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1. Introduction

The HL-2M [1] is a new tokamak device currently under 
construction at Southwestern Institute of Physics, China. The 
designed plasma major radius and minor radius are 1.78 m 
and 0.65 m, respectively. HL-2M will install an ITER-like 
double-vacuum vessel and will be able to operate in double- 
or single-null configurations. One of the key missions of the 
HL-2M program is to explore high-performance tokamak 
plasma operation regimes, in particular the high beta long 
pulse advanced tokamak scenario, which is also foreseen for 
ITER [2]. The major obstacle for successful realization of such 

a scenario is the resistive wall mode instability. A systematic 
computational investigation of this instability for HL-2M is 
the scope of the present work.

The resistive wall mode (RWM) study has received much 
attention during recent years, because an unstable low-n (n 
is the toroidal mode number) RWM can limit the operational 
space of advanced tokamaks, including that designed for 
ITER [2]. The RWM can be viewed as a residual instability 
from the external ideal kink (XK) mode [3], which in turn is 
a global magneto-hydrodynamic (MHD) instability driven 
by plasma current and/or pressure. For a pressure driven XK, 
the stability is controlled by the normalized plasma pressure 
βN = β (%) a (m)B0 (T)/Ip (MA) , where β is the ratio of the 
volume averaged plasma pressure to the magnetic pressure, Ip 
the total plasma current, a the plasma minor radius, and B0 the 
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vacuum toroidal magnetic field. When βN exceeds a critical 
value (the so-called Troyon no-wall limit [4]), the XK becomes 
unstable. A close-fitting perfectly conducting wall can stabilize 
the XK, resulting in increased βN. However, by replacing the 
ideal wall by a resistive wall, the resulting RWM grows on a 
timescale characteristic of the field penetration time through 
the wall. An unstable RWM brings the βN limit back to the 
no-wall Troyon limit. It is thus highly desirable to achieve the 
RWM stabilization, in order to increase the plasma βN for long 
pulse or steady state advanced tokamak operations.

The fact that the RWM grows very slowly, i.e. has a small 
(complex) mode frequency in the laboratory frame, has pro-
found implication on the mode stabilization, either via pas-
sive means or via active control. Passive stabilization relies 
on the plasma toroidal rotation and drift kinetic resonances. 
Within the MHD theory, the free energy-releasing channels, 
that help to damp the RWM instability, include the ion sound 
wave damping and the shear Alfven wave continuum damping 
[5–9], which occur at finite plasma rotation frequency. The 
critical rotation velocity, required for complete stabilization of 
the mode, is normally a few percent of the Alfven speed [5]. 
Inclusion of drift kinetic resonances, in particular that due to 
the toroidal precession of trapped thermal particles, has been 
shown to substantially enhance the mode stability at slow 
plasma flow [10–14]. The drift kinetic theory thus success-
fully explains the experimental observations in DIII-D [15] 
and JT-60U [16], where a plasma toroidal flow of about 0.3% 
of Alfven speed was found to completely stabilize the RWM.

Active control of the RWM, using magnetic coils  
[13, 17–22], is feasible thanks to the relatively slow growth 
of the instability. The basic idea of feedback stabilization of 
the RWM is to use the magnetic field, produced by current-
carrying coils, to actively compensate the field perturbation 
produced by the mode instability. Feedback experiments car-
ried out in both tokamaks [23, 24] and reversed field pinches 
[25, 26] have demonstrated successful active control of the 
RWM, up to the ideal wall beta limit.

In this paper, we focus on studying the n  =  1 RWM sta-
bility and control for the HL-2M tokamak. As indicated 
above, a reasonably comprehensive investigation of the RWM 
behavior in a new device should consider the magnetic drift 
kinetic effects, the toroidal flow of the plasma, the active 
control using magnetic coils, as well as the possible synergy 
effect between passive and active means.

The multiple aspects of the problem force us to explore 
the mode stability in multi-dimensional space. The parameters 
that we vary in this study include: the plasma pressure, the 
radial distance of the double resistive wall, the plasma toroidal 
rotation speed, the poloidal location of the feedback coils, as 
well as the controller parameters (feedback gain amplitude 
and phase, the proportional versus derivative actions). We use 
the MARS-F [17] and MARS-K [27] codes for our computa-
tional study. The numerical results are qualitatively verified 
by an analytic model where possible.

The next section describes the computational models and 
introduces a reference equilibrium designed for HL-2M. 
Section  3 reports numerical and analytic results. Section  4 
draws conclusions.

2. Computational models and HL-2M equilibrium

2.1. Computational models in MARS-F/K

Each of the physics models of the MARS-F/K codes (the 
single fluid mode with toroidal flow [5, 6], the MHD-kinetic 
hybrid formulation [27], magnetic feedback [28]), that are 
relevant to the RWM and that we shall employ in this study, 
has previously been reported in separate publications. For the 
completeness of discussions, we present below a brief over-
view of these models.

The core fluid equations  in the plasma region, which are 
solved by MARS-F/K, are written in the Eulerian frame  
[27, 29]

(γ + inΩ) ξ = v + (ξ · ∇Ω)R2∇φ (1)

ρ (γ + inΩ) v = −∇ · p+j × B + J × b − ρ
î
2ΩẐ × v

+(v · ∇Ω)R2∇φ
]
−∇ ·Π

 

(2)

(γ + inΩ) b = ∇× (v × B) + (b · ∇Ω)R2∇φ (3)

(γ + inΩ) p = −v · ∇P − ΓP∇ · v (4)

µ0j = ∇× b (5)

where γ  is the (generally complex) eigenvalue of the insta-
bility, corrected by a Doppler shift inΩ. Ω is the angular fre-
quency of the plasma flow along the toroidal angle φ. The 
lower-case quantities (ξ, v, b, j, p) represent the plasma dis-
placement, perturbed velocity, magnetic field, current and 
pressure tensor, respectively. The perturbed pressure tensor 
p = pI in the fluid approximation, where p is a scalar quanti ty 
and I the unit tensor. The upper-case symbols are equilibrium 
quantities, obtained by the equilibrium code CHEASE [30]. ρ  
is the unperturbed mass density, R the plasma major radius, 
Ẑ the unit vector in the vertical direction. Π is a viscous 
stress tensor, chosen in this work to represent a viscous force 
damping of the parallel sound wave [6], with a numer ical 
coefficient κ‖ specifying the strength of the damping.

The MHD-kinetic hybrid formulation (MARS-K) differs 
from the fluid formulation (MARS-F) in the closure for the 
second momentum. The perturbed pressure tensors p, that 
enters into the momentum equation (2), consists of three parts 
in MARS-K [31, 32]

p = pI + p‖b̂b̂ + p⊥
Ä

I − b̂b̂
ä

 (6)

where b̂ = B/B , B = |B|. The scalar quantity p is the iso-
tropic contribution representing the so-called adiabatic part 
of the drift kinetic pressure. The anisotropic pressure pertur-
bationsp‖(ξ⊥) and p⊥(ξ‖), parallel and perpendicular to the 
equilibrium magnetic field lines, respectively, come from the 
non-adiabatic contributions. The non-adiabatic pressure tensor 
terms effectively replace the compressibility term ΓP∇ · v 
from the fluid closure, equation (4). For thermal particles with 
Maxwellian equilibrium distribution, the adiabatic contrib-
ution exactly recovers the convective term of equation  (4) 
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[33]. In this study, we consider drift kinetic effects from 
thermal particles only. The perturbed kinetic pressure tensors 
are calculated via a semi-analytic solution of the linearized 
drift kinetic equation  in the continuum form without geo-
metrical simplifications (i.e. in full toroidal geometry) [31]. 
The key physics associated with the drift kinetic solution is 
described by the mode-particle resonance operator λml

λml =
n [ω∗N + (ε̂k − 3/2 )ω∗T + ωE]− ω

nωd + [α (m + nq) + l]ωb − ω
 (7)

where ω∗N  and ω∗T  are the diamagnetic drift frequencies due 
to the density and temperature gradients, respectively. ωE is 
the E  ×  B drift frequency due to the equilibrium electrostatic 

potential. ε̂k = εk/T  is the particle kinetic energy nor malized 

by temperature T . ωd =
·

〈φ〉 is the bounce-orbit-averaged 
toroidal precession drift frequency of particles, including the 
ωE drift. ω  is the mode (complex) frequency, with γ = −iω. q 
is the safety factor. We have neglected the effect of finite radial 
excursion width of particles across the magnetic surfaces. The 
parameter α = 0 for trapped particles, with ωb denoting the 
bounce frequency; and α = 1 for passing particles, with ωb 
denoting the transit frequency. In this study, we shall consider 
the magnetic precession of trapped thermal ions and electrons, 
as well as the bounce motion of trapped thermal ions.

In order to model active control of the RWM, we assume 
a basic feedback law, where the magnetic signal ψs (t), meas-
ured by a set of sensor loops, is used to determine the current 
If  flowing in the active coils [17]

MsfIf = −Gψs (t) (8)

where G  is the (complex) feedback gain, G =
|G| eiφ (1 + αDγτF) for a PD controller. Here, |G| and φ rep-
resent the amplitude and phase of the feedback gain, respec-
tively. αD measures the ratio of derivative to proportional 
gains, and τF is the L/R time of the active coils. Note that αD 
can generally be a complex number. In this work, however, we 
vary αD only along the real axis, in order to keep a reasonable 
dimension of parameter space. ψs (t) is assumed to be a point-
wise poloidal field signal in this work. Msf is the free-space 
mutual inductance between the feedback coil and the sensor 
loop, used largely to normalize the feedback gain.

We also define an open-loop transfer function P (s)

P (s) =
ψs

MsfIf
 (9)

where s is the Laplace variable representing the mode eigen-
value. It is important to note that P (s) can be computed as the 
plasma response to a given current source flowing in the active 
coils. Equations (8) and (9) are combined to yield the closed-
loop characteristic equation

1 + GP (s) = 0. (10)

The solution of the characteristic equation  gives the closed 
loop eigenvalue s, for a chosen feedback gain G . This offers 
an alternative way of computing the closed loop eigenvalue, 
as compared to the direct solution of the MHD and feedback 

equations. We shall employ and cross-check both approaches 
in this study.

2.2. HL-2M equilibrium and control coil geometry

We consider an equilibrium from the 2 MA high performance 
scenario designed for HL-2M equilibrium [34], with double-
null plasma configuration. The plasma boundary shape is shown 
in figure 1(a). The key equilibrium radial profiles are plotted in 
figures 1(b)–(e). The on-axis safety factor is q0 = 1.14. The 
safety factor at 95% of the magnetic flux surface is q95 = 3.1. 
We point out that no design prediction for the toroidal rotation 
is presently available for HL-2M. The rotation profile shown in 
figure 1(d) is numerically assumed. The amplitude of the rota-
tion frequency will be scanned in our investigation.
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Figure 1. (a) Geometry of the HL-2M tokamak with the plasma 
in a double-null configuration and with a double-wall vacuum 
vessel. Sketched are also the locations of active and sensor coils for 
magnetic feedback. Shown also are equilibrium radial profiles for 
(b) the safety factor, (c) the plasma pressure normalized by B2

0/µ0 , 
(d) the surface averaged toroidal current density normalized by 
B0/(µ0R0) , and (e) the assumed plasma toroidal rotation frequency 
normalized by ΩA = B0/

(
R0

√
µ0ρ0

)
 . Here s =

√
ψp  labels the 

plasma minor radius, with ψp being the normalized poloidal 
equilibrium magnetic flux.
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The target plasma has the normalized beta value of 
βN = 4.74. The MARS-F computed Troyon no-wall beta 
limit is βno-wall

N = 3.63, and the ideal-wall beta limit is 
βideal-wall

N = 5.65. The ideal wall corresponds to the inner 
vacuum vessel shown in figure  1(a), with d/a = 1.3. This 
relatively large width of the βN window (the distance between 
the no-wall and ideal-wall limits) for the RWM regime 
is mainly due to the broad current profile (figure 1(d)) 
designed for this target HL-2M scenario. A plasma with low 
internal inductance tends to be subject to more wall stabili-
zation [35]. As usual, we define the pressure scaling factor 
Cβ =

(
βN − βno-wall

N

)
/
(
βideal-wall

N − βno-wall
N

)
 for the RWM 

study. This factor is 0.55 for the target plasma in HL-2M 
design. The effective wall time of the double vacuum 
vessel (d/a = 1.3, 1.35) in HL-2M is estimated to be 
τw = µ0hwL/(2πηw) = 2.2 × 104τA . Here, τA is the toroidal 
Alfven time, hw the wall thickness, L the poloidal length of 
the wall, and ηw the resistivity of the vacuum vessel.

Two rows of in-vessel magnetic coils are designed for 
HL-2M: the upper and lower rows, respectively (figure 
1(a)), with each row consisting of eight window-frame coils 
along the toroidal angle. The poloidal coverage of each coil 
is ∆θ = 21.8◦ (measured in the geometric angle with origin 
defined as the magnetic axis). These coils will also be used 
for passive control of type-I edge localized mode (ELM) 
in HL-2M. The poloidal angle of the center of each coil (to 
be referred to as the poloidal location), θc, is designed to be 
θU

c = −θL
c = 29.9◦ (again in geometric angle). Finally, for 

active control, the sensor coils are located at the outboard 
mid-plane and just inside the vacuum vessel, measuring the 
poloidal component of the magnetic field perturbation.

3. Numerical versus analytic results

In what follows, we investigate several mechanisms for the 
RWM stabilization in HL-2M tokamak. These include: 
toroidal flow stabilization, drift kinetic damping due to plasma 
thermal particles, magnetic feedback stabilization. Each of 
the aforementioned physics can act alone or in combination 
with the others. For instance, plasma flow alone can stabilize 
the RWM via Alfven or sound wave continuum resonances 
[3], as well as ion Landau resonance induced parallel sound 
wave damping [36]. In combination with drift kinetic physics, 
plasma toroidal flow helps to create kinetic resonance con-
ditions for the RWM [10, 27, 37]. Combining plasma flow 
and magnetic feedback helps to explore the synergistic effects 
between continuum wave damping, parallel sound wave 
damping, and active stabilization of the mode [38]. Finally, 
drift kinetic resonances coupled to magnetic feedback pro-
vides another synergy [39]. All these effects will be consid-
ered in this work, in order to obtain relatively comprehensive 
understanding of the n  =  1 RWM stability in HL-2M.

3.1. Kinetic effects on the RWM stability in HL-2M

We start by investigating the effects of drift kinetic resonances 
on the RWM in HL-2M plasmas. No magnetic feedback is 

assumed here. We shall consider kinetic stabilization of the 
mode due to precessional and bounce resonances of trapped 
thermal particles. The transit resonance of passing particles 
normally provides too weak effect on the RWM in tokamak 
plasmas.

Note that we only pursue the so-called non-perturbative 
computations [27, 33] for the RWM in this study, due to the 
fact that the non-perturbative approach allows (i) kinetic 
modification of the eigenfunction of the (fluid) RWM, and 
(ii) more self-consistent treatment of the kinetic resonances 
(i.e. the RWM eigenvalue self-consistently enters into the 
kinetic resonance operator (7)), the mode computed by the 
non-perturbative approach is normally more unstable than 
that predicted by the perturbative approach [27, 33]. The 
non-perturbative approach thus provides a more conservative 
estimate of the RWM instability. In other words, if the mode 
is predicted to be stable (or feedback stabilized) by the non-
perturbative approach, as in this work, the mode would mostly 
be even more stable according to the perturbative prediction.

In order to understand the transition of the mode stability 
from the fluid RWM to the kinetic RWM, we introduce a 
numerical factor α denoting the kinetic fraction to be included 
into the MARS-K MHD-kinetic hybrid computations. Hence 
α = 0 recovers the fluid limit, whilst α = 1 corresponds to the 
physically relevant full inclusion of the corresponding kinetic 
resonance effect.

Figure 2(a) shows two representative examples of the 
MARS-K computed mode eigenvalue, while scanning the 
kinetic fraction factor αP (= α) from 0 to 1, for the preces-
sional drift resonance contribution from trapped thermal ions 
and electrons. The target plasma of the HL-2M advanced sce-
nario design is assumed here (Cβ   =  0.55). Two choices of the 
plasma toroidal rotation frequency are considered, with the 
on-axis values of Ω0 = 0.006ΩA (representing slow flow) and 
Ω0 = 0.01ΩA (representing fast flow), respectively. Note that 
in these computations, the parallel sound wave damping coef-
ficient is kept very small κ‖ = 0.1. Most of the damping comes 
from the drift kinetic resonances. In particular, figure  2(a) 
shows that the precessional drift resonance provides more sta-
bilization at slower plasma flow. At 0.6% of Alfven speed for 
the on-axis toroidal flow, the n  =  1 RWM in HL-2M design 
target plasma can be fully stabilized already with about 60% 
fraction of the precessional drift kinetic damping from trapped 
thermal ions and electrons. In other words, the mode should 
be passively stabilized by the precessional drift resonances at 
slow flow.

A faster flow (e.g. at 1% of Alfven speed as shown in 
figure 2(a)) does not result in full stabilization of the mode, 
but nevertheless yielding more than one order of magnitude 
reduction of the mode growth rate. At a faster flow, it is often 
expected that the bounce resonance of trapped thermal ions 
can provide certain stabilization to the RWM. This additional 
stabilization is found to be very weak for this HL-2M plasma, 
as shown by figure 2(b).

Figure 3 further demonstrates that most of the damping 
comes from the precessional drift resonances (αP  =  1). 
Without these resonances (αP  =  0), i.e. with only the fluid 
continuum resonances and a weak (κ‖ = 0.1) parallel sound 
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wave damping, the mode stability is hardly modified by 
the plasma flow. In fact, a slight destabilization occurs at 
Ω0 ∼ 0.04ΩA via Kelvin–Helmholtz mechanism associated 
with flow shear. The precessional drift kinetic stabilization 
opens a stability window for the RWM, at slow toroidal flow 
Ω0/ΩA = (0, 0.008), for this HL-2M plasma.

According to the drift kinetic model, full suppression of the 
RWM is possible even vanishing flow as shown in figure 3, 
thanks to the so-called precessional drift reversal effect, where 
the toroidal precession of banana orbit of trapped particles 

changes direction depending on the particle pitch angle. This 
effect, shown to be caused by the plasma diamagnetism [40], 
means that the kinetic resonance can occur even at vanishing 
plasma flow, at certain particle pitch angle. This can generate 
sufficient damping to fully suppress the RWM. On the other 
hand, no full stabilization has been observed in experiments 
at vanishing flow [15, 16]. There can be different reasons. 
One plausible explanation is the existence of a small but finite 
residual error field (after the best correction in experiments), 
which can still destabilize the mode.

One of the major goals of HL-2M tokamak is to achieve 
high pressure, high density, long pulse or steady state plasmas. 
It is therefore of a critical issue to access stable domain for 
the RWM and at the same time maintaining high plasma pres-
sure. Because the plasma flow speed and the precessional drift 
resonance damping are the two key factors in the RWM sta-
bilization (figure 3), we again consider this kinetic resonance 
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effect (αP  =  1) and map out the stable domain in the 2D space 
defined by the plasma flow speed and the equilibrium pressure 
scaling factor. Such a stable domain, plotted in figure  4(a), 
provides quantitative guidance for the high-beta plasma dis-
charge operations in HL-2M. In particular, we note that a 
robustly stable domain (against plasma pressure variation) 
can be accessed, if the toroidal plasma rotation is sufficiently 
slow: Ω0 � 0.006ΩA.

3.2. Feedback stabilization of the RWM in HL-2M

An alternative approach for stabilizing the RWM is to use 
magnetic coils for active control. As mentioned before, the 
present 3D field coil designed in HL-2M assumes two rows 
of active coils located at the upper and lower half-plane of the 
low field side of the torus, and just inside the vacuum vessel. 
We refer to them as the upper and lower rows of coils in this 
work. These coils, whose exact geometrical poloidal location 
has not yet been fully decided, are also planned to be used for 
controlling edge localized modes in HL-2M.

As for the sensor coils for the RWM feedback stabilization, 
we shall assume a single row of pick-up coils located at the 
outboard mid-plane and just inside the inner vacuum vessel 
(figure 1(a)), measuring the poloidal component of the per-
turbed n  =  1 magnetic field. This is conventionally referred to 
as the internal poloidal sensors, which provide superior per-
formance over the radial sensors [17], for the RWM control. 
In the closed loop system, this single row of sensor single is 
connected to drive the coil currents in the two rows of active 
coils, via two separate controllers represented by the upper 
and lower row feedback gains in this work. This is often 
referred to as multiple-input-single-output (MISO) control.

In this subsection, we shall only consider the fluid model 
(MARS-F). We include the strong parallel sound wave 
damping model [38], with a numerical damping coefficient of 
κ‖ = 1.5, in order to mimic the thermal ion Landau damping 
physics [41]. In the following subsection 3.3, we shall con-
sider cases where the parallel sound wave damping model is 
replaced by the more accurate drift kinetic damping models 
in MARS-K.

Figure 5(a) shows the first set of results, where we scan the 
feedback gain amplitude for both the upper and lower rows of 
active coils, and compute the closed loop eigenvalue for the 
HL-2M design target plasma. With a naïve choice of the gain 
phase, φU = 0◦,φL = 0◦, the proportional feedback control 
destabilizes the RWM for θc = 29.9◦ (the designed poloidal 
location), however, the mode can be stabilized for θc = 20.7◦ 
(an optimal poloidal location shall be reported in a later figure) 
with large gain amplitude. Moreover, feedback stabilization 
of the mode with θc = 29.9◦ can be achieved with a better 
choice of the gain phase, e.g. φU = 60◦,φL = −30◦ as shown 
in figure 5(b). In fact, this gain phase, which is not yet the best 
choice (gain phase optimization shall be reported in a later 
figure), leads to the mode stabilization also for varying plasma 
pressures. For the design target plasma (Cβ = 0.55), the n = 1 
RWM is stabilized at a critical gain value of |G| = 2.1. The 

critical gain value increases with increasing the equilibrium 
pressure, as expected.

An important control design issue for HL-2M is the poloidal 
location of the active coils. Figure 6 plots the MARS-F com-
puted critical proportional gain required for the n = 1 RWM 
stabilization, on the poloidal location angle θc. It is evident 
that there is an optimal poloidal location of the active coil, at 
θc = 20◦–22◦, that minimizes the feedback efforts. Moreover, 
this optimal location does not seem to be sensitive to the vari-
ation of the plasma pressure (figure 6(a)), nor to the feedback 
gain phase (within certain ranges) (figure 6(b)).

The coil location is presently preliminary designed at 
θc = 29.9◦ in HL-2M, following geometrical constraint on the 
device. This is not the optimal choice according to the MARS-F 
simulations. Figure 7 compares the Nyquist plots of the open 
loop transfer functions P( jω), computed for θc = 29.9◦ 

Figure 4. Contour plots of (a) growth rate and (b) mode frequency 
of the MARS-K computed n  =  1 kinetic RWM in the 2D 
parameter space Cβ − Ω0/ΩA, with inclusion of the precessional 
drift resonances of trapped thermal particles (αP = 1). The other 
parameters are fixed at d/a = 1.3, 1.35 and κ‖ = 0.1. The solid 
curve in (a) indicates the stability boundary in the 2D domain.
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and θc = 20.7◦ (the optimal location according to figure 6), 
respectively, and plotted in the complex plane. According to 
the Cauchy principle of phase variation, the closed loop sta-
bilizes the unstable mode, if and only if the corre sponding 
Nyquist contour GP ( jω) counter-clockwise encircles (−1, 0)  
in the complex plane, as the frequency ω  increases from −∞ 
to +∞. The Nyquist plots shown in figure  7 thus indicate 
that, with the gain phase of φU = 0◦,φL = 0◦ and with the 
poloidal location of the active coils at θc = 20.7◦, the RWM 

can be fully stabilized at sufficiently large proportional gain 
(|G| � 5.2, as shown in figure  5(a)). The mode cannot be 
feedback stabilized even with infinite gain amplitude, with the 
designed coil location of θc = 29.9◦ for HL-2M and with zero 
gain phase. This also corroborates the direct feedback compu-
tation results shown in figure 5(a).

On the other hand, the Nyquist curve shown in figure 7, for 
the case of θc = 29.9◦, indicates that feedback with gain phase 
φU = φL = arg(G) = −180◦ can stabilize the RWM. This is 
indeed the case as shown in figure 8. In fact, a range of gain 
phase can be chosen, where the mode can be fully stabilized 
with a finite critical gain amplitude. Moreover, figure 8 shows 
that two approaches predict nearly the same critical gain values. 
One approach (solid line) is based on the MARS-F computed 
open loop transfer functions (with Nyquist analysis similar to 
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Figure 5. (a) The MARS-F computed growth rate of the n  =  1 
RWM versus the proportional feedback gain amplitude, at fixed 
gain phase φU = 0◦,φL = 0◦ associated with the upper and lower 
rows of active coils, and for two poloidal locations of active coils, 
θc = 29.9◦ (circles) and θc = 20.7◦ (squares), respectively. The 
mode frequency vanishes (not shown). (b) The growth rate (solid 
lines) and mode frequency (dashed lines) of the RWM versus 
the proportional feedback gain amplitude at fixed gain phase 
φU = 60◦,φL = −30◦, for three choices of the plasma equilibrium 
pressure: Cβ = 0.34 (circles), Cβ = 0.55 (squares) and Cβ = 0.65 
(triangles), respectively. The other parameters are fixed: the 
normalized wall distance d/a = 1.3, 1.35, the radial and poloidal 
locations of the active coils rf/a = 1.29 and θc = 29.9◦, the poloidal 
coverage of the coils ∆θ = 21.8◦, the radial location of the sensors 
rs/a = 1.29, and the parallel viscous coefficient κ‖ = 1.5. No 
plasma rotation is assumed in these computations.
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Figure 6. The MARS-F computed minimal proportional feedback 
gain amplitude for full stabilization of the n  =  1 RWM, versus the 
poloidal location of active coils for (a) different plasma pressures 
Cβ = 0.34 (circles), Cβ = 0.55 (squares) and Cβ = 0.65 (triangles) 
at fixed gain phase φU = 60◦,φL = −30◦, and (b) different gain 
phases φU = 60◦,φL = −30◦ (circles), φU = 60◦,φL = −60◦ 
(squares) and φU = 120◦,φL = 0◦ (triangles) at fixed pressure 
Cβ = 0.55. The other parameters are fixed at d/a = 1.3, 1.35, 
rf/a = 1.29, rs/a = 1.29, Ω0 = 0 and κ‖ = 1.5.
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that of figure 7). The other (dots) follows direct computation 
of the closed loop eigenvalue by MARS-F, solving together 
the MHD equations and the feedback equation for the active 
coil. The good agreement between these two approaches con-
firm the validity of feedback results reported here.

The results discussed above already point to the impor-
tance of choosing the feedback gain phase on the RWM 
stabilization, with two rows of active coils. For feedforward 

control of the type-I edge localized modes, this gain phase is 
translated into the so-called coil current phasing between the 
upper and lower rows of coils, which is shown to be again 
of critical importance [42]. Systematic studies of the effect 
of varying proportional feedback gain phase on the closed 
loop stability, in 2D parameter space of (φL,φU), are thus 
carried out in this work under various physics assumptions. 
Figure 9(a) shows the MARS-F computed results, assuming 
fluid model and vanishing plasma flow. Here we fix the gain 
amplitude at |G| = 0.5, being the same for two rows of active 
coils. We observe vast variation of the closed loop growth 
rate, as the feedback gain phase varies in the 2D parameter 
space. Global minimum (stabilization) and maximum (desta-
bilization) are achieved at (φU = 120◦, φL = −120◦) and 
(φU = −60◦, φL = 60◦), respectively. The maximum and 
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Figure 7. Nyquist plots of the MARS-F computed open loop 
transfer functions P( jω) for the n  =  1 RWM, for two poloidal 
locations of active coils, θc = 29.9◦ (dashed line) and θc = 20.7◦ 
(solid line), respectively. The other parameters are fixed at 
d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, φU = 0◦,φL = 0◦, 
Ω0 = 0 and κ‖ = 1.5. The arrows indicate the direction of 
increasing ω  from −∞ to +∞. The circle indicates the location  
of ω = ∞.
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Figure 8. The computed critical proportional feedback gain 
amplitude for complete stabilization of the n  =  1 RWM, versus the 
gain phase. Verified are two different approaches for computing the 
critical gain, either via the direct MARS-F feedback runs (dots) or 
via the transfer function based Nyquist analysis (solid line). The 
gain phases associated with the upper and lower rows of active coils 
are assumed the same φU = φL = arg (G). The other parameters 
are fixed at d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, 
θc = 29.9◦ and κ‖ = 1.5.

Figure 9. Contour plots of the n  =  1 RWM growth rate in the 
2D space for the proportional feedback gain phases φL − φU, 
calculated by (a) MARS-F and (b) a single-pole analytic model 
(see appendix). The parameters for MARS-F runs are fixed at 
d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, κ‖ = 1.5, 
Ω0 = 0, θc = 29.9◦ and |G| = 0.5. The parameters in the analytic 
model are chosen as γ0 = 2.5 × 10−4, ω0 = 0, |RU| = 2 × 10−4, 
φ̂U = −120◦, |RL| = 2 × 10−4, φ̂L = 120◦, τF = 2 × 104, |G| = 0.5 
and αD = 0.
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minimum solutions are well separated in the 2D space. The 
optima are reasonably robust against slight variations of the 
gain phasing. It is also evident that the gain phases that we 
have assumed in earlier studies (e.g. figures 5 and 6) fall in the 
region between the ‘best’ and the ‘worst’ control in figure 9.

It turns out that the MARS-F computed feedback gain 
phase scan results, shown in figure 9(a), can be qualitatively 
well re-produced by an analytic model (appendix) based on 
single pole approximation. With a proper choice of the param-
eters of the model, in particular the phase of the residuals (as 
complex numbers) associated with the open loop response to 
the upper and rows of coil currents, the MARS-F computed 
growth rate pattern (figure 9(a)) is well recovered by the ana-
lytic model (figure 9(b)). The phase of the residual of the open 

loop transfer function in essence reflects the toroidal phasing 
between the active coils and the poloidal sensors. Matching 
the MARS-F results and the analytic prediction, as shown in 
figure 9, indicates that this toroidal phasing is φ̂U = −120◦ 
and φ̂L = 120◦, respectively, for the upper and lower rows 
of coils in the HL-2M design. For the closed loop, the best 
gain phase is then the one that cancels the open loop residual 
phasing. This conclusion, valid for a proportional controller, 
is a theoretical insight offered by the simple analytic model.

Our study so far assumes a simple proportional feedback 
control scheme. A proper choice of PD controller further 
enhances the mode stabilization. This is particularly useful 
in the region of the 2D gain phase space shown in figure 9, 
where the closed loop destabilizes the RWM. Two exam-
ples are reported in figure 10. In each example, comparison 

0.1 0.2 0.3 0.4 0.5 0.6
−2

0

2

4

6

8

10

|G|

γ R
τ w

 

 

P
PD, α

D
=0.2

PD, α
D

=1.0

(a)

Cβ=0.55, κ
||
=1.5

φ
U

=−30°, φ
L

=120°

0.1 0.2 0.3 0.4 0.5 0.6
−4

−2

0

2

4

6

8

10

12

|G|

γ R
τ w

 

 

P
PD, α

D
=0.2

PD, α
D

=1.0

(b)

Cβ=0.55, κ
||
=1.5

φ
U

=−60°, φ
L

=90°

Figure 10. The MARS-F computed growth rate of the n  =  1 RWM 
versus the amplitude of the feedback gain, assuming the gain 
phase associated with the upper and lower rows of coils to be (a) 
φU = −30◦,φL = 120◦ and (b) φU = −60◦,φL = 90◦. For each 
choice of the gain phase, compared are the proportional controller 
(circles), and the PD controllers with D/P gain ratio of αD = 0.2 
(squares) and αD = 1 (triangles), respectively. The other parameters 
are fixed at d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, 
κ‖ = 1.5, Ω0 = 0 and θc = 29.9◦.

Figure 11. Contour plots of the MARS-F computed closed loop 
growth/damping rate of the n  =  1 RWM in the 2D parameter 
space αD − |G|, assuming the gain phase associated with the 
upper and lower rows of coils to be (a) φU = −30◦,φL = 120◦ 
and (b) φU = −60◦,φL = 90◦. The other parameters are fixed at 
d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, κ‖ = 1.5, 
Ω0 = 0 and θc = 29.9◦. The solid curves indicate the stability 
boundaries in the 2D domain.
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of the MARS-F computed closed loop growth rates is made 
between the P controller and the PD controller. A param-
eter αD is introduced for the latter, labelling the ratio of the 
gain ampl itude between the derivative and the proportional 
actions. Note the qualitative enhancement of the closed loop 
stability—from destabilization to stabilization—by adding 
the derivative action. A larger fraction of the derivative gain 
results in less critical gain amplitude, for full stabilization of 
the mode. This relation between the critical gain amplitude 
and the D/P gain ratio is further quantified in figure 11, for the 
same two choices of the gain phase as in figure 10. The solid 
curves represent the marginal stability of the closed loop.

As already demonstrated in figure 9(a), stabilization of the 
RWM is lost with the phase of the proportional gain being 
in the region of 0◦ < φL < 90◦ and −120◦ < φU < −30◦. 
On the other hand, a PD controller can qualitatively modify 
the closed loop stability property in this area, as shown by 
figure  12. It is evident that addition of a moderate amount 
of D-action (αD  =  0.2) in the control can fully suppress the 
RWM, in a gain phase domain which is otherwise destabi-
lizing for the mode. On the other hand, this stabilization is not 
very robust, in the sense that a nearby region in the gain phase 
space exists, where the mode is strongly destabilized. All the 
aforementioned features of the PD stabilization are again 

Figure 12. Contour plots of the closed loop growth/damping 
rate of the n  =  1 RWM in the 2D feedback gain phase 
space φL − φU with a PD controller (αD = 0.2), calculated 
by (a) MARS-F and (b) the analytic single-pole model 
(appendix). The other parameters in MARS-F runs are fixed at 
d/a = 1.3, 1.35, rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, κ‖ = 1.5, 
Ω0 = 0, θc = 29.9◦, and |G| = 0.5. The parameters in the analytical 
model are chosen as γ0 = 2.5 × 10−4, ω0 = 0, |RU| = 3 × 10−4, 
φ̂U = −120◦, |RL| = 3 × 10−4, φ̂L = 120◦, τF = 2 × 104, |G| = 0.5.
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Figure 13. The MARS-F computed growth rate of the n  =  1 
RWM (solid lines) and the external kink mode (dashed lines) 
versus the wall minor radius, for (a) different choices of the 
proportional feedback gain phase φU = 0◦,φL = 0◦ (circles), 
φU = 60◦,φL = −30◦ (squares) and φU = 100◦,φL = −100◦ 
(triangles), respectively, at fixed plasma rotation frequency, and  
(b) different choices of the plasma rotation frequency Ω0 = 0.02ΩA 
(circles), Ω0 = 0.03ΩA (squares) and Ω0 = 0.05ΩA (triangles), 
respectively, at fixed gain phase. The other parameters are fixed at 
rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, κ‖ = 1.5, θc = 29.9◦ and 
|G| = 0.8.
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obtained by both MARS-F computations (figure 12(a)) and 
by the same single-pole analytic model described in appendix 
(figure 12(b)).

3.3. Synergetic effects of feedback, flow and kinetic damping 
on the RWM

In an earlier work [38], we investigated the synergetic effect 
between magnetic feedback and plasma flow on the RWM sta-
bilization, based on the fluid model. We found that the com-
bination of feedback and flow stabilization helps to open two 
stability windows in terms of the wall minor radius. As the 
first step in what follows, we figure out whether similar effect 
occurs for the HL-2M plasma.

Figure 13 shows that these two stable windows indeed 
appear as the resistive wall minor radius increases. One 
window opens when the wall is placed close to the plasma 

boundary. The other window opens when the resistive wall 
is located sufficiently far from the plasma boundary but still 
within the marginal stability point for the ideal wall stabiliza-
tion. The second window is mainly associated with the flow 
stabilization of the RWM [5], whist the first window only 
occurs when magnetic feedback is in action. Moreover, the 
appearance of these two windows is relatively robust against 
variation of the gain phasing (figure 13(a)) or the plasma rota-
tion frequency (figure 13(b)). At fixed rotation, the synergy is 
the strongest when the gain phasing is chosen to be close to the 
optimum (see figure 9)—in our case φU = 100◦,φL = −100◦ 
(figure 13(a)). The two stable windows merge into one large 
stable window in this case. In other words, the RWM is fully 

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

|G|

Ω
cr

i/Ω
A

 

 

φ
U

=30°, φ
L

=120°

φ
U

=60°, φ
L

=−30°

(a)

Cβ=0.55, κ
||
=1.5, α

D
=0.0

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

|G|

Ω
cr

i/Ω
A

 

 

φ
U

=30°, φ
L

=120°

φ
U

=60°, φ
L

=−30°

(b)
Cβ=0.55, κ

||
=1.5, α

D
=0.2

Figure 14. The MARS-F computed critical plasma rotation 
frequency for full stabilization of the n  =  1 RWM versus the 
feedback gain amplitude, assuming (a) a proportional controller 
and (b) a PD controller with the D/P gain ratio αD of 0.2. 
Compared are also results with two choices of the gain phase, 
φU = 30◦,φL = 120◦ (circles) and φU = 60◦,φL = −30◦ (squares), 
respectively. The other parameters are are fixed at d/a = 1.3, 1.35, 
rf/a = 1.29, rs/a = 1.29, Cβ = 0.55, κ‖ = 1.5 and θc = 29.9◦.

Figure 15. Contour plots for the closed loop growth/damping rate 
of the n  =  1 RWM in the 2D gain phase space φL − φU, calculated 
by (a) MARS-F and (b) the analytic single-pole model. Assumed 
is a proportional control (αD = 0) in the presence of finite plasma 
flow in both cases. The other parameters for MARS-F runs are 
d/a = 1.3, 1.35, Cβ = 0.55, κ‖ = 1.5, Ω0 = 0.03ΩA, θc = 29.9◦, 
and |G| = 0.5. The other parameters assumed in the analytic model 
are γ0 = 7.22 × 10−5, ω0 = 1.06 × 10−4, |RU| = 1.4 × 10−4, 
φ̂U = −80◦, |RL| = 1.4 × 10−4, φ̂L = 170◦, τF = 2 × 104, 
|G| = 0.5. The solid curves indicate the stability boundaries in the 
2D domain.
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stabilized at any wall radius, up to the ideal-wall marginal 
point. Similar effect can be achieved with a less optimal 
choice of the gain phasing, but at the cost of increasing the 
flow speed (figure 13(b)).

The synergy effect is more clearly demonstrated in terms 
of the critical rotation frequency, that is required to (margin-
ally) stabilize the RWM at a given feedback gain amplitude 
and phase. Figure  14 plots the critical rotation frequency 
versus the gain amplitude, for two choices of the gain phasing. 
The resistive wall position is now fixed according to the 
HL-2M design. The synergistic effect is evident. Moreover, 
the derivative control action further improves the synergy, 

by reducing the required critical rotation frequency at the 
same gain amplitude. For instance, with the gain phase of 
φU = 30◦,φL = 120◦, the required critical rotation frequency 
decreases about twice quicker with increasing gain amplitude, 
with inclusion of the derivative action.

Because of the synergistic effect, inclusion of the plasma 
flow also modifies the optimal choice of feedback gain phase 
for the RWM stabilization. This is illustrated by figure 15 (as 
compared to the case of vanishing flow presented in figure 9). 
Except the plasma rotation frequency, which is fixed at 
Ω0 = 0.03ΩA in figure 15, all other parameters are identical 
to that of figure  9. Compared to figure  9, the optimal gain 
phase is shifted in the φL − φU plane. Similar to figure 9, the 

Figure 16. Contour plots for the closed loop growth/
damping rate of the n  =  1 RWM in the 2D gain phase space 
φL − φU, calculated by (a) MARS-F and (b) the analytic 
single-pole model. Assumed is a PD controller with the D/P 
gain ratio of αD = 0.2, in the presence of finite plasma flow 
in both cases. The other parameters for MARS-F runs are 
d/a = 1.3, 1.35, Cβ = 0.55, κ‖ = 1.5, Ω0 = 0.03ΩA, θc = 29.9◦ 
and |G| = 0.5. The other parameters assumed in the analytic model 
are γ0 = 7.22 × 10−5, ω0 = 1.06 × 10−4, |RU| = 2.5 × 10−4, 
φ̂U = −100◦, |RL| = 2.5 × 10−4, φ̂L = 150◦, τF = 2 × 104 and 
|G| = 0.5. The solid curves indicate the stability boundaries in the 
2D domain.

Figure 17. Contour plots for the closed loop growth/damping 
rate of the n  =  1 RWM in the 2D gain phase space φL − φU, 
calculated by (a) MARS-K and (b) the analytic single-pole model. 
Assumed is a proportional control (αD = 0) in the presence of finite 
plasma flow in both cases. The MARS-K computations include 
precessional drift resonance of trapped thermal particles. The other 
parameters for MARS-K runs are d/a = 1.3, 1.35, Cβ = 0.55, 
κ‖ = 0.1, Ω0 = 0.01ΩA, θc = 29.9◦, and |G| = 0.5. The other 
parameters assumed in the analytic model are γ0 = 1.04 × 10−5, 
ω0 = 1.93 × 10−5, |RU| = 8 × 10−5, φ̂U = −90◦, |RL| = 8 × 10−5, 
φ̂L = 120◦, τF = 2 × 104, and |G| = 0.5. The solid curves indicate 
the stability boundaries in the 2D domain.
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single-pole analytic model (figure 15(a)) can be used to match 
well the MARS-F computational results (figure 15(b)).

On top of the flow and proportional feedback stabiliza-
tion as shown in figure 15, adding derivative control action 
(αD = 0.2 in figure 16) further enlarges the mode stabilization 
domain. The derivative action is particularly effective in the 
‘bad’ gain phase region, where destabilization of the mode 
occurs. These observations are again confirmed by MARS-F 
(figure 16(a)) computations as well as by the analytic model 
(figure 16(b)).

Finally, we consider the synergy between magnetic feed-
back stabilization and drift kinetic damping of the RWM, in 

the presence of a finite plasma flow [39]. Figures 17 and 18 
again show the 2D gain phase scan results, without and with 
the derivative action (αD = 0.2), respectively. We assume a 
relatively low plasma rotation frequency of Ω0 = 0.01ΩA, 
which leads to strong precessional drift resonance damping 
(see figure  3(b)). Compared to the fluid results (figure 15), 
drift kinetic damping substantially enlarges the stabilization 
domain in the feedback gain phase space. MARS-K results 
can again be reasonably well matched by the single-pole ana-
lytic model.

Comparison of figures  17 and 18 shows that the deriva-
tive action only slightly enhances the mode stabilization. This 
is because slower plasma flow (Ω0 = 0.01ΩA) does not drive 
fast mode rotation. The analytic model shows that the deriva-
tive action is indeed less effective when the open loop mode 
frequency is small (figure 18(a)).

4. Conclusions and discussion

In summary, we have carried out a systematic numerical 
investigation of the n  =  1 RWM stabilization in HL-2M 
tokamak, using the MARS-F/K codes which include toroidal 
flow, magn etic feedback and drift kinetic physics. Simulations 
are performed for an advanced plasma scenario designed for 
HL-2M, with double-null configuration at 2 MA plasma 
current.

We identify the strong stabilizing role on the RWM due to 
the precession drift resonance effects associated with trapped 
thermal ions and electrons. For the design target plasma, 
corre sponding to the pressure scaling factor of Cβ = 0.55, 
the n  =  1 RWM can be fully suppressed by the precessional 
drift kinetic resonance damping, at slow plasma rotation up 
to Ω0 = 0.008ΩA. Taking into account the potential pressure 
variation (Cβ from 0 to 1), the mode stabilization is achieved 
at toroidal rotation frequency Ω0 � 0.006ΩA.

Feedback stabilization of the RWM, with two rows of 
magnetic coils as designed for HL-2M, is also achievable. 
However, the designed poloidal location (θc = 29.9◦) of the 
active coils is found not to be optimal for the RWM stabiliza-
tion. The optimal coil location is θc = 20◦–22◦. Several other 
factors can also significantly affect the control, including 
the choice of the feedback gain phase and the controller. 
Scan of the proportional feedback gain phase in 2D space, 
for the HL-2M coil design and with vanishing plasma flow, 
reveals a reasonably robust optimal value of (φU = 120◦, 
φL = −120◦). The opposite phasing, corresponding to the 
unfavorable choice for feedback, destabilizes the mode. 
With simple controllers (P versus PD) considered in this 
study, the derivative action significantly enhances the mode 
stabilization. The derivative action is particularly useful for 
reducing the unfavorable (destabilizing) domain in the 2D 
gain phase space.

MARS-F/K computations reveal the synergistic effects 
between the plasma flow damping (due to continuum wave 
resonances), drift kinetic damping, and magnetic feedback. 
The derivative control action brings another layer of enhance-
ment for the mode stabilization. We emphasize that most 

Figure 18. Contour plots for the closed loop growth/damping 
rate of the n  =  1 RWM in the 2D gain phase space φL − φU, 
calculated by (a) MARS-K and (b) the analytic single-pole model. 
Assumed is a PD controller with the D/P gain ratio of αD = 0.2, 
in the presence of finite plasma flow in both cases. The MARS-K 
computations include precessional drift resonance of trapped 
thermal particles. The other parameters for MARS-K runs are 
d/a = 1.3, 1.35, Cβ = 0.55, κ‖ = 0.1, Ω0 = 0.01ΩA, θc = 29.9◦, 
and |G| = 0.5. The other parameters assumed in the analytic model 
are γ0 = 1.04 × 10−5, ω0 = 1.93 × 10−5, |RU| = 8 × 10−5, 
φ̂U = −90◦, |RL| = 9 × 10−5, φ̂L = 120◦, τF = 2 × 104, and 
|G| = 0.5. The solid curves indicate the stability boundaries in the 
2D domain.

Nucl. Fusion 59 (2019) 016017



G. Xia et al

14

of the MARS-F/K 2D gain phase scan results can be quali-
tatively well re-produced by an analytic control model with 
single-pole approximation.

The findings from this work (i) confirm many of the pre-
vious results obtained for a generic toroidal plasma [38, 39]. 
Different from the previous work, the present study provides 
quantitative predictions for the stability of high-beta opera-
tional regimes specifically for the HL-2M device. The com-
puted feedback results can serve as practical guidance for the 
RWM control coil design (e.g. the poloidal location of active 
coils) as well as the feedback configuration optimization (e.g. 
the feedback gain phasing) for HL-2M. Finally, the role of 
the derivative action is systematically analyzed in the present 
work, and is shown to be important for achieving synergistic 
stabilization of the RWM. This study was not carried out in 
our previous work [38, 39].

We have not considered the effect of energetic particles 
(EPs) on the RWM in HL-2M. The present design of HL-2M 
considers various heating systems: 15 MW of NBI, 8 MW 
of ECRH and 4 MW of LHCD. This leads to a 27 MW total 
heating capability. These heating sources (in particular NBI) 
will certainly create a significant amount of energetic ions. 
Transport modeling of the EPs distribution, density and pres-
sure profiles are currently under way. Generally, the effect of 
EPs on the RWM can be two-fold: (i) EPs can provide addi-
tional stabilization to the RWM due to the interaction between 
the (large) banana orbit of trapped EPs and the mode (stabi-
lization due to the so called third adiabatic invariant) [14, 43, 
44]; (ii) on the other hand, there can be partial cancellation, 
between EPs and thermal particles, of the imaginary part of 
the drift kinetic energy (which also provides damping effect 
on the RWM) arising from the kinetic resonances between the 
mode and particles [45, 46]. Therefore, the eventual effect of 
EPs on the mode may be complicated. A dedicate modeling 
effort will be carried out in the future for HL-2M.
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Appendix. A single-pole model of feedback gain 
Phase optimization for RWM control

Most of the MARS-F/K computational results with the feed-
back gain phase variation can be qualitatively explained by a 
simple analytic control model. Below we provide a detailed 
description of this model. We assume a single pole in the open 

loop transfer functions associated with the upper and lower 
rows of active coils

PU (s) =
RU

s − s0
, PL (s) =

RL

s − s0
 (A.1)

where s0 = γ0 + iω0 is the open loop RWM eigenvalue, 
s = γ + iω the closed loop eigenvalue. The residual factors, 

RU = |RU| eiφ̂U and RL = |RL| eiφ̂L, are generally complex 
numbers, characterizing the mode response to the active coil 
currents. The phase of the residuals is largely related to the 
relative poloidal location between the active coils and the 
(outboard mid-plane poloidal) sensors. Within ideal MHD 
assumption and without plasma flow, s0 is a real number. 
However, plasma flow and/or drift kinetic resonances can 
induce a finite frequency to the open loop eigenvalue.

Assuming a multiple-input-single-output control logic, the 
closed loop eigenvalue is determined by the solution of the 
characteristic equation

1 + GUPU (s) + GLPL (s) = 0, (A.2)

where GU = |GU| eiφU (1 + αDsτF) and GL = |GL| eiφL (1 + αDsτF) 
are the (complex) feedback gains, generally including the pro-
portional and derivative actions in this study. Here φU and φL  
represent the phase of the feedback gain, for the upper and 
lower rows of active coils, respectively. αD measures the ratio 
of derivative to proportional gains, and τF is the L/R time of 
the active coils. If we further assume the same gain amplitude 
|GU| = |GL| = |G|, the closed loop eigenvalue can be easily 
calculated

{
γ = (γ0−C1)(1+αDτFC1)+(ω0−C2)αDτFC2

(1+αDτFC1)
2+(αDτFC2)

2

ω = ω0−C2−γαDτFC2
1+αDτFC1

, (A.3)

where




C1 = |G|
î
|RU| cos

Ä
φ̂U + φU

ä
+ |RL| cos

Ä
φ̂L + φL

äó

C2 = |G|
î
|RU| sin

Ä
φ̂U + φU

ä
+ |RL| sin

Ä
φ̂L + φL

äó .

Solution (A.3) indicates that, without derivative action, the 
optimal gain phase, that results in the strongest stabilization 
of the mode, corresponds to φU = −φ̂U, φL = −φ̂L, i.e. when 
the feedback gain phase exactly cancels that of the open loop 
residuals. In other words, the optimal gain phase does not 
depend on the open-loop mode eigenvalue. For a PD controller 
(αD > 0.0), however, the optimal gain phase will depend on 
the open loop eigenvalue.
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