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Abstract. This study presents the validation of the frequency-domain finite element code ERMES 20.0,
benchmarked against Finite Difference Time Domain (FDTD) solvers. The simulations focus on Ordi-
nary—Extraordinary (O-X) mode conversion in the Electron Bernstein Wave (EBW) regime of the MAST
Upgrade experiment. Validation is performed in terms of mode conversion efficiency and wave propagation
characteristics. Several finite element formulations are tested and compared with the FDTD results. The
simulations demonstrate excellent agreement between the different approaches, confirming the accuracy and
robustness of ERMES 20.0 for modeling cold plasma wave interactions.

1 Introduction

Accurate modeling of Electro-Magnetic (EM) wave prop-
agation and mode conversion in fusion plasmas is essen-
tial for the design and optimization of plasma heating
and current drive systems in present and future fusion de-
vices [1, 2]. Among the various wave-based heating meth-
ods, Electron Bernstein Waves (EBWs) offer unique ad-
vantages, including the ability to heat overdense plasmas
where conventional electron cyclotron (EC) waves can no
reach [3, 4]. EBWs are electrostatic waves that do not suf-
fer from cut-off limits, making them particularly attractive
for spherical tokamaks such as MAST Upgrade [5].

However, EBWSs cannot be directly launched from out-
side the plasma; instead, they must be excited via Ordi-
nary—Extraordinary (O-X) mode conversion, followed by
Extraordinary—Electron Bernstein (X—B) mode conversion
inside the plasma [3]. Modeling this multi-stage process
requires solving Maxwell’s equations in inhomogeneous,
anisotropic, and dispersive media, often in the cold plasma
approximation as a first step.

Finite Difference Time Domain (FDTD) methods are
widely used for such problems due to their simplicity and
flexibility [6], but they can become computationally ex-
pensive for problems involving complex geometries with
small spacial discretization mesh sizes that require small
time steps for numerical stability. Finite Element Methods
(FEM) offer complementary advantages [7], such as geo-
metrical flexibility, high-order accuracy, and the ability to
incorporate sophisticated conformal boundary conditions.
Recently, the FEM-based code ERMES 20.0 has been de-
veloped to address advanced EM wave modeling needs in
fusion plasmas [8].

This paper presents the validation of ERMES 20.0
against the FDTD solvers presented in [9, 10], focusing
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on the O-X mode conversion process in a cold plasma
regime relevant to the MAST Upgrade configuration. The
benchmark is conducted on a simplified plasma slab model
with a linear electron density profile, which enables a well-
controlled comparison between the numerical approaches.
The analysis focuses on three key metrics: electric field
profiles, the Poynting vector (to visualize energy flux and
conversion), and the reflection coefficient (equal to one
minus the mode conversion efficiency in this setup). By
comparing these quantities across the various FEM for-
mulations implemented in ERMES 20.0 and against the
FDTD codes, we aim to provide a thorough validation of
ERMES 20.0 and to assess the sensitivity of the results to
numerical settings and plasma parameters.

The remainder of this paper is structured as follows.
Section 2 describes the benchmark setup. Section 3 details
the finite element model implemented in ERMES 20.0, in-
cluding the applied boundary conditions and preliminary
simulation results. Section 4 presents the results of bench-
mark comparisons against the FDTD codes. Finally, Sec-
tion 5 discusses the key findings, highlighting the strengths
and limitations of each FEM formulation and the level of
agreement with the FDTD results.

2 Benchmark description

The benchmark considered in this work, illustrated in fig-
ure 1, corresponds to scenario #6 in [9], where a Gaus-
sian beam in O-mode polarization at fy = 28 GHz is
launched into a cold magnetized plasma at the optimal an-
gle 8,,, = 47.3°. The problem domain of figure 1 is de-
fined with its origin of coordinates at the lower-left corner
and has dimensions of Ay = 0.86m and Az = 0.32m. A
uniform magnetic flux density of |B| = 0.85T is applied
to the plasma. The electron density 7, is set to zero for
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Figure 1. Benchmark scenario #6 from [9]. A Gaussian beam in
O-mode polarization at fy = 28 GHz is launched into a cold mag-
netized plasma at the optimal angle 6,,, = 47.3°. The colour map
represents the plasma electron density profile defined by equa-
tion 1 for z > zo = 0.15m. A uniform magnetic flux density of
|B| = 0.85T is applied to the plasma.

Z < zop = 0.15m, and for z > z, it follows the expres-

sion:
2 1

Ao koL,
where n., = g m, a)(z) / q% is the critical density, being m,
the mass of an electron, ¢ the permittivity of free space,
wp the angular frequency of the Gaussian beam, and g,
the elementary charge. The parameter Ay denotes the free-
space wavelength of the Gaussian beam, and koL, serves
as a normalization factor for the electron density profile,
varying from 2 to 25 in this study.

The Gaussian beam has a waist of 41, with its cen-
tre located along the y-axis at y = 0.2m. The beam is
launched at the angle that maximizes mode conversion, as
determined from the expressions in [11]:
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where ¥ = w,. /wy and w,. = q.|B|/m, is the electron
cyclotron frequency. The polarization at the beam waist
required for the beam to propagate in a pure O-mode under
oblique incidence is derived from the expressions provided
in[11, 12]:
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with 6 = 6,,, and E, = —i0.5827 to ensure a normalized

field amplitude. An electric field E, perpendicular to the
beam’s propagation wave vector ko and the x-direction,
can be constructed from the components in (3) as follows:

Ey = E2 + E? (%xko), )

where X is the unit vector in the x-direction and Ro is the
unit vector in the direction of the beam wave vector K.

3 Finite element model

The FEM model used for the benchmark is illustrated in
Figure 2. The problem domain shown in Figure 1 is ex-
tended to prevent spurious reflections of the beam at the

Figure 2. FEM model of benchmark 2. Colour map shows the
module of the electric field for k4L, = 25.

boundaries, since the absorbing boundary conditions im-
plemented in ERMES 20.0 are more effective for small
angles of incidence. The boundary conditions applied to
each surface will be described in detail in section 3.3. The
coordinate system and its origin in the model of figure 2
are the same as those defined in section 2. The Gaus-
sian beam is launched from the surface labelled S;, and
collected at the surface S,,, with the beam waist posi-
tioned along the y-axis at y = 0.2m. Due to the three-
dimensional nature of ERMES 20.0, the problem domain
is given a thickness of 0.5 mm in the x-direction, with the
fields on the planes x = 0 and x = 0.5 mm constrained to
be equal.

3.1 Reflection coefficient

The reflection coefficient R in our FEM model is defined
as the ratio of the power flux through S ,,, to that through
S in, computed by integrating the normal component of the
time-averaged Poynting vector over each surface:
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where %Real [E X ﬁ] is the time-averaged Poynting vec-

tor, E is the complex electric field, H is the complex con-
jugate of the magnetic field, and #i is the exterior unitary
normal vector.

3.2 Finite element formulations

One of the key features of ERMES 20.0 is the ability to
choose from various finite element formulations [8]. Some
of these formulations are unique to ERMES 20.0 and are
not available in other codes. In this work, the two formula-
tions described below were selected, as the other available
approaches (namely the potentials, stabilized, and local L2
projection methods) were either computationally more de-
manding to generate comparable outputs or failed to pro-
duce satisfactory results.



3.2.1 Double-curl Maxwell’s equations with edge
elements (EDG)

The double-curl formulation with edge elements (EDG)
is the most widely adopted approach in both commercial
and research electromagnetic codes due to its versatility
[7]. The double-curl formulation for the electric field E is
expressed as follows: if L2(Q) is the Hilbert space of all
the square-integrable functions in the problem domain Q
and Hy(curl; Q) is the functional space defined as

Hy(curl; Q) ;= {F e L*(Q) | VXF e L*(Q),
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being I" a Perfect Electric Conductor (PEC) surface. Then,
solving the time-harmonic Maxwell’s equation with the
double-curl finite element formulation is equivalent to find
an E € Hy(curl; Q) such as Y F € Hy(curl; Q) holds:
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Being w the angular frequency of the time-harmonic prob-
lem, J the volumetric current source densities, fi the uni-
tary exterior normal to the problem domain Q with bound-
ary 0€), u the complex magnetic permeability, and & the
complex electric permittivity.

In this work, u is equal to the vacuum permeability
Mo, and € is the cold plasma permittivity tensor defined
in [13, 14]. The above EDG formulation is discretized
using second-order curl-conforming elements [15], which
have 20 degrees of freedom per element. First-order curl-
conforming elements, with only 6 degrees of freedom,
failed to produce accurate results.

3.2.2 Regularized Maxwell’'s equations with nodal
elements (RME)

The above EDG formulation can be challenging to solve in
certain cases, as it often leads to ill-conditioned matrices
and may exhibit numerical instabilities [16]. To address
these issues, ERMES 20.0 incorporates the regularized
Maxwell’s equations method with nodal elements (RME).
This alternative typically produces well-conditioned ma-
trices and more stable solutions. However, it requires
careful treatment of singularities and discontinuities in the
problem domain [17]. The regularized finite element for-
mulation is stated as follows: if Hy(curl, div; Q) is the
functional space defined as

Hy(curl, div; Q) := {F e L*(Q) | VxF e L*(Q),
V- (F) e LX(Q), (8
AXF=0inT, i-F=0in7},

being Y a Perfect Magnetic Conductor (PMC) surface.
Then, solving the time-harmonic Maxwell’s equation
with the regularized finite element formulation is equiv-
alent to find an E € Hy(curl, div; Q) such that VF €

Hjy(curl, div; Q), the following holds:
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Where p is equal to the vacuum permeability pg, € is the
cold plasma permittivity tensor defined in [13, 14], and
T = tr(&e)/3 is the trace of the product of the permittivity
tensor with its complex conjugate divided by three. The
parameter « is used to control the effect of the field singu-
larities [17].

In this work, the above RME formulation is discretized
using second-order nodal elements [15]. First-order nodal
elements can also produce similar results, but with a finer
mesh. Therefore, to ensure a consistent comparison with
the EDG formulation on the same mesh, the RME formu-
lation is discretized using only second-order elements in
the remainder of this work.

3.3 Boundary conditions

On the boundary 0 of the domain Q of figure 2, the fol-
lowing Robin boundary condition is applied:

AXVXE=y@xaxE)+U, (10)

where y and U are quantities that depend on the surface of
application and will be defined later in this section. Equa-
tion 10 is substituted into the boundary terms of (7) and
(9). For the RME formulation, an additional condition is
imposed through the last term of the left-hand side:

V-E=y®H-E)+G, (11)

where G is a quantity that also depends on the boundary
surface on which it is applied and will be detailed later in
this section.

On Sy, and S 4., we have U = 0 and G = 0. For
Siops ¥ = ikoVRL/S, and for S sq., v = iko VL, where
ko = wAfeouo is the angular wave number in vacuum,
and the quantities R, L, and S are components of the cold
plasma tensor [13, 14]. These conditions correspond to the
assumption that an extraordinary wave is incident on the
S 1op surface, and a left-hand circularly polarized wave on
the S ize [14]. For the benchmark presented in section 2,
the boundary conditions on S,,, and § sz, have minimal
influence on the results, as most of the fields are reflected
back into the non-plasma region before reaching those sur-
faces, as shown in figure 2.

On Sy, and Sy, ¥ = ikg. For S, U=0and G = 0.
However, on §;,, where the Gaussian beam is launched,
we have:

U = —iko (i x i X Egp) + iko (i X 6 X Egg),

n (12)
G= —ikoﬁ'EGB + iko(S'EGB,



where Egp is the electric field of the Gaussian beam, de-
fined as:
2o Zn i0, A i, a] i®
Egp = | [IEcle® & + 1Ee™ 7], (13)
|goll gy

where E, = |E le" o and E, = |E,|e" f; are the trans-
verse components of electric field at the centre of the beam
waist, with E, = E,; and E; = E, in this work, and
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where w, and w,, are the semi-axis lengths of the elliptical
cross-section of the beam at its waist, with w, = w;, = 449
in this work. The symbols ¢, o, and n denote coordinates
measured from a coordinate system centered at the beam
waist. The p- and n-axes are aligned with the principal
axes of the elliptical cross-section of the beam, while the
o-axis is aligned with the direction of propagation. The
unit vectors 9, 6, and 7 satisfy ¢ L 6 and fj = & x .

3.4 Finite element simulations

FEM simulations for the benchmark described in section 2
were performed using the formulations and boundary con-
ditions detailed in previous sections. The geometry shown
in figure 2 was discretized using second-order finite ele-
ments with a characteristic size of 0.5 mm, resulting in ap-
proximately 7.5 million elements. Depending on the for-
mulation, either edge-based or nodal elements were used.
The simulations were executed on an HPC cluster, requir-
ing approximately 800-900 GB of RAM, with runtimes
ranging from 2 to 3 hours per case. The resulting linear
systems were solved using MUMPS, available in ERMES
20.0 through its interface with PETSc [8, 18].

As discussed in [16], the EDG formulation can exhibit
numerical instabilities near cold plasma resonances. To
address this issue, a damping mechanism must be incorpo-
rated into the cold plasma dielectric tensor. In this study,
we adopt the complex frequency approach described in
[14], wherein an electron collision frequency v is added to
the beam angular frequency w in the electron contribution
to the cold plasma tensor, modifying it as w + iv.

Figure 3 illustrates the impact of different values of the
electron collision frequency v on the simulation results.
The EDG formulation is clearly unstable for v < 10° Hz,
while for v > 10°Hz, it produces results equivalent to
those of the RME formulation. The equivalence of the
EDG and RME formulations for v > 10° Hz is supported
by the results in figure 4, where the reflection coeffi-
cient (5) is computed for several values of koL, and v.
The RME formulation consistently generates smooth solu-
tions. However, it remains an open question whether these
solutions faithfully represent the underlying physics or are
merely the result of a numerical smoothing introduced by
the regularization.
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Figure 3. Impact of different values of the electron collision fre-
quency v on the simulation results for the EDG and RME formu-
lations. The colour map represents the module of the complex
electric field for kyL, = 25.
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Figure 4. Reflection coefficient, as defined in (5), for the EDG
and RME formulations. The value between brackets represents
the electron collision frequency v.

4 Validation results

The FDTD codes IPF-FDMC, EMIT-2D, and CUWA,
along with the Fourier-based full-wave simulation code
FFW, were used to validate the FEM approach of ERMES
20.0. Detailed descriptions of IPF-FDMC, EMIT-2D, and
FFW, along with their results for benchmark 2, can be
found in [9]. Information on the FDTD code CUWA can
be found in [10], and the corresponding simulation results
were provided by one of the co-authors of this paper.

The FEM simulations of benchmark 2 were performed
using ERMES 20.0 with an electron collision frequency
of v = 10° Hz. This choice is motivated by the fact that
all the codes used in the validation (IPF-FDMC, EMIT-
2D, CUWA, and FFW) incorporate some form of dissipa-
tion mechanism to ensure numerical stability. Moreover,



Figure 5. Module of the imaginary part of the electric field cal-
culated by ERMES 20.0 in the cold plasma region for koL, =
[2, 25] and an electron collision frequency of v = 10° Hz. The
real part of the electric field exhibits a similar module distribu-
tion and is therefore not shown.

in the case of the EDG formulation, a minimum value of
v = 10° Hz is required to obtain stable solutions. At this
value, the results produced by the EDG formulation also
coincide with those from the RME formulation, further re-
inforcing its suitability. Therefore, v = 10° Hz was se-
lected as the minimal value that both stabilizes the simula-
tion and ensures consistency with the validation method-
ology adopted by the reference codes, enabling a fair and
meaningful comparison. An example of the fields gener-
ated by ERMES 20.0 is shown in figure 5. This figure
illustrates the excitation of different wave modes and the
variation in field penetration for different density gradi-
ents.

A comparison of the fields calculated by IPF-FDMC,
FFW, and ERMES 20.0 can be seen in figures 6 and 7.
IPF-FDMC provides a snapshot of the squared time do-
main electric field, | E, |*, and FFW provides its logarithm,
log,o( | E; [?). ERMES 20.0, on the other hand, com-
putes the magnitude of the complex electric field, |E. |,
and its logarithm, log,,(|E.|). These quantities are re-
lated through the expression | E, 2 = 2( |E,|*), where (-)
denotes the time average over a period. Although the out-
puts are not strictly the same, the results show a very good
qualitative agreement. A comparison of the Poynting vec-
tor calculated by CUWA-2D and ERMES 20.0 is shown
in figures 8. A fairly good agreement between both codes
is also observed. Finally, a comparison of the reflection
coefficient calculated with all the codes is shown in fig-
ure 9. All the codes show excellent agreement, except for
CUWA, which exhibits a higher reflection coeflicient. This
discrepancy can be attributed to differences in the damp-
ing models used. Referring to figure 4, which shows the
reflection coefficient calculated by ERMES 20.0 for vari-
ous electron collision frequencies, we can observe that the
reflection coefficient obtained by CUWA falls within the
range of values computed using the RME formulation.

n= IPF-FDMC

| 107!

Figure 6. Magnitude of the electric field for koL, = 25. IPF-
FDMC provides a snapshot of the squared time domain electric
field, | E,|>. ERMES 20.0 provides the module of the complex
electric field, |E.|. Both magnitudes relate through |E.|* =
2( |E,|*), with {-) being the time average over a period. IPF-
FDMC image adapted from [9].
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Figure 7. Magnitude of the electric field for koL, = 25. FFW
provides the logarithm of the squared time domain electric field,
log,o( | E; [>). ERMES 20.0 provides the logarithm of the module
of the complex electric field, log,,(|E.|). FFW image adapted
from [9].

5 Summary

This study presents the validation of the frequency domain
finite element code ERMES 20.0, benchmarked against
several finite difference time domain solvers. The simula-
tions focus on Ordinary—Extraordinary (O—X) mode con-
version in the Electron Bernstein Wave (EBW) regime of
the MAST Upgrade experiment. The simulations demon-
strate excellent agreement between ERMES 20.0 and the
FDTD codes, confirming the accuracy and robustness of
the finite element approach for modeling cold plasma
wave interactions. These results establish ERMES 20.0 as
a validated and reliable computational tool for advanced
electromagnetic wave modeling in fusion plasma envi-
ronments. Future developments will aim to extend ER-
MES 20.0 capabilities to include warm and hot plasma
effects, contributing to improved predictive modeling of



—==- 0 Cutoff
—-=-=- UH Resonance 1818
—=- RH Cutoff 1616

LH Cutoff

Figure 8. Module of the Poynting vector for koL, = 10 calcu-
lated with CUWA-2D and ERMES 20.0.
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Figure 9. Reflection coefficient, as defined in (5), calculated with
IPF-FDMC, EMIT-2D, CUWA, FFW, and ERMES 20.0. The
reflection coefficient is equal to one minus the mode conversion
efficiency. IPF-FDMC, EMIT-2D, and FFW data from [9].

electromagnetic wave heating and current drive in next-
generation fusion devices.
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