficient use of upcoming exascale high-performance
computing (HPC) systems. These multiphysics
packages must therefore be scalable (to maximise the
size of problems that can be studied), as well as
portable (such that they function on the architectures
of future HPC resources), in addition to being capable
of accurately simulating the physics involved.

For MCF devices to become commercially viable,
a key component will be the breeder blanket used
to generate tritium required for the fusion reaction
[2]. Some designs of these blankets use a liquid
metal as the breeding material, the flow of which
is governed by magnetohydrodynamics (MHD) due
to the interaction with the strong magnetic fields
confining the plasma. These components, and the
complex liquid-metal flows within them, have been
the target of significant research effort in recent
years, with many studies aiming to improve liquid-
metal magnetohydrodynamics (LM-MHD) simulation
capabilities [3, 4]. These efforts have typically
been focused on closed-source research codes and
commercial solvers, which have shown promising
results [5]. However, the closed-source nature of
the research codes makes access challenging, while
prohibitive licensing and digital rights management of
commercial solvers restricts portability.

In order to capture all the key physics involved
in breeder blanket designs with liquid-metal flows
in multiphysics simulations, LM-MHD solvers must
be integrated into multiphysics packages. The
capability already exists to study some of the physics
involved, such as in the AURORA code which
couples MOOSE and OpenMC for neutron transport
and thermo-mechanical analysis [6]. MOOSE is an
open-source, parallel finite element method (FEM)
library which simplifies coupling between MOOSE-
based applications as well as external codes through
its MultiApp system [7], and is reported to be highly
scalable [8]. AURORA is part of a wider suite of open-
source tools under development at https://github.
com/aurora-multiphysics, covering fluid dynamics
(Proteus), electromagnetism (Apollo and Hephaestus),
tritium transport (Achlys) and more. Adding LM-
MHD capability to this collection will enable more
detailed fusion breeder blanket simulations, and fill a

gap in the current capability of the suite. This could
be achieved by introducing a new application to couple
in an external open-source solver, or by adding new
physics to one of the existing solvers such as Proteus
using the inbuilt FEM solver capabilities of MOOSE.

To simulate conducting fluids in magnetic fields,
several effects must be considered in addition to
capturing the fundamental coupling between fluid
dynamics and electromagnetism in the bulk of the
fluid. The behaviour at the walls must be resolved,
particularly in terms of electromagnetic coupling to
the walls (and beyond) and boundary layers that
become extremely narrow for high magnetic flux
densities [3]. Furthermore, flows may be turbulent,
and so this behaviour must either be resolved through
direct numerical simulation (DNS) or modelled using
methods such as large-eddy simulation (LES) [9].
Thermal effects, such as buoyancy and temperature
dependence of material properties, must also be
considered [3].

This work aims to investigate existing open-source
LM-MHD solvers, as well as introduce a new proof-of-
concept implementation using MOOSE. An overview
of relevant LM-MHD and parallel scaling theory is
provided in section 2. Section 3 details a study of two
OpenFOAM-based solvers, mhdFoam and epotFoam,
evaluating them in terms of both parallel scaling
and validation against analytic solutions. Section 4
describes an early implementation of a new LM-MHD
solver in the Proteus MOOSE application, before
drawing overall conclusions in section 5.

2. Theory

2.1. Liquid-metal MHD

The set of partial differential equations (PDEs) gov-
erning liquid metals can be derived by combining the
incompressible Navier-Stokes equations with Maxwell’s
equations, as detailed in [10]. For a single fluid, with
constant fluid properties (density p, kinematic viscos-
ity v, magnetic permeability p and conductivity o),
the resulting equations are

p%—}—p(u-V)u—puV%L—l—szJXB (1a)
V-u=0 (1b)
oB 1 1

aﬁ+MV><<0V><B)_V><(u><B) (le)
V-B=0 (1d)
J:%(VXB) (1e)

where w is flow velocity, p is pressure, B is
magnetic flux density and J is current density.
These equations describe momentum conservation

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 3

(1la), incompressibility (1b), magnetic induction (1¢),
the solenoidal nature of magnetic fields (1d) and
Ampere’s law neglecting electric displacement currents
(le). Current density J can be eliminated by
substituting (le) into the Lorentz force term in (1la).

Details of the mechanism can be found in texts
such as [11], however it can be briefly summarised as
follows. The motion of a conducting fluid relative to
an imposed magnetic field By induces current density
J = o(E 4+ u x B) in the fluid. These currents
induce a magnetic field b, such that the field lines
of the total field B = By + b are dragged with the
fluid flow. A Lorentz force fm = J x B acts on
the fluid, opposing flow perpendicular to B-field lines.
The resulting system forms a strongly coupled feedback
loop. Joule heating provides an additional source of
energy dissipation, acting on a timescale

p

T= 5 (2)
known as the magnetic damping time [11].

Several key dimensionless groups can be derived
from these equations. As with classical fluid dynamics,
the Reynolds number

UL

14

Re (3)

describes the ratio of inertial to viscous forces [12]. In
the absence of MHD effects, flow typically becomes
turbulent for high Re. The Hartmann number

Ha = BL\/?V (4)

describes the strength of magnetic forces relative to
viscous forces, where B is the magnetic flux density
scale [4]. The magnetic Reynolds number is analogous
to the Reynolds number

Ry = poUL (5)

but instead describes the ratio between magnetic
induction and magnetic diffusion [4]. If R,, <
1, magnetic induction is negligible and the induced
magnetic field is negligible, such that B can be treated
as a constant imposed field, B =~ By. This is
typically the regime of fusion blanket applications [4].
In the R,, < 1 limit the inductionless (or quasi-
static) approximation can be taken [13], resulting in
a simplified set of equations

s (6a)
V-ou=0 (60)
V¢ =V - (u x By) (6¢)
J=0(-V¢+u x By) (6d)
where ¢ is the scalar electric potential. = These

equations are less strongly coupled due to the lack
of feedback in the magnetic field, with the Poission

+ p(u-V)u — pvViu + Vp=J x By

equation (6¢) being relatively simple to solve. The
induced current J can be eliminated by substituting
(6d) into the Lorentz force term of (6a).

The Hartmann and Reynolds numbers can be
combined to form the Stuart number (or magnetic
interaction parameter)

Ha* oB%L .

~ Re pU @
which provides information about the turbulent
behaviour of the fluid [14]. In the inductionless
approximation, turbulent behaviour is classical for
N <« 1, becomes anisotropic and intermittent for
N ~ 1 with turbulent structures stretched across the
magnetic field lines, and becomes fully laminar with
complex structure for N > 1. This work considers
only the case of N <« 1 with low Re, such that flow is
laminar.

Figure 1. Shercliff low for Ha = 20. The colour map shows
velocity, while the contours show the magnetic field and also
correspond to induced current field lines.

While liquid-metal flows are often complex,
analytic solutions have been obtained for some simpler
cases of laminar flow in homogeneous magnetic fields.
The solution for laminar conducting channel flow
between two parallel walls was obtained by Hartmann
[15]. This was later extended to the cases of laminar
flow in a square duct, with Shercliff deriving the
solution for the case of perfectly insulating walls [16],
and Hunt studying the more general case of mixed wall
conductivities including arbitrary wall conductivity
[17]. In all these cases the magnetic field is applied
perpendicular to the flow. Figure 1 shows the cross-
section of the Shercliff solution. The opposing pair of
walls perpendicular to B are known as the Hartmann
walls and the remaining walls parallel to B are the
side walls. The core flow is seen to be inviscid. Velocity
varies rapidly in the Hartmann layers (at the Hartmann
walls) and the side layers (at the side walls). The

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 4

Figure 2. Hunt flow for Ha = 20. The colour map shows
velocity, while the contours show the magnetic field and also
correspond to induced current field lines.

Hartmann layer thickness § varies strongly with Ha
as 0 o« Ha™', while the side layers have a weaker
dependence of § o« Ha™? [13]. Similar behaviour is
observed for the Hunt case, shown in figure 2 for the
subcase of perfectly conducting Hartmann walls and
perfectly insulating side walls. Here instead velocity
is concentrated into jets along the side wall. As
Ha increases, the velocity in the core region drops
asymptotically to zero and the Hartmann and side
layers decrease in thickness as with Shercliff flow, while
reverse flow jets can form between the side wall jet and
core regions.

A key challenge in simulating liquid-metal MHD
flows is resolving the Hartmann and side layers. This
becomes a significant challenge as Ha approaches Ha ~
10*, as is common in fusion [4, 18], as the Hartmann
layers in particular become vanishingly small.

2.2. Parallel scaling

A critical aspect of simulations targeting the exascale
is parallel scaling. This can be considered in terms of
two key properties. Strong scaling is the relationship
between the time required to perform a fixed amount of
work and the amount of computational resources used.
Weak scaling in contrast is the relationship between the
time required for an increasing amount of work with
proportionally increasing computational resources. To
quantify these scaling relations, first consider the rate
R at which a computer does work

w
R=— (8)
where W is a measure of the amount of work done by
the computer (such as the total number of degrees of

freedom (DOFs)) and ¢ is the computation time [19].

As computational resources are increased, the relative
speedup Sy can then be considered

R Wyt
SN _ N _ N lref (9)
Rref Wref tN
where Rpes = Yret i the rate at which work Wies
is conducted on a base number of cores N, in time
tref, and Ry = ‘;V—Ié" is the rate at which work Wy is

conducted on N cores in time ty, where N > Niet.
For strong scaling work is constant, Wy = Wi,
so the strong scaling speedup is
Sstrong _ tref
while for weak scaling the work increases proportion-
ally with computational resources, WNM = V—A‘;mfﬁ, giving
the weak scaling speedup as
N t
ref (11)
Nref tN
which is sometimes referred to as scaled speedup [20].
Parallel efficiency nn can be defined as the ratio
of the total resource use time per amount of work for
on N, cores to that on N cores,
trefNref/Wref
tNN/ Wy

(10)

weak __
SN =

NN = (12)

which for strong scaling gives ny = %‘%’i, while for

weak scaling ny = tﬁ In the case of strong scaling, a
threshold number of cells per core can be considered,
below which increasing the number of resources is
inefficient. If n is the number of cells per core, the
threshold value of n below which efficiency drops below
80% is defined as ng g.

Ideal scaling is the case in which ny = 1VN.
For strong scaling this would mean S °"® = N/Ny,
however in reality this is typically not achievable for
most codes due to a finite fraction of the code running
in serial, with S3% "¢ asymptotically approaching a
maximum theoretical speedup given by Amdahl’s law
[21, 20]. For weak scaling, the ideal case (in which
scaled speedup Sﬁeak = N/Ny¢f) is often unattainable
as explained by Gustafson’s law [20], which predicts a
linear relationship S¥°* oc N/N,er with a gradient less
than 1 due to a non-zero serial fraction of a given code.

3. Liquid-Metal MHD in OpenFOAM

OpenFOAM is a freely distributed open-source finite
volume method (FVM) software package, primarily
designed for computational fluid dynamics (CFD)
[22]. LM-MHD capability for OpenFOAM has been
developed within OpenFOAM itself (the mhdFoam
solver) as well as through more advanced closed-source
academic solvers implemented in OpenFOAM, such as
the work of Mistrangelo and Biihler [23]. While the
usefulness of closed-source codes is limited to those

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 5

with access, there are some freely available open-
source OpenFOAM solvers that may extend similar
capabilities to the wider community.

3.1. Open-source OpenFOAM MHD solvers

The mhdFoam solver, distributed with OpenFOAM,
solves a variation of the full induction formulation (1)
for u, p and B for incompressible conducting fluids. To
ensure the magnetic face flux field is divergence free
in accordance with Maxwell’s equations, a fictitious
magnetic flux pressure pg is introduced. The pressure
implicit with splitting of operators (PISO) algorithm
[24] is used for the coupling between pressure and
velocity to effectively apply V-u = 0, and a comparable
(but simplified) method referred to as the B-PISO loop
is applied by analogy for V- B = 0, with the magnetic
induction equation taking the place of the momentum
predictor [25].

An inductionless MHD solver has been imple-
mented in the open-source epotFoam solver presented
by Tassone [25] based on the works of Dousset [26] and
Mas de les Valls [27], solving equations based on the
electric potential inductionless formulation (6) for wu,
p, and ¢, while B is assumed to be unchanged by the
flow. Again a PISO loop is used for pressure-velocity
coupling, however the fluid and electromagnetic solves
are coupled only by the electric potential solve consum-
ing the velocity u computed earlier in the timestep and
outputting the Lorentz force to be input into the mo-
mentum equation solve in the next timestep [25].

For the studies presented here, OpenFOAM 9
from the OpenFOAM Foundation was used for both
mhdFoam and epotFoam. This choice was made due to
this being the latest version of OpenFOAM with which
epotFoam was found to be compatible.

3.2. Scalability methods

To assess the parallel scaling properties of the mhdFoam
and epotFoam solvers, the laminar Shercliff flow case
was used as a benchmark [16]. For this, a 20m
X 2m x 2m square duct centred on (10,0,0) was
used, with flow along the z-axis and a magnetic field
By = (0,20,0) T was imposed parallel to the side walls
(as opposed to the Hartmann walls) of the domain as
defined in section 2.1. All constant properties (density,
viscosity, permeability and conductivity) were set to
unity, such that Ha = |Bg| = 20. The inlet at z = 0m
was set with uniform inlet velocity w;, = (1,0,0) ms~!
with a fixedValue boundary condition (BC), resulting
in laminar flow with Re ~ 2. The walls were set
with noSlip conditions implementing v = 0 and
the outlet at * = 20m was set as a zeroGradient
velocity condition imposing zero normal gradient in
the velocity over the boundary. Pressure was set to

p = 0Pa at the outlet using a fixedValue BC, with
zeroGradient conditions on all other boundaries. In
the mhdFoam case, the magnetic field was imposed as
a constant vector fixedValue BC on the walls with
zeroGradient conditions on the inlet and outlet, and
the fictitious magnetic flux pressure pp was set to zero
at the inlet and outlet using fixedValue BCs with
zeroGradient conditions on the walls. For epotFoam,
instead the magnetic field was set as a constant
property with zeroGradient conditions for electric
potential ¢ on all boundaries. These electromagnetic
BCs represent perfectly insulating walls. For mhdFoam,
the magnetic field was set with an initial condition
equal to the imposed field By = (0,20,0) T, while
all other variables (u, p, pp) were set to zero. For
epotFoam, all variables (u, p, ¢) were set with initial
conditions of zero.

The simulations were run in a transient solve
despite the benchmark case being a steady laminar
solution, due to the lack of steady-state support from
these solvers. The solvers were run for 2s simulation
time to allow pressure to stabilise through the domain
and allow the system to reach steady-state. Euler
timestepping with second-order Gaussian integration
for spatial gradients was used (Gauss linear), with
linear interpolation used to obtain cell-surface values
from cell-centred values. Laplacian schemes used
the Gauss linear corrected setting, for unbounded
second order conservative Laplacian terms. The
simulation was therefore first order in time and
second order in space. Orthogonal surface-normal
gradient schemes were used due to the regularity of
the hexahedral mesh used. For both mhdFoam and
epotFoam, the velocity field equation was solved for
using the symmetric Gauss-Seidel smoother method.
In mhdFoam, the same solver was used for the
magnetic flux density. With both mhdFoam and
epotFoam, the pressure field was solved using the
preconditioned conjugate gradient (PCG) solver with
the simplified diagonal-based incomplete Cholesky
(DIC) preconditioner, using 3 corrector iterations
without non-orthogonal correctors in the PISO loop as
well as in the B-PISO loop for mhdFoam. Similarly, for
the electric potential solve in epotFoam the PCG solver
was used with DIC, but without corrector iterations.
PCG and DIC were also used for the pp solve in
mhdFoam. A maxIter limit of 2000 iterations was set
for each solver, which was never reached.

In all cases for strong and weak scaling, the mesh
was generated using OpenFOAM’s blockMesh utility,
generating block-structured hexahedral meshes. The
domain was decomposed for parallelisation using the
Scotch algorithm [28] distributed with OpenFOAM,
using default settings. The Scotch algorithm
features automated decomposition strategies such

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 6

as minimising the number of processor boundaries.
Strong scaling was studied using 3 cases of the base
problem at different resolutions, with the timestep
adjusted according to the Courant-Friedrichs-Lewy
(CFL) condition [12], as detailed in table 1. Mesh
grading was used in the 80k and 640k cell cases to
increase resolution smoothly between the centre of the
domain and each wall. This was achieved by setting
the expansion ratio F, defined in OpenFOAM as the
cell size ratio between the first and last cell in a
direction, with the individual cell sizes between those
cells determined by a geometric progression. For each
case a single grading ratio E, , = E, = E, (specified in
table 1) was set in both the y- and z-directions, while
the resolution in the flow direction was uniform. A
cross-section of the mesh for the 80k cell case is shown
in figure 3. The 80k and 640k cell cases used Ny = 1
core. The highest resolution 10 million cell case used a
full node for the reference case, N.of = 76 cores, due to
the expected wall times exceeding limits on the HPC
cluster used for Nyt < 76 at this resolution.

Table 1. Spatial and temporal discretisation in the strong
scaling cases. Number of cores in the reference cases are also
stated.
Cells Grading
Case = y z E, . At(s) Nyet
80k 100 40 20 10 0.005 1
640k 200 80 40 5 0.0025 1
10M 500 200 100 1 0.0008 76

To study weak scaling, the reference case was
set up with (50,20,10) cells run on a single core
(Nyer = 1), with a timestep of 0.008s. Constant
n = 10000 & 1% cells per core was maintained as
N was increased by increasing the number of cells in
each direction from the reference case by a factor of
¢/ N/Nyef, manually adjusting the resolution by up to 3
cells in each direction to minimise deviation from n =
10000 cells per core. The timestep was decreased by
the same factor in accordance with the CFL condition
[12]. Because mesh grading would not be needed for
the higher resolution cases, it was not used for any
case in the weak scaling study in order to maintain
mesh uniformity as a control variable; accuracy was
therefore expected to improve with increasing number
of cells (and so increasing number of cores) as the
boundary layers became better resolved. The root-
mean-square error (RMSE) in velocity u, = u - &
and error in pressure drop K were also calculated
based on the analytic Shercliff solution [16], with the
cross-sectional velocity profile taken at z = 13m
and pressure drop measured as the average pressure
gradient over the region 12.5 < x < 13.5m. The RMSE
was normalised by dividing by the mean absolute

e e e e —————————————————=—==c1|

=== —————————————————————————=c-=c:]

Figure 3. Transverse cross-section of the mesh for the 80k cell
strong scaling case, with 40 cells in y and 20 cells in z with
expansion ratio Ey . = 10 in both directions.

analytic value of u, over the slice, while pressure drop
error was normalised by the analytic pressure drop.
For the analytic solution, the Hunt solution [17] was
used in the exponential form described by Ni et al.
[29] with 200 Fourier iterations, which simplifies to
the Shercliff solution in the case of perfectly insulating
Hartmann and side walls. This form of the solution was
used due to higher accuracy in numerically computing
the exponential terms, rather than computing the
hyperbolic functions of the original solutions.
Simulations were run by creating and meshing
the geometry with blockMesh, decomposing it with
decomposePar if N > 1, running the simulation with
either mhdFoam or epotFoam and finally reconstructing
the full domain with reconstructPar if N > 1.
To calculate computation times, only the run-time of
the simulation itself was measured, with the meshing,
decomposition and recombination times ignored.
Additionally, the runtime of the the first timestep was
ignored due to additional processes during simulation
initialisation, with the time calculated as the mean
time per timestep averaged over the next 20 timesteps.
This eliminated the dependence on the timestep, as
the overall simulation time was expected to increase
with decreasing timestep in the weak scaling case,
such that the scaling assessment was based only on
work per timestep. Each strong scaling or weak
scaling case with each solver was repeated 3 times,
with the results averaged. In the weak scaling case,
this process was also performed for the total number
of iterations per timestep for all the field solves in

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 7

order to understand the behaviour of the problem with
increasing resolution.

Scaling behaviour was studied using the Cam-
bridge Service for Data Driven Discovery (CSD3) HPC
cluster’s Ice Lake nodes, each consisting of 2 38-core In-
tel Xeon Platinum 8368(Q) CPUs for a total of 76 cores,
with 256 GiB RAM per node and connected via Mel-
lanox HDR200 Infiniband. For runs using fewer than
76 cores, a single node was reserved, while runs using
more cores increased resources by adding full nodes,
up to a maximum of 29 nodes (N = 2204). It should
be noted that OpenFOAM was found to be simple to
build on CSD3, indicating that it should be trivial to
port to other HPC systems.

3.8. Scalability results and discussion

The strong scaling profiles for the 80k and 640k cases
are shown in figure 4. It can be seen that epotFoam
was faster per timestep, due to the simpler system of
equations. The scaling profiles observed are typical
of CFD codes, with parallel efficiency diminishing as
the number of cores increased due to the increase in
memory communication between the domain partitions
becoming dominant. As the resolution of the problem
increased, ngg increased, from ngg ~ 7.0 x 10% cells
per core for the 80k cell case to ngg ~ 2.5 x 10* for
the 640k cell case. In the higher resolution 10M cell
case shown in figure 5, it can be seen that scaling
wass initially super-linear, demonstrating very good
strong scaling for n > 10*. While it can be seen that
no.s ~ 6 x 103 cells per core in this case, this cannot be
directly compared to the lower resolution strong scaling
profiles due to the higher value of Nyf.

Results of the weak scaling study are shown
in figure 6. While Gustafson’s law predicts a
linear relationship between scaled speedup S]“\}eak and
N/N,ef, a non-linear relationship was instead found
with the rate of increase of scaled speedup dropping
off as N increased, resulting in poor weak scaling
efficiency as seen in figure 6(c¢) This was found to
be due to the number of iterations of each solver
increasing as the resolution increased, as shown in
figure 6(b). As a result, the amount of work in each
timestep increased more than the intended change from
resolution increasing proportionally with resources,
slowing down the solution. This may have been
due to the nature of the sparse matrix problem
involved in the solve, and as such a different choice
of preconditioners and solvers may have reduced this
behaviour. A full study of the preconditioners and
matrix problem solvers available in OpenFOAM may
present a better selection for this type of MHD
problem, with the potential for improved weak scaling,
however a preconditioner study was beyond the scope
of this study.

It can be seen from figure 6(d) that as resolution
increased, so too did the accuracy of the simulation. At
lower resolution, epotFoam was found to be unstable
and failed to converge on the solution, indicating that
epotFoam particularly struggled when the Hartmann
and side layers were insufficiently resolved (with only
1 to 2 cell centres in the Hartmann layers in the
N = 1 and N = 2 cases). This was less of an
issue for mhdFoam, for which the relative errors steadily
improved as resolution increased. However, the errors
became large in both cases for the N = 1216 core case,
and the simulation failed due to numerical instability
before reaching the 2s endpoint of the simulation for
the cases with higher resolution. In each of these high
resolution failed cases, the Courant number was seen
to grow before the simulation failed, despite the CFL
condition being met in the problem setup.

3.4. Validation methods

To further validate these solvers, the Shercliff (per-
fectly insulating walls) and Hunt flow (perfectly insu-
lating side walls with perfectly conducting Hartmann
walls) cases (as described in section 2.1) were studied
up to higher Hartmann numbers (Ha = 20, Ha = 100
and Ha = 1000).

The Shercliff case was set up using the same
methods described in section 3.2 for both mhdFoam and
epotFoam. The Ha = 20 cases were set up exactly
as described for the the 80k cell case in table 1. To
set up the Ha = 100 and Ha = 1000 cases, the
magnitude of the magnetic field applied parallel to
the side walls was increased to |By| = 100T and
|Bg] = 1000T respectively, and the resolution and
mesh grading ratios were increased as described in
table 2. The higher Ha cases used different grading
ratios in the y- and z-directions to capture the stronger
dependence of the Hartmann layer thickness on Ha
than that of the side layers, varying this along with
the resolution in order to reduce the size of the cells
at the Hartmann and side walls by the same factor
as the expected reduction in Harmann and side layer
thicknesses. Initially the timestep for the higher Ha
cases was decreased by the same factor as the change
in the size of the smallest cell in y (equal to the
change in Hartmann number), based on the CFL
condition. However, this was found to be insufficient,
with stability instead requiring the timestep to be
decreased by a factor closer to the increase in Ha?,
as shown in table 2. The Ha = 20 and Ha = 100
cases were run on 8 cores, while the Ha = 1000 cases
were run on 76 cores due to the increased resolution.
Due to the increased wall time requirements from the
small timestep, the end time of the Ha = 1000 case
was reduced to 0.02s. To ensure the solution was fully
developed, the inlet velocity in the Ha = 1000 case

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 8

(a) (b)
*
10" A\::\‘ o Ideal
N 10 —o— mhdFoam
a —+— epotFoam
& 2 — 80k cells
% 10" =100y] e 640k cells
g o
Z £
2 410’
= 1071 1
10”4
10 10' 10° 10° 10° 10' 10° 10°
Cores N Cores N
(©) (d)
1.0 10| A
S nog~7X%X 103
L
0.8 0.8 %
o
§ § nog~2.5x% 104
> 0.61 > 0.6
Q Q
5 b5}
g 8
0.4 £ 0.4
m m
021 02
0.01 0.0/
10° 10' 10° 10° 10° 10° 10* 10° 10°

Cores N Cells per core n

Figure 4. Strong scaling profiles for the 80k cell (solid lines) and 640k cell (dashed lines) cases, for mhdFoam (orange) and epotFoam
(blue). Ideal strong scaling is shown in (b) by the dotted black line. The shaded region marks intra-node scaling. Approximate
values of ng.g are marked in (d), with the horizontal line showing 80% efficiency.

(@) b)
18 Ideal
—e— mhdFoam
1.61 —+— epotFoam
1.4/
L z
5 12
b
g 2 101 ‘
A 83
0.8
| W
10
10° 10° 10° 10*

Cores N Cells per core n

Figure 5. Inter-node strong scaling profiles for the 10M cell case, for mhdFoam (orange) and epotFoam (blue). Ideal strong scaling
is shown in (a) by the dotted black line, where super-linear scaling can be seen between N = N,..y and N = 2N,..¢, and between
N =2N,cy and N = 4Nyy.

conducting Hartmann walls. For mhdFoam, the
magnetic field BC on the Hartmann walls at y = 1

was increased to 100ms™!, with the flow remaining
laminar at Re ~ 200.

To set up the Hunt flow cases, the Shercliff
flow cases were used as a basis, modifying only the
boundary conditions in order to reflect the perfectly

and y = —1 was changed from the fixed vector BC
to a zeroGradient BC. For epotFoam, this required
instead changing the electric potential BC on the y = 1

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 9

(a Cells b
e 10° 10° 10’ ®
10° g
¥ 2
ey =
21 10
3 =
=3 ke
210 g
= =
3 3
b
10" # ‘ ‘ ‘
10° 10' 107 10°
Cores, N
Cells
c d
© ot 10° 10° 10’ @
0.8
: ‘g
] 0
50.6 3 10°
5 2
g, =
E‘ 0.4 &)
02 1072
0.01_. ‘ ‘ ‘
10° 10" 107 10°
Cores, N

. 5 Cells 6 ;
10 10 10 w0 Ideal
: : : : mhdFoam
—+— epotFoam
u.\’
----- K
10° 10' 10° 10°
Cores, N
Cells
10* 10° 10° 10’
.
-
Bl
—
10° 10" 107 10°
Cores, N

Figure 6. Weak scaling profiles for mhdFoam (orange) and epotFoam (blue). Ideal weak scaling is shown in (a) and (c) by the dotted
black line. An increase in number of iterations is seen in (b), which plots the total number of iterations for all matrix solvers per
timestep. RMSE in u, and relative error in K are shown in (d) by solid and dashed lines respectively for each solver.

and y = —1 walls from zeroGradient to fixedValue,
setting ¢ = 0 there.

The RMSE in the velocity field and error in
pressure drop at x 13m compared to the analytic
solution were calculated for each case, as described in
section 3.2.

Table 2. Spatial and temporal discretisation in the Ha = 20,
100 and 1000 Shercliff and Hunt flow validation cases.

Cells Grading
Ha x Yy z Ey E. Atcrn(s) Atgable(s)
20 100 40 20 10 10 5x1073 5x10°3
100 100 60 30 50 20 1x1073 2x107¢
1000 300 200 50 200 50 1x107* 1x10°©

3.5. Validation results

Figure 7 shows the mhdFoam and epotFoam velocity
profiles for Shercliff and Hunt flow compared to
the analytic solutions, while tables 3 and 4 give
the relative errors for the Shercliff and Hunt cases
respectively. In most cases, both solvers were

capable of accurately resolving the problem, with
epotFoam typically calculating u, more accurately
than mhdFoam, but with an order of magnitude higher
error in the pressure drop K; this is consistent
with the results observed in figure 6, showing that
this difference persisted over a wide range in both
Hartmann number and resolution. For both solvers, u,,
RMSE was notably higher in the Hunt flow problem.
Discrepancies in u,(y,z = 0) can be seen in figure 7
near the core of the flow.

Table 3. Relative errors in cross-sectional velocity field u, and
pressure drop K at £ = 13 m for both mhdFoam and epotFoam for
the Shercliff flow case with varying Hartmann number.

mhdFoam epotFoam
Ha ur, RMSE K error ur RMSE K error
20 0.916% 0.400% 0.792% 1.60%
100 0.567% 0.108% 0.394% 1.15%
1000 0.229% 0.0217% 0.603% 0.642%

However,
numerical instability in the

Ha

mhdFoam was found to fail due to
1000 Hunt

flow problem after many timesteps (progressing to

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 10
Shercliff Hunt
(@) (®)
e o 25
125 1.25 tae, Lat? .
04 AR b u;xac (y)
1.00 1.00 8
S 03 ug e (2)
5075 0.75 = L5
L3 = s - mhdFoam
: 1.0
s 0.50 0.50 N epotFoam
0.25 0.25 01 05 .
0.00 0.00 0.0 0.0
-1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
(©) @)
1.2 12
10 ’1 10 0.25 6
5
S 0.20
S 0.8 0.8 .
—
I <o6 0.6 Lols
< 3
T 04 04 0.10 5
0.2 0.2 0.05 1
0.0 0.0 0.00 *
000 025 050 075 1.00 0.00 025 050 075 1.00 000 025 050 0.75 1.00 000 025 050 0.75 1.00
())]
10 2500
100 100
8 2000
S 80 80
8 6 1500
T £ 60 60 g
1000
S 40 40 4
o
500
20 20 2
0 0 0
0.96 0.98 1.00 0.80 0.85 0.90 0.95 1.00 0.96 0.98 1.00 0.7 0.8 0.9 1.0
y z y z

Figure 7. Comparison of velocity profiles computed with mhdFoam and epotFoam to the analytic solution for the Shercliff and Hunt
problems. Plots of ux(y,z = 0) and ugz(y = 0,2), measured at & = 13m are shown in the left and right parts of each subplot
respectively. For Ha = 20, shown in (a) and (b), the full slices are shown. For Ha = 100, shown in (¢) and (d), and for Ha = 1000,
shown in (e) and (f), the domain shown is restricted to the narrow boundary layers on one side of the symmetrical domain to show

the ability of the solvers to simulate the strong velocity gradients.

Table 4. Relative errors in cross-sectional velocity field u, and
pressure drop K at z = 13 m for both mhdFoam and epotFoam for
the Hunt flow case with varying Hartmann number.

mhdFoam epotFoam
Ha ury RMSE K error wu, RMSE K error
20 2.49% 0.211% 2.29% 1.50%
100 3.20% 0.725% 2.41% 1.18%
1000 unstable 2.32% 0.835%

t = 0.0016s before failing), even with the timestep
decreased to 1 x 1077 (reaching ¢t = 0.0028s). The
cause of this remains to be identified.

3.6. Validation discussion

Both solvers were largely capable of simulating both
problems, indicating that OpenFOAM may be a
promising candidate for further development of LM-
MHD solvers. However, various issues with these
solvers were identified. Firstly, the cause of the
failure of the mhdFoam in the Ha = 1000 Hunt flow

case is unknown to the authors, and requires further
investigation. Additionally, the requirement of a
reduced timestep as Hartmann number is increased
poses an interesting challenge. This could be an
additional stability requirement for LM-MHD, however
the authors were unable to find much research on this
topic in the literature. The dependence appeared to
be consistent with At oc Ha 2, which could be related
to the magnetic damping time 7 = ﬁ which is
understood to be relevant in the low R,, limit [11].
An argument is made in [30] that the timestep should
be adjusted due to the addition of the Lorentz force as
a source term in the momentum equation. The result is
the modification of the timestep required for stability
from that calculated from the CFL condition to

1 1

At~ Atorr

however this is not dimensionally consistent, differing
by a factor of density; instead replacing the second
term on the right hand side with 7 would resolve
this inconsistency. A parameter sweep of density and
conductivity, and identifying the maximum timestep

+ o|B|? (13)

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 11

at which the simulations remain stable, would inform
this hypothesis, as would studying the dependence of
stability on other parameters. It should be noted that
this could be a dependence specific to OpenFOAM,
the chosen Euler timestepping scheme, FVM or this
specific regime, or it could be a fundamental limitation
of LM-MHD simulations. Regardless of the cause,
this poses a challenge to fusion-relevant simulations,
with high Hartmann number significantly increasing
simulation resources both from the increased number
of timesteps required for a given time in silico as well
as the high resolution required to resolve the narrow
Hartmann and side layers, with the former imposing
a limitation that cannot be countered easily without
parallel-in-time methods.

4. Initial implementation of a liquid-metal
MHD solver in Proteus

Proteus is an application built on the MOOSE
FEM framework [31], focusing on fluid dynam-
ics and related domains for mulitphysics cou-
pling, which can be found at https://github.com/
aurora-multiphysics/proteus. This work aimed to
introduce a simple steady state incompressible resis-
tive MHD solver into Proteus as a proof-of-concept, in
order to investigate the viability of this approach for
further work in liquid-metal simulation. For this ini-
tial implementation, the inductionless approximation
(6) was used. This decision was made to minimise
the numerical complexity and to test the simplest case
of incompressible resistive MHD, with the induction-
less approximation being valid in many typical fusion-
relevant problems.

4.1. Implementation

To implement this solver, the incompressible FEM part
of the MOOSE Navier-Stokes module was used as a
base [32]. This includes Kernel objects, which com-
pute weak form terms in PDEs and their Jacobians,
for most of the terms in the continuity and momentum
equations, with the exception of the Lorentz force term.
Automatic differentiation (AD) was used in all kernels
in this implementation to calculate Jacobians, reduc-
ing the complexity of implementing new kernels as well
as improving convergence by using an accurate Jaco-
bian, at the cost of increased memory requirements
[33]. The result was an inductionless resistive mag-
netohydrodynamic incompressible Navier-Stokes with
automatic differentiation (IRMINSAD) solver.

The required additional kernels were identified by
expressing each of the terms of (6) in weak form by
rearranging each equation such that the right hand side
is zero, multiplying by a test function ¢ and integrating
over the domain 2. Terms with time derivatives were

dropped in order to solve in steady state. Current
density J was eliminated by substituting (6d) into the
momentum equation (6a). In (6a) the only additional
term is the Lorentz force,

—JXB()—)/’lZ)O'(V(b—UXBo)XBO

. (14)

:/1/}UV¢XBQ—/1/)O'(’U,XBQ)XBO
Q Q

which can alternatively be expressed as two separate
kernels for the electrostatic and velocity-dependent
terms respectively. The Poisson equation for electric
potential converts to weak form as

[0 o= [wve)a
—/Q(Vw)'(UXBO>+/89¢(UXB0)'ﬁ:0

where the terms integrated over the boundaries of
the domain 02 are the BCs. The first term in
(15) represents diffusion of electric potential and is
implemented in MOOSE in the ADDiffusion kernel,
while the third term represents the production of
electric potential.

A first attempt at implementing these ker-
nels in MOOSE, referred to here as the kernel
method, utilised the MOOSE Navier-Stokes kernels
INSADMass for the incompressibility constraint, and
INSADMomentumAdvection, INSADMomentumViscous and
INSADMomentumPressure for the momentum equation.
These kernels require the INSADMaterial Material
object. The IRMINSADMomentumLorentzElectrostatic
and IRMINSADMomentumLorentzFlow kernels were
added to Proteus and used to implement the separate
electrostatic and velocity-dependent terms of (14) re-
spectively. This implementation requires using second
order velocity and first order pressure variables, due to
the lack of stabilisation terms. The Poisson equation
for electric potential (15) was implemented using the
MOOSE ADDiffusion kernel for the V2¢ term and a
new IRMINSADElectricPotentialProduction kernel
in Proteus for the V - (u x By) term.

An additional method took a similar approach,
but instead more closely followed the design philoso-
phy of the MOOSE incompressible Navier-Stokes im-
plementation in which strong form residuals are cal-
culated in a Material object, and then computed in
weak form in Kernel objects. This allows the com-
puted strong forms to be used elsewhere in the solve,
such as in stabilisation terms. Adding the pressure-
stabilized Petrov-Galerkin (PSPG) and streamline-
upwind Petrov-Galerkin (SUPG) terms into the in-
compressibility constraint and momentum equation re-
spectively provides stabilisation such that equal first
order pressure and velocity variables can be used
[32]. The INSADMaterial and INSADTauMaterial

(15)

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 12

MOOSE objects were duplicated in Proteus, and the
Lorentz force strong form parts cV¢ x By and o(u X
By) x By were added to create IRMINSADMaterial
and IRMINSADTauMaterial (the latter of which inher-
its from the former) in which these components were
added to the total strong residual of the momentum
equation. This allowed these terms to be included in
the residuals required for the PSPG and SUPG stabil-
isation terms. The kernel TRMINSADMomentumLorentz
was added to add both Lorentz force parts to the mo-
mentum equation. This implementation is referred
to as the material method. To set up a problem
with this method, the same approach as the ker-
nel method was used but instead with first order
velocity and pressure variables, the INSADMassPSPG
kernel added to the incompressibility constraint,
INSADMomentumSUPG added to the momentum equa-
tion, the IRMINSADMomentumLorentzElectrostatic
and IRMINSADMomentumLorentzFlow kernels replaced

cores, both replicated and distributed mesh methods
were tried, however this was not found to make a
significant difference to the results. For this work, the
CSD3 Cascade Lake nodes were used, each consisting
of 56 CPU cores, with 192 GiB RAM per node and
HDR Infiniband interconnect. Cascade Lake was used
for simplicity due to incompatibilities found between
certain modules required for MOOSE on the Ice Lake
nodes, however this is expected to be a simple problem
to fix in the future.

4.8. Results

Using the kernel method, the solution diverged for all
preconditioners in the Shercliff case, except for with
ilu for which the solve reached the time limit. This
method was more successful in the Hunt case, for which
bjacobi and ksp converged for both 8 and 28 cores.
For this case gasm and ilu converged in the 28 core

with IRMINSADMomentumLorentz, and with IRMINSADTauMbEs; Bgwever with 8 cores the solve diverged with gasm

replacing INSADMaterial.

4.2. Methods

Both methods were tested against the Shercliff and
Hunt problems for Ha = 20. The cases were set up
to match the Ha = 20 validation cases described in
section 3.4 in terms of physical properties and BCs,
with the exception of the inlet which was set with
a parabolic velocity profile with a mean velocity of
1ms~!. As with those cases, a 100 x 40 x 20 mesh
was used, however mesh grading was limited to a
grading ratio of 5 due to the solvers due to poor
convergence with stronger grading (however, this was
tested only with the asm preconditioner). The kernel
method used 20-node hexahedra as required for the
second order vector Lagrange velocity shape functions,
with 8-node hexahedra used for the material method
for first order velocity. Velocity was initialised with
the parabolic flow profile used for the inlet. For
both methods, pressure and electric potential were
represented by first order Lagrange shape functions.
The magnetic field was represented by a first order
Lagrange AuxVariable, which could in principle reflect
a non-uniform magnetic field or be replaced by a
coupled variable, but in this case was simply calculated
as uniform By = (0,20,0)T. Each case was solved
in steady state using Newton’s method [33], using
automatic scaling and limiting linear iterations to 100
and non-linear iterations to 1000. Each method was
tested in the Shercliff and Hunt flow cases with several
preconditioners: asm, bjacobi, gamg, gasm, ilu and
ksp. Additionally, tests were conducted using 8 cores
and 28 cores in order to gain a basic understanding
of strong scaling, setting a time limit of 24 hours and
12 hours for 8 cores and 28 cores respectively. On 28

and ran out of time with ilu, indicating that with gasm
further decomposing the problem aided convergence.
The ksp preconditioner was found to converge fastest,
solving the problem in 3.8 hours on 8 cores and 1.5
hours on 28 cores.

The material method was found to converge with
a greater proportion of the preconditioners tested than
the kernel method. For the Shercliff case, asm and
ilu both converged for both 8 and 28 cores, while
bjacobi and gasm converged for 8 cores only and all
other preconditioners failed. The asm preconditioner
converged fastest for this problem, solving in 13.2 min
on 8 cores and 5.5min on 28 cores. For Hunt flow,
asm converged but more slowly, with gamg converging
fastest in 13.4min on 8 cores and 6 min on 28 cores. In
this case all the other preconditioners were successful
on 8 cores, while bjacobi, gasm and ksp failed on 28
cores.

For the preconditioners with which the simulations
converged both with 8 cores and 28 cores, strong
scaling was clearly demonstrated for both methods,
with a 3.5 times increase in computational resources
resulting in speedups of approximately 2.5.

Figure 8 shows a comparison of the Proteus
material method solution for Shercliff flow to the
analytic solution. Here significant deviation can be
seen, with the the magnitude of the velocity profile
in the Proteus solution substantially lower than that
of the analytic solution. This suggests a failure to
conserve mass as the mass flow rate at * = 13m
in this simulation is clearly significantly lower than
in the analytic solution. This is reflected in error
calculations, where RMSE(u,) = 14%, with a similarly
high pressure drop error of Keror = 10%. The
situation is similar for Hunt flow, as seen in figure 9, for
which RMSE(u,) = 18% and Keor = 11%. This was

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 13

exact,
1.25 1.25 u™(y)
Mxxxxxxxxw PR X X x N u;)xu(-l(z)
1.00 1.00 Xx Xx x material
5075 0.75
0.50 0.50
0.25 0.25
0.00 0.00
0 1 -1 0 1
y z

Figure 8. Proteus material method velocity profiles uz(y,z =
0) and uy(x = 13,y = 0,2) compared to the analytic solution
for the Shercliff case at Ha = 20, measured at £ = 13m. The
kernel method was found to not converge.

05 exact,

MMWM ug™(y)
04 u;’xﬂtl(z)

XX x X XXX + kernel
0.3 x material
&
0.2
0.1
0.0~ . 0 1 0.0~ . 0 1
y z

Figure 9. Proteus velocity profiles u,(y, z = 0) and ug (y = 0, 2)
compared to the analytic solution for the Hunt case at Ha = 20,
measured at £ = 13 m. Results for both the kernel and material
methods are shown.

found to be the case regardless of whether a uniform
velocity inlet or the parabolic inlet described in section
4.2 was used.

However, it can be seen in figure 9 that although
convergence for the kernel method was slow, and was
not achieved for the Shercliff case, it was found to be
more accurate than the material method in the Hunt
case, for which RMSE (u,) = 4.5% and Kepror = 2.0%,
approaching the accuracy found with mhdFoam and
epotFoam (see table 4). The largest inaccuracies in
velocity were seen at z = Om, where higher velocity
was observed than in the analytic solution, and at the
peaks of the side wall jets where the maximum velocity
was lower.

These simulations were also found to take
significantly longer to compute than the OpenFOAM
simulations. While on 8 cores the Proteus Shercliff flow
case using the material method (434805 DOFs) and
the asm preconditioner took 13.2min to converge to a
residual of 1.3 x 1079, in the equivalent epotFoam case
(80,000 cells using mesh grading with a ratio of E = 10,
for approximately 4 x 10> DOFs) took only 10.5s in
real time to reach the 2s simulation time end point
on the same resources, around 75 times faster. It was
found that when solving the Shercliff problem with the
material method and asm preconditioner, increasing

the limit on number of linear iterations per nonlinear
iteration from 100 to 1000 significantly reduced the
number of nonlinear iterations required, substantially
accelerating the solve, however the solution was still
inaccurate and the solution time was still more than an
order of magnitude greater than for the OpenFOAM
solvers.

4.4. Discussion

The Proteus LM-MHD implementation was found
to have several disadvantages compared to the
OpenFOAM solvers, including less accurate solutions,
longer solve times, and an inability to increase
mesh grading beyond a ratio E ~ 8 with the asm
preconditioner. The kernel method was found to be
more accurate than the material method, which could
be due to either the increased number of degrees of
freedom from the higher element order for velocity
or potential inaccuracies in the material method
stabilisation terms. However, this implementation
aimed only to test the concept of using MOOSE for
MHD problems. Future work will aim to improve
the implementation, as well as consider alternative
routes for introducing MHD features into MOOSE
such as coupling in external solvers, in order to
enable multiphysics simulations incorporating LM-
MHD. Both methods implemented in Proteus were
found to show reasonable strong scaling, as expected
based on [8], however further insights could be gained
by performing a full scaling analysis. Relaxing the
limit on number of linear iterations was found to
accelerate convergence for the material method in the
Shercliff flow case with the asm preconditioner, so
investigating this further for a wider range of problems
and preconditioners could provide a route to reducing
simulation wall times. Higher mesh grading ratios were
only tested with the asm preconditioner, so high mesh
grading should be tested with other preconditioners.
Additionally, this work only considered the approach
of solving for all fields in a single matrix, however
splitting the problem by fields would allow for different
preconditioners to be selected for each field, which
could improve convergence.

5. Conclusions

This work has identified OpenFOAM to be a useful
package for portable, scalable, open-source CFD, and
which could be a strong candidate for developing
open-source LM-MHD capability. The mhdFoam and
epotFoam solvers are good examples of the full
induction and inductionless formulations respectively,
with both accurately solving simple LM-MHD cases.
Both solvers demonstrated good strong scaling, though
ng.s was seen to increase with increasing resolution.

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 14

Room for improvement was observed in terms of weak
scaling, though this could be approached by performing
a preconditioner study to identify the optimal set
of preconditioners for weak scaling. However, both
solvers lack features that would be required for more
practical applications, such as the ability to simulate
walls of arbitrary conductivity or couple in thermal
effects such as buoyancy and electromagnetic heating.
Furthermore, this work only validated the solvers
against simple problems with analytic solutions. More
complex validation cases exist, such as those outlined
in [34], which include turbulent behaviour, thermal
effects, and extension to Ha ~ 10* Turbulent flow
could be simulated in these solvers by DNS, however
for complex multiphysics simulations it would likely be
beneficial to reduce resolution requirements by using
turbulence modelling methods such as LES [9]. Future
work aims to explore more advanced open-source LM-
MHD solvers, such as those developed by Blishchik
[35], which incorporate electromagnetic coupling with
the walls and dynamic Smagorinsky LES turbulence
modelling in addition to other features. Additionally,
it would be beneficial for some simple cases to be able
to solve in steady state, however this is only a benefit
if behaviour is steady which is not necessarily the case
for practical fusion applications.

An initial implementation of LM-MHD was added
to the Proteus MOOSE application and studied, in
order to test this route. This was found to require
significant improvements, with poor accuracy and
convergence (particularly with high mesh grading
ratios) becoming evident. However, this study has
identified these areas which can be improved on in
future work, and may inform future research efforts
on FEM LM-MHD implementations.

Overall, it was found that open-source LM-MHD
solvers have the capability to become viable scalable,
portable solvers for inclusion into multiphysics pack-
ages for fusion research. OpenFOAM is clearly a
promising candidate, with significant existing research
in the literature and some more advanced solvers, pro-
vided issues with weak scaling can be overcome. How-
ever, it is clear that this area of research has fallen
behind the closed-source development of prominent
solvers in the field such as those demonstrated in [5],
and as such there is significant room for further open-
source development in this field.

Acknowledgements

RWE would like to thank Gerasimos Politis for many
insightful discussions which helped to develop my
knowledge of liquid-metal MHD and to refine this work.

This work was performed using resources provided
by the Cambridge Service for Data Driven Discovery

(CSD3) operated by the University of Cambridge
Research Computing Service (www.csd3.cam.ac.uk),
provided by Dell EMC and Intel using Tier-2 funding
from the Engineering and Physical Sciences Research
Council (capital grant EP/T022159/1), and DiRAC
funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

This work has been part-funded by STEP, a
UKAEA programme to design and build a prototype
fusion energy plant and a path to commercial fusion.

References

[1] Davis, Andrew, Dubas, Aleksander and Otin, Ruben 2020
EPJ Web Conf. 245 09001 URL https://doi.org/10.
1051/epjconf/202024509001

[2] Boccaccini L, Aiello G, Aubert J, Bachmann C, Barrett T,
Del Nevo A, Demange D, Forest L, Hernandez F, Nora-
jitra P, Porempovic G, Rapisarda D, Sardain P, Utili M
and Vala L 2016 Fusion Engineering and Design 109-
111 1199-1206 ISSN 0920-3796 proceedings of the 12th
International Symposium on Fusion Nuclear Technology-
12 (ISFNT-12) URL https://www.sciencedirect.com/
science/article/pii/S0920379615304427

[3] Smolentsev S 2021 Fluids 6 ISSN 2311-5521 URL https:
//www.mdpi.com/2311-5521/6/3/110

[4] Smolentsev S 2022 Fusion Science and Technology 0
1-23 URL https://doi.org/10.1080/156361055.2022.
2116905

[5] Smolentsev S, Rhodes T, Yan Y, Tassone A, Mistrangelo
C, Biihler L and Urgorri F R 2020 Fusion Science
and Technology 76 653-669 URL https://doi.org/10.
1080/15361055.2020.1751378

(6] Brooks H and Davis A 2022 Plasma Physics and Controlled
Fusion 65 024002 URL https://dx.doi.org/10.1088/
1361-6587/aca998

[7] Gaston D R, Permann C J, Peterson J W, Slaughter A E,
Andrs D, Wang Y, Short M P, Perez D M, Tonks M R,
Ortensi J, Zou L and Martineau R C 2015 Annals of
Nuclear Energy 84 45-54

[8] Permann C J, Gaston D R, Andrs D, Carlsen R W, Kong
F, Lindsay A D, Miller J M, Peterson J W, Slaughter
A E, Stogner R H and Martineau R C 2020 SoftwareX
11 ISSN 2352-7110 URL https://doi.org/10.1016/j.
softx.2020.100430

[9] Krasnov D, Zikanov O, Schumacher J and Boeck T 2008
Physics of Fluids 20 095105 URL https://doi.org/10.
1063/1.2975988

[10] Gerbeau J F, Le Bris C and Lelietvre T 2006
Mathematical Methods for the Magnetohydrodynam-
ics of Liquid Metals (Oxford University Press)
ISBN 9780198566656 URL https://doi.org/10.1093/
acprof :0s0/9780198566656.001.0001

[11] Davidson P A 2001 An Introduction to Magnetohydrody-
namics Cambridge Texts in Applied Mathematics (Cam-
bridge University Press)

[12] Greenshields C and Weller H 2022 Notes on Computational
Fluid Dynamics: General Principles (Reading, UK:
CFD Direct Ltd)

[13] Miiller U and Biihler L 2001 Magnetofluiddynamics in
Channels and Containers (Springer Berlin, Heidelberg)
ISBN 978-3-540-41253-3

[14] Zikanov O and Thess A 1998 Journal of Fluid Mechanics
358 299-333

[15] Hartmann J 1937 Mathematisk-fysiske Meddelelser 15

[16] Shercliff J A 1953 Mathematical Proceedings of the
Cambridge Philosophical Society 49 136—144

Scalable LM-MHD solvers for fusion breeder blanket multiphysics applications 15

[17]

18]

[19]

22]

23]

24]

[25]

32]

33]

34]

Hunt J C R 1965 Journal of Fluid Mechanics
21(4) 577-590 ISSN 0022-1120 URL https:
//www.cambridge.org/core/product/identifier/
50022112065000344/type/journal_article

Mistrangelo C and Biihler L 2017 PAMM 17 115-
118 URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/pamm.201710033

Moreland K and Oldfield R 2015 Formal metrics for large-
scale parallel performance High Performance Computing
ed Kunkel J M and Ludwig T (Cham: Springer
International Publishing) pp 488-496 ISBN 978-3-319-
20119-1

Gustafson J L 1988 Commun. ACM 31 532-533 ISSN 0001-
0782 URL https://doi.org/10.1145/42411.42415

Amdahl G M 1967 Validity of the single processor
approach to achieving large scale computing capabilities
Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference AFIPS 67 (Spring) (New York,
NY, USA: Association for Computing Machinery) p
483-485 ISBN 9781450378956 URL https://doi.org/
10.1145/1465482.1465560

Weller H G, Tabor G, Jasak H and Fureby C 1998
Computers in Physics 12 620-631 URL https://aip.
scitation.org/doi/abs/10.1063/1.168744

Mistrangelo C and Biihler L 2011 Fusion Science and
Technology 60 798-803 URL https://doi.org/10.
13182/FST11-A12483

Issa R 1986 Journal of Computational Physics 62 40-65
ISSN 0021-9991 URL https://www.sciencedirect.com/
science/article/pii/0021999186900999

Tassone A 2016 Magnetic induction and electric potential
solvers for incompressible MHD flows Proceedings of
CFD with OpenSource Software ed Nilsson H

Dousset V 2009 Numerical simulations of MHD flows past
obstacles in a duct under externally applied magnetic
field Ph.D. thesis Coventry University

Mas de les Valls E 2011 Development of a simulation tool
for MHD flows under nuclear fusion conditions Ph.D.
thesis Universitat Politécnica de Catalunya

Pellegrini F 2012 Scotch and PT-Scotch Graph Partitioning
Software: An Overview Combinatorial Scientific Com-
puting ed Uwe Naumann O S (Chapman and Hall/CRC)
pp 373-406 URL https://hal.inria.fr/hal-00770422

Ni M J, Munipalli R, Huang P, Morley N B and Abdou
M A 2007 Journal of Computational Physics 227 205—
228 ISSN 0021-9991 URL https://www.sciencedirect.
com/science/article/pii/80021999107003269

Khodak A, Titus P, Brown T and Klabacha J 2018
Fusion Engineering and Design 137 124-129 ISSN 0920-
3796 URL https://www.sciencedirect.com/science/
article/pii/S0920379618305982

Lindsay A D, Gaston D R, Permann C J, Miller J M,
Andrs D, Slaughter A E, Kong F, Hansel J, Carlsen
R W, Icenhour C, Harbour L, Giudicelli G L, Stogner
R H, German P, Badger J, Biswas S, Chapuis L, Green
C, Hales J, Hu T, Jiang W, Jung Y S, Matthews
C, Miao Y, Novak A, Peterson J W, Prince Z M,
Rovinelli A, Schunert S, Schwen D, Spencer B W,
Veeraraghavan S, Recuero A, Yushu D, Wang Y, Wilkins
A and Wong C 2022 SoftwareX 20 101202 ISSN 2352-
7110 URL https://www.sciencedirect.com/science/
article/pii/S$2352711022001200

Peterson J W, Lindsay A D and Kong F 2018 Advances in
Engineering Software 119 68—92

Lindsay A, Stogner R, Gaston D, Schwen D, Matthews C,
Jiang W, Aagesen L K, Carlsen R, Kong F, Slaughter
A et al. 2021 Nuclear Technology 1-18 URL https:
//doi .org/10.1080/00295450. 2020 . 1838877

Smolentsev S, Badia S, Bhattacharyay R, Biihler L, Chen
L, Huang Q, Jin H G, Krasnov D, Lee D W, de

les Valls E M, Mistrangelo C, Munipalli R, Ni M J,
Pashkevich D, Patel A, Pulugundla G, Satyamurthy P,
Snegirev A, Sviridov V, Swain P, Zhou T and Zikanov
O 2015 Fusion Engineering and Design 100 65-72
ISSN 0920-3796 URL https://www.sciencedirect.com/
science/article/pii/S0920379614003263

[35] Blishchik A, van der Lans M and Kenjere§ S 2021

International Journal of Heat and Fluid Flow 90 108800
ISSN 0142-727X URL https://www.sciencedirect.
com/science/article/pii/S0142727X21000308

