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1.  Introduction

The resistive wall mode (RWM) can limit the operational 
space of advanced tokamaks, which aim at producing high 
pressure, large faction of bootstrap current, long-pulse or 
steady-state plasmas. Since advanced tokamak scenarios are 
envisaged for most of the future devices such as HL-2M [1], 
JT-60SA [2], ITER [3] as well as CFETR [4], understanding 

the RWM stabilization physics, under various plasma condi-
tions, is still an important and urgent task, despite extensive 
effort that has been made during recent years in studying this 
plasma instability.

The RWM can be viewed as a residual instability from 
the external ideal kink (XK) mode [5], which is a low-n (n 
is the toroidal mode number), global magneto-hydrodynamic 
(MHD) instability driven by plasma current and/or pressure. 
For a pressure-driven XK, the normalized plasma pressure, 
the βN = β (%) a (m)B0 (T)/Ip (MA) value controls the mode 
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Abstract
Effects of parallel and poloidal flows, as well as the flow shear, on the resistive wall mode 
(RWM) instability have been numerically investigated in toroidally rotating plasmas, utilizing 
a recently updated version of the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681). A 
significant difference between these flows is that the background toroidal flow frequency is 
symmetric with respect to the poloidal angle, whilst both the poloidal and toroidal projections 
of the additional parallel flow are functions of both the plasma minor radius and poloidal 
angle. It is found that the stability of the RWM is hardly modified by the parallel flow, as a 
consequence of cancellation of the stabilizing effect provided by the poloidal projection of the 
parallel flow from one side, and the destabilizing effect provided by the toroidal projection 
from the other side. The destabilizing effect of the toroidal projection comes predominantly 
from the m  =  1 poloidal Fourier harmonic of the flow contribution. The shear of the parallel 
flow is found to generally weaken the stabilization/destabilization effect on the RWM, 
compared to the case of uniform parallel flow.
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stability, where β is the ratio of the volume-averaged plasma 
pressure to the magnetic pressure, Ip the total plasma current, a 
the plasma minor radius and B0 the vacuum toroidal magnetic 
field. When βN exceeds a critical value (the so-called Troyon 
no-wall limit [6]), the XK becomes unstable. A close-fitting 
perfectly conducting wall can stabilize the XK, resulting in 
(often substantially) increased βN. However, the presence of 
a resistive wall (often a vacuum vessel of the tokamak) only 
reduces the XK growth rate without shifting the stability 
boundary, converting the XK to an RWM growing on a time-
scale characteristic of the field penetration time through the 
wall. A truly unstable RWM can hardly non-linearly saturate 
due to the global nature of the instability, thus often leading 
to major disruptions of the plasma, causing the so-called hard 
beta limit. It is thus highly desirable to achieve the RWM 
stabilization, in order to maximize the economic benefit for 
advanced tokamaks.

It is now well established that either active control [7–12] 
or plasma toroidal flow in combination with drift kinetic 
effects [13–19], or the synergistic actions from both [20–22], 
can potentially stabilize the RWM. Active control is based on 
magnetic coils to compensate the field perturbation, which 
passes through the resistive wall. Magnetic feedback experi-
ments, carried out in both tokamaks [23, 24] and reversed field 
pinches [25, 26], as well as extensive theoretical investigations 
[9, 27], have demonstrated that successful suppression of the 
RWM can increase the plasma beta up to the ideal wall beta 
limit. On the other hand, passive stabilization of the mode, 
relying on the plasma flow and drift kinetic effects, appears 
more attractive (without using magnetic coils and sensors) if 
this can offer a full suppression of the RWM. This is also the 
subject of the present study.

Within the MHD description, the RWM stabilization 
mainly comes from the ion sound wave damping and the shear 
Alfven wave continuum damping [13–15, 28, 29]. The critical 
toroidal rotation velocity, required for complete stabilization 
of the mode, is normally a few percent of the Alfven speed 
[30]. On the other hand, MHD-kinetic hybrid theory, including 
drift kinetic resonances [18, 19, 31–33], predicts substantially 
lower value (even down to zero) of the critical toroidal rota-
tion speed required for the mode stabilization, thus offering a 
better explanation for recent experimental results obtained in 
DIII-D [34] and JT-60U [35].

So far, most of the previous work on passive stabilization of 
the RWM only assumes toroidal plasma flow, neglecting any 
effects from the poloidal and/or parallel flow of the plasma. 
This is partially due to the fact that the poloidal flow is usu-
ally strongly damped in a tokamak device due to neoclassical 
effects [36]. On the other hand, recent experiments in JET 
have shown that the poloidal flow velocity of the plasma can 
be one order of magnitude higher than the neoclassical predic-
tion [37, 38]. This often occurs in discharges where internal 
transport barrier (ITB) has been observed. In fact, a strong 
poloidal flow appears to be an important player in forming 
ITB.

In this work, we investigate the n  =  1 RWM stabilization 
by various combinations of the poloidal and toroidal flows. 
By doing so, we clarify the fundamental physics associated 

with the (general) flow damping of the RWM. This study thus 
further advances the previous understanding achieved in [39], 
where the poloidal flow is found to play an important role on 
the RWM stabilization, due to coupling to the toroidal flow 
via the parallel flow.

The next section discusses the computational model with 
parallel/poloidal flow. A toroidal equilibrium, assumed in this 
study, is also briefly described here. Section 3 reports numer
ical results. Section 4 concludes the work.

2.  Computational model and equilibrium model

2.1. Toroidal MHD model with parallel/poloidal  
flow in MARS-F code

In this work, the MHD stability code MARS-F [7] is updated 
to include a generic equilibrium flow, i.e. both toroidal and 
poloidal flows. MARS-F employs a curve-linear flux coordi-
nate system (s,χ,φ), where the radial coordinate s =

√
ψN  

(ψN is the normalized equilibrium poloidal flux, being equal 
to 0 at the magnetic axis and unity at the plasma boundary, 
labels the magnetic flux surface, χ a generic poloidal angle 
and φ the geometric toroidal angle. The equilibrium magnetic 
field is represented as:

B = ∇φ×∇ψ + T(ψ)∇φ,

where ψ is the equilibrium poloidal magnetic flux (note that ψ 
here is not normalized to 0 and 1) and T is the poloidal current 
flux function.

Within the single fluid model, an equilibrium flow satis-
fying mass conservation can be generally represented as

V0 = R2
î
Ωt(s) + Ω̂(s,χ)

ó
∇φ+ ρ−1U(s)B,� (1)

where R is the plasma major radius, Ωt(s) + Ω̂(s,χ) the 
angular velocity of a generic toroidal flow of the plasma, 
U(s) the flow component parallel to the equilibrium magnetic 
field lines and ρ  the equilibrium plasma density normalized 
to unity at the magnetic axis. In this work, we consider sub-
sonic equilibrium flow. Therefore, the plasma-flow-induced 
modification to the equilibrium is neglected.

Note that we introduce a generic toroidal flow component 
Ω̂(s,χ) in our model (1) that varies along both the plasma 
minor radius and poloidal angle [40]. This makes our flow 
model different to that assumed in [39]. This does not con-
tradict the mass conservation law ∇ · (ρV0) = 0. However, 
assumption of additional physics constraint, such as the radial 
ion force balance, will eliminate the Ω̂(s,χ) component, in 
which case the 1D component Ωt(s) represents the sum of the 
toroidal E × B and the ion diamagnetic rotation frequencies. 
Nevertheless, in this study, we shall keep the 2D component 
Ω̂(s,χ) in our equilibrium flow model. As we will see later, 
this allows us to study the effect of a pure poloidal flow on the 
MHD instability.

The parallel flow component U(s) is always a 1D function, 
in order to satisfy equilibrium mass conservation. The parallel 
flow can be projected into the toroidal and poloidal directions, 
resulting in
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®
Ωφ(s,χ) = Ωt(s) + Ω̂(s,χ) + ρ−1U(s) T

R2 ,

Ωχ(s,χ) = ρ−1U(s)ψ
′

J ,
�

(2)

where J is the Jacobian associated with the curve-linear coor-
dinates (s,χ,φ). A choice of Ω̂(s,χ) = −ρ−1U(s)T/R2 and 
Ωt(s)  =  0 leaves us with a pure poloidal equilibrium flow. On 
the other hand, setting Ω̂(s,χ)  =  0 as well as Ωt(s)  =  0 allows 
us to study the effect of pure equilibrium parallel flow on the 
MHD instability. Finally, setting U(s)  =  0 and Ω̂(s,χ)  =  0, 
the conventional case of a pure 1D toroidal flow is recovered.

The inclusion of parallel/poloidal flow leads to additional 
terms (underlined below) to the perturbed MHD equations, 
compared to the previous formulation [7, 13, 14] with toroidal 
flow alone:

ρ1 = −∇ · (ρξ),� (3)

(γ + inΩ)ξ = v + (ξ · ∇Ω)R2∇φ

−ρ−1U∇× (ξ × B) + ρ−2Uρ1B + (ξ · ∇U)ρ−1B,�
(4)

ρ(γ + inΩ)v = −∇p + j × B + J × b − ρ[2ΩẐ × v + (v · ∇Ω)R2∇φ]

−ρκ‖|k‖|vth,i[v · b̂ + (ξ · ∇V0) · b̂]b̂
−U∇(v · B) + Uv × J + UB × (∇× v)− B[ρ∇(ρ−1U) · v],
�

(5)

(γ + inΩ)b = ∇× (v × B) + (b · ∇Ω)R2∇φ−∇× (ρ−1Ub × B),
� (6)
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Figure 1.  (a) Geometry of an up-down symmetric equilibrium 
shown in the poloidal cross-section. With a JET-like plasma shape 
and a conformal resistive wall. Also shown are equilibrium radial 
profiles for (b) the safety factor, (c) the plasma pressure normalized 
by B2

0/µ0 , (d) the surface-averaged toroidal current density 
normalized by B0/(µ0R0) , and (e) the plasma density normalized to 
unity at the magnetic axis. Here, s =

√
ψN  labels the plasma minor 

radius, with ψN being the normalized poloidal equilibrium magnetic 
flux.
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Figure 2.  Radial profiles for the plasma toroidal rotation 
frequency (solid line), normalized by ΩA = B0/(R0

√
µ0ρ0) and 

the plasma parallel flow component (dashed line), normalized by 
UN = R0ΩA/B0 .
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Other parameters are fixed: the plasma pressure Cβ = 0.52, the 
normalized wall distance d/a = 1.25 and the parallel viscous 
damping coefficient κ‖ = 1.5.
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p = −ξ · ∇P − ΓP∇ · ξ,� (7)

µ0j = ∇× b,� (8)

where γ is the (generally complex) eigenvalue of the instability, 
corrected by a Doppler shift inΩ with Ω = Ωt(s) + Ω̂(s,χ). 
The quantities (ρ1, ξ, v, b, j, p) represent the plasma-perturbed 
density, displacement, velocity, magnetic field, current and 
pressure, respectively. The symbols (ρ, B, J, P) are equilibrium 
quantities, obtained by the equilibrium code CHEASE [41]. Ẑ 
is the unit vector in the vertical direction, κ‖ the strength of the 
parallel sound wave damping, k‖ = (n − m/q)/R the parallel 
wave number, with m being the poloidal harmonic number and 
q the safety factor. νth,i =

√
2Ti/Mi is the thermal ion velocity, 

with Ti and Mi being the thermal ion temperature and mass. 

b̂ = B/B is the unit vector along the equilibrium magnetic field. 
Γ is the ratio of specific heat, taken to be 5/3 for an ideal gas.

In the vacuum region, the perturbed magnetic field satis-
fies divergence-free conditions. In the region occupied by the 
resistive wall, an eddy current equation  is solved following 
a thin-shell approximation [20]. The above new formulation 
(1)–(8) has been implemented into the MARS-F code. A 
series of tests have been carried out to verify the new code.

2.2.  Equilibrium model

We consider an up-down symmetric equilibrium, with the plasma 
boundary shape shown in figure 1(a). The shape of the resistive 
wall conforms to the plasma boundary surface. The key equilib-
rium radial profiles are plotted in figures 1(b)–(e). Note that we 
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choose a slightly reversed magnetic shear in the plasma core, 
which is often compatible with the advanced tokamak scenario 
in the presence of ITB [42]. The safety factor has the on-axis 
value of q0 = 1.76, minimal value of qmin = 1.6 and edge value 
of qe = 3.28. The normalized beta value for this equilibrium is 
βN = 3.37. The no-wall beta limit is computed as βno-wall

N = 2.54, 
and the beta limit with an ideal wall is βideal-wall

N = 3.72. A linear 
scaling factor for the equilibrium pressure, Cβ, is consequently 
introduced as Cβ = (βN − βno-wall

N )/(βideal-wall
N − βno-wall

N ) , 
yielding Cβ = 0.52 for the equilibrium shown in figure 1.

The radial profiles for the plasma toroidal rotation fre-
quency Ωt(s) (solid line) and the parallel flow component U(s) 
(dashed line), are shown in figure 2. The Ωt(s) profile is chosen 
from an early JET discharge [43] and U(s)is a scaled-down 

version of Ωt(s). Note that in this work, the toroidal rotation 
frequency is normalized by the on-axis toroidal Alfven fre-
quency ΩA = B0/(R0

√
µ0ρ0) and the parallel component U is 

normalized by UN = R0ΩA/B0 . Whilst the amplitude of these 
plasma flow speeds will be scanned in our study, we generally 
assume that the poloidal flow is slower than the toroidal flow. 
This is a reasonable assumption taking neoclassical poloidal 
flow damping into consideration.

3.  Numerical results

In the following four sub-sections, with the new MARS-F 
implementation, we shall investigate the n  =  1 RWM 
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instability affected by (i) parallel flow, (ii) poloidal comp
onent of parallel flow, (iii) toroidal projection of parallel flow 
and (iv) flow shear, respectively. In these computations, we 
do not consider full drift kinetic effects on the RWM stability, 
but instead include a simpler viscous type of model involving 
ion–Landau damping of parallel sound waves.

3.1.  Effect of parallel flow on RWM stability

The effect of parallel flow on the RWM has previously been 
considered in [39]. The results there imply that parallel flow 
has a strong effect on the mode stability. A close analysis 
of the modelling procedure in [39] reveals that the authors 
assume that the total toroidal flow, including that of the 

toroidal projection of the parallel flow, is fixed while intro-
ducing the parallel flow. This means that, when the parallel 
flow is introduced, [39] also changes the toroidal flow comp
onent Ωt(s) in equation (2) from section 2.1 above, so that the 
total toroidal flow Ωφ(s,χ) from equation (2) is approximately 
fixed (assuming Ω̂(s,χ) = 0). Note that the total toroidal flow 
cannot be exactly fixed, since the toroidal projection of the 
parallel flow is a 2D flow, which cannot be exactly replaced 
by the 1D flow Ωt(s). Certain proxies have to be taken, e.g. by 
taking the toroidal projection of the parallel flow only along 
the outboard mid-plane.

We have followed the same procedure in our study and find 
qualitatively similar results to [39]. However, in the following, 
we choose another approach, in order to more clearly identify 
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by the on-axis toroidal Alfven frequency ΩA = B0/(R0

√
µ0ρ0) and the parallel flow component is normalized by UN = R0ΩA/B0 .
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Figure 9.  (a) Radial profiles for the real parts of toroidal projection, with poloidal harmonics of m  =  0 and m  =  1. Other harmonics are at 
least ten times smaller than the m  =  1 by amplitude and the imaginary parts of all harmonics are very small, (b) growth rate of the RWM 
versus the amplitude of each harmonic (m  =  0 and m  =  1) for two choices of the toroidal rotation Ω0 = 0.02 (circles) and Ω0 = 0.04 
(squares), respectively. Note that the m  =  0 component is included into toroidal flow Ωt(s).
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the role of parallel flow on the RWM stability. This, together 
with results to be shown in the follow-up section (section 3.2), 
clarifies the RWM damping physics, when both the parallel/
poloidal and toroidal plasma flows are present.

More specifically, we shall keep the toroidal flow comp
onent Ωt(s) fixed while scanning the parallel flow velocity. 
For comparison, we first report MARS-F results in the 
absence of parallel flow (figure 3). In this case, a strong par-
allel sound wave damping, in combination with the Alfven 
and sound wave continua resonances, fully stabilizes the 
RWM at sufficiently fast toroidal flow. The critical rotation 
frequency, required for complete stabilization of the mode, 
is Ωcri = 0.045. This result is expected following the fluid 
theory for the RWM [13].

Next, we fix the toroidal rotation Ωt(s) and vary the parallel 
flow component U(s) (Ω̂(s,χ) is set to zero). The shapes of the 
radial profiles for Ωt(s) and U(s) are taken from figure 2. The 
on-axis values for Ωt(s) are fixed at Ω0 = 0.02 and Ω0 = 0.04, 
respectively. The latter flow amplitude is close to the critical 
value for the RWM stabilization, as found from figure 3. The 
MARS-F results, reported in figure 4, show that the stability 
of the RWM is hardly modified by the parallel flow.

As for an intuitive understanding, a plasma flow along the 
equilibrium field line mainly introduces a rotational trans-
form. In other words, the MHD physics remains the same 
if a reference frame were introduced, which flowed along 
the field lines. This transform is not trivial to perform in 
practice though. Another intuitive interpretation is that the 
RWM dynamics, like many other macroscopic MHD insta-
bilities, involves mainly physics along the perpendicular (to 
field lines) direction. (This is not strictly true though, since 
we know that the parallel dynamics couples to the perpend
icular motion through the plasma compressibility.) When the 
plasma is close to being incompressible (which holds at the 
marginal stability point for ideal MHD), and the additional 

coupling via sub-sonic equilibrium flow (due to centrifugal 
and Coriolis forces) is weak, the parallel dynamics is not 
important.

Figure 5 further demonstrates that the effect of parallel flow 
is very weak on the RWM stability. The stability window [14], 
in terms of the wall minor radius, is found to undergo little mod-
ification, when the parallel flow is introduced in either positive 
(to the equilibrium parallel current) or negative directions. This 
holds for both toroidal rotation cases considered here.

3.2.  Effect of poloidal flow on RWM stability

As discussed in section 2.1, the parallel flow can be projected 
into poloidal and toroidal components. In this sub-section, 
we study the effect of the poloidal projection of the parallel 
flow on the RWM stability. The toroidal projection of the 
parallel flow is eliminated for these simulations by setting 
Ω̂(s,χ) = −ρ−1U(s)T/R2 in equation (2).

We again keep the 1D toroidal flow fixed while scanning 
the parallel flow speed U. Figure 6 shows two examples of 
the computed RWM eigenvalue versus the on-axis value of U, 
fixing the toroidal rotation frequency at Ω0 = 0.02 (circles) 
and Ω0 = 0.04 (squares), respectively. We emphasize that 
only the poloidal projection of the parallel flow is included in 
these computations.

It is apparent that the growth rate of the RWM decreases 
with increasing U0, although U0 is much smaller than the 
toroidal rotation frequency. The mode becomes stable for both 
cases, when U0 exceeds a critical value of U0 = 1.5 × 10−3. 
The stabilizing effect of the poloidal flow component is found 
to be stronger for the case with slower background toroidal 
flow. In fact, the mode growth rate decreases about five 
times quicker (with increasing U0) for the plasma rotating 
at Ω0 = 0.02, than the case of Ω0 = 0.04, as shown in 
figure 6(a).

Figure 7 further demonstrates the substantial effect of 
poloidal flow on the RWM stability. The width of the stability 
window increases with (positive) U0, when the poloidal pro-
jection alone is included in the computations, as shown in 
figure 7(a). With negative U0, the addition of poloidal flow 
destabilizes the RWM and narrows the stability window.

3.3.  Effect of toroidal projection of parallel flow on RWM 
stability

Now, we consider the opposite case, where we only keep the 
toroidal projection of parallel flow. Note that this flow comp
onent varies along both the plasma minor radius as well as the 
poloidal angle, unlike the 1D toroidal flow Ωt(s), which is also 
included here.

Figure 8 reports the U0-scan results at fixed 1D flow Ωt(s), 
with all the parameters being the same as figure 6, except for 
replacing the poloidal projection by the toroidal projection. 
We again find that the larger effect from the U0-scan occurs at 
slower toroidal rotation Ω0 = 0.02. The critical value for mar-
ginal stability, in terms of U0, is similar between two values 
of Ω0.
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Figure 10.  Three choices of the radial profile for the parallel flow 
component: uniform (case 1, solid), parabolic (case 2, dashed) and 
with a large local shear (case 3, dotted). Dash-dotted line denotes 
the location of the q  =  2 rational surface.
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What is counter-intuitive is that increasing U0 destabilizes 
the RWM, despite the fact that the toroidal projection of parallel 
flow and the 1D toroidal flow Ωt(s) have the same sign when 
U0 is positive. In order to understand this effect, we decom-
pose the toroidal projection into poloidal Fourier harmonics 

Ω̂(s,χ) = ρ−1U(s)T/R2 = Ωm=0(s) + 2Re[
∑

m=1
Ωm(s)eimχ]. The 

dominant harmonics turn out to be m  =  0 and m  =  1 (and  −1). 
These are shown in figure 9(a). The m  =  0 harmonic has the 
same (positive) sign as Ωt(s). The m  =  1 (or  −1) harmonic, 
however, has the opposite sign. The computed destabilization, 
shown by figure 8, comes from the Fourier harmonic coupling 
effect with the m  =  1 component of the 2D flow Ω̂(s,χ), as 
demonstrated by figure 9(b).

Indeed, by including the m  =  0 component of Ω̂(s,χ) 
alone, figure  9(b) shows a stabilizing effect, as expected. 
On the other hand, a strong destabilization occurs if we only 
include the m  =  1 component of Ω̂(s,χ) into the MARS-F 
computation. Note that this destabilization must come from 
toroidal coupling effect, not simply due to the fact that the 
m  =  1 harmonic has the opposite sign to the 1D flow Ωt(s). 
This is because the flow associated with the m  =  1 component 
changes direction along the poloidal angle. The surface-aver-
aged contribution to the flow, from the m  =  1 component, thus 
vanishes.

3.4.  Effect of flow shear on RWM stability

In the following, we investigate how the change of flow shear 
for the parallel flow component U(s) affects the RWM stability. 
We introduce a set of parallel flow profiles, U = U0(1 − sµ)ν , 
with different choices of (µ, ν)-values. Three representative 
choices are shown in figure 10. Note that case 1 (uniform pro-
file with vanishing shear) and case 3 (strong local shear near 
the q  =  2 surface) represent two extreme situations.

The MARS-F computed RWM eigenvalues, assuming the 
above three profiles for the parallel flow U(s), are reported 
in figure 11. Note that, besides the flow shear variation, we 
also compare cases with the inclusion of poloidal or toroidal 
projection alone of the parallel flow, or with the inclusion of 
the full parallel flow. In the latter, the flow shear of U(s) has 
a negligible effect on the RWM stability, largely due to the 
fact that the parallel flow itself has a very weak effect on the 
mode. On the other hand, the flow shear associated with the 
poloidal or toroidal projection significantly affects the mode 
stability. Generally, the effect is weaker with stronger shear. It 
is important to note that this conclusion holds if we fix the par-
allel flow amplitude at the q  =  2 surface (Uq=2) while varying 
the shear. Although generally there is no unique way of com-
parison, we find out that this is the best way to isolate the flow 
shear effect from that of the flow amplitude.

Compared to the case without parallel flow or its projections 
(i.e. Uq=2 = 0), stabilization or destabilization of the RWM 
depends on the direction of the parallel flow. Stabilization of 
the mode is achieved either by poloidal projection of parallel 
flow in the positive direction (aligning with the equilibrium 
parallel current), or by toroidal projection of parallel flow in 
the negative direction. Destabilization is found in the opposite 
cases.

4.  Conclusions and discussion

We carried out detailed numerical investigation into the n  =  1 
RWM stabilization by various combinations of the poloidal/
parallel and toroidal plasma flows, utilizing the updated ver-
sion of MARS-F code. The effect of the flow shear of the par-
allel flow has also been studied.

One of the key findings is that the parallel flow provides 
minor stabilization to the RWM. At a first glance, this may be 
contradictory to the conclusion reached by Aiba et al [39]. In 
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their work, the parallel flow was introduced with a fixed total 
amount of toroidal flow. In our work, we fix the 1D toroidal 
flow frequency while adding the parallel flow component. 
This allows us to study the effect of a pure parallel flow on 
the mode stability. Our result suggests that the parallel flow 
acts more like introducing a rotational transform (along the 
equilibrium field line) to the mode, than providing physical 
stabilization.

On the other hand, if we keep only the poloidal or toroidal 
component of the parallel flow, the effect on the RWM sta-
bility is appreciable, even at small magnitude of parallel flow, 
i.e. at about 10% of that of the 1D background toroidal flow 
speed. With the same sign for the 1D toroidal flow and the par-
allel flow, we find that the poloidal projection of the parallel 
flow provides additional stabilization to the RWM, whilst the 
toroidal projection destabilizes the mode. As a result, when 
both the poloidal and toroidal components are included (i.e. 
with full parallel flow), the stabilization and destabilization 
effects cancel each other, resulting in a minor effect of parallel 
flow on the RWM stability.

An interesting observation is that, despite the fact that the 
toroidal projection of parallel flow on average enhances the 
1D background toroidal flow, the RWM stability is reduced. 
We find out that this destabilization originates from the m  =  1 
poloidal Fourier harmonic of the toroidal projection, which 
has an opposite sign to the 1D background flow. This m  =  1 
component destabilizes the mode via the mode coupling 
effect.

The shear of the parallel flow component, near the q  =  2 
surface, generally weakens the effect on the RWM stabi-
lization/destabilization. Consequently, a large shear at the 
q  =  2 rational surface, with negative poloidal projection or 
positive toroidal projection, reduces the mode destabiliza-
tion. A uniform parallel flow with positive poloidal pro-
jection or negative toroidal projection enhances the mode 
stabilization.

The finding that a small amount of poloidal flow can effect 
appreciable stabilization to the RWM may be important for 
ITER, where the toroidal flow is not expected to be fast, and 
the drift kinetic stabilization (at slow toroidal flow) is pre-
dicted to only partially stabilize the mode [31].

The aforementioned drift kinetic effects have been ignored 
in this study, for the purpose of reaching clear physics under-
standing within the fluid picture. The combination of parallel 
flow, or its poloidal/toroidal projections, with drift kinetic 
theory requires further development of the MHD–kinetic 
hybrid formulation. In particular, the particle bounce orbit 
average of the toroidal projection (which is a function of 
both plasma minor radius and poloidal angle) of the parallel 
flow needs to be added into the drift kinetic resonance opera-
tors. The resonance between poloidal flow and particle drift 
motions has so far not been considered in the kinetic RWM 
theory, although the physics is similar to that of the magnetic 
pumping for the neoclassical poloidal flow damping. Detailed 
hybrid formulation still needs to be developed, which will be 
part of a future work.
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