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Abstract
The influence of negative triangularity (NT) of the plasma shape on the n = 1 (n is the toroidal
mode number) tearing mode (TM) stability has been numerically investigated, with results
compared to that of the positive triangularity (PT) counterpart. By matching the safety factor
profile for a series of toroidal equilibria, several important plasma parameters, including the
triangularity, the plasma equilibrium pressure, the plasma resistivity as well as the toroidal
rotation, have been varied. The TM localized near the plasma edge is found to be more unstable
in the NT plasmas as compared to the PT counterpart. The fundamental reason for this
difference is the lack of favorable average curvature stabilization in NT configurations. Direct
comparison of the Mercier index corroborates this conclusion. For the core-localized mode,
where the difference in the local triangularity between NT and PT becomes small and the
curvature stabilization is significantly reduced, larger Shafranov shift in the plasma core
associated with the NT configuration results in more stable TM. The plasma toroidal flow
generally stabilizes the TM in plasmas with both NTs and PTs. The flow stabilization is
however weaker in the case of negative triangularity with finite plasma pressure.

Keywords: negative triangularity, tearing mode, toroidal flow

(Some figures may appear in colour only in the online journal)

1. Introduction

The tearing mode (TM) is one of the most important macro-
scopic magnetohydrodynamics (MHD) instabilities, that leads
to reconnection of the magnetic field lines (near the location
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of the instability) [1–3], degradation of the plasma energy
confinement [4–6], and potentially plasma major disruption
[7–9]. Large magnetic islands, induced by the TM or its
neoclassical counterpart, limit the plasma equilibrium pres-
sure in terms of the normalized values β = 2µ0 ⟨P⟩/B2

0 and
βN = β[%]a[m]B0[T]/Ip[MA], where β is the ratio of the
volume averaged plasma pressure ⟨P⟩ to the magnetic pres-
sure, B0 the on-axis toroidal magnetic field strength, a the
plasma minor radius and Ip the plasma total current.

It is well known that finite β, in association with the finite
pressure gradient across the mode rational surface, stabil-
izes the TM via the favorable average curvature effect. This
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so-called GGJ-effect [10] relies on the fact that, in a toroidal
geometry, the average magnetic curvature favors mode sta-
bilization in particular in ‘D’-shaped plasmas. The effect is
captured by the resistive Mercier index DR, which is typically
negative in tokamak geometry. As interesting consequences,
the GGJ-effect can introduce finite frequency to the mode
even in a static plasma [11–13]. A rotating TM (in an initially
static plasma) in turn generates net electromagnetic torque and
drives plasma flow [12]. Furthermore, the GGJ-effect induced
energy dissipation was also found responsible for a strong
stabilization of the resistive-plasma resistive wall mode (RP-
RWM) [12]. Finally, as βN approaches the so-called no-wall
Troyon limit, the plasma equilibrium pressure can be destabil-
izing to the TM, by coupling the instability to the ideal kink
mode [12].

The boundary shape of the plasma poloidal cross-section
plays important roles in the discharge performance in tokamak
fusion devices [14–16]. Conventionally, a ‘D’-shaped plasma
with positive triangularity (PT) has been shown to be favor-
able for reducing the energy transport and increasing the βN

limit [17, 18]. Recent experiments, however, have shown that
a reversed ‘D’-shape with negative triangularity (NT) can also
help reduce the turbulence-induced energy transport as well
and reach a global confinement comparable to the H-mode
regime of PT-plasmas [19–24]. In particular, significant exper-
imental efforts have been devoted to studying plasmas with
the NT shape, in TCV [22], DIII-D [23, 24], and recently
in other devices as well. Absence of edge localized modes
in NT-plasmas is another advantage. Because of the afore-
mentioned (and other) interesting features associated with the
NT-configuration, operation with reversed ‘D’-shape for the
plasma boundary is becoming an attractive fusion concept dur-
ing recent years [24–31].

The NT-configuration provides a possible solution to the
divertor heat load issue. Nevertheless, the macroscopic stabil-
ity in these plasmas needs more careful investigation. Earlier
studies in [32] showed that plasmas with optimized pressure
profiles can be stable to global kink modes with appropriate
core pressure profile optimization. In this study, we investig-
ate the effect of NT of the plasma shape on the tearing mode
stability through modeling in toroidal geometry, and compare
with that for the PT counterpart. Recent experiments in DIII-
D with NT shape seem to produce discharges with benign TM
activity [23]. But in general, evidence concerning the stability
of the TM in NT plasmas, with respect to its PT-counterpart,
is still inconclusive [21, 22]. This motivates our systematic
numerical investigation in this work. The NT-effect on tearing
mode has so far not been systematically investigated in theory
and modeling, much less in terms of achieving physics under-
standing which is the primary focus of the present work. A
recent study [31] has partially considered the NT-effect on the
TM, but in the context of reversedmagnetic shear plasma scen-
arios (i.e. on the so-called double tearing mode). Our results
here reveal the key physics difference introduced by the NT-
shape, as compared to the PT-shape, that affects the TM stabil-
ity. More specifically, we find that the NT-shape substantially
reduces the favorable average curvature stabilization, leading
to a more robust TM instability in tokamak plasmas. As for

the toroidal modeling, we employ the MARS-F code [33] to
solve the resistive MHD eigenvalue problem without ordering
assumptions.

The paper is organized as follows. Section 2 describes a
series of numerical plasma equilibria that we construct in full
toroidal geometry, that covers plasma boundary shapes ran-
ging from negative to PT. A key feature of these equilibria is
that the safety factor profile is fixed to be nearly identical while
varying the plasma triangularity. Section 3 reports detailed
modeling results on the TM stability as well as discussions
on the underlying physics effects associated with the GGJ-
stabilization and the Shafranov shift. Section 4 summarizes the
results.

2. Plasma equilibria

In this study, we adopt semi-analytic equilibria in toroidal
tokamak geometry, without referencing to specific devices.
These equilibria are constructed for physics understanding of
the NT-shape on the TM stability, and appropriate constraints
on the equilibria are employed to facilitate achieving the goal.

We consider lower single null divertor-like plasmas, with
the boundary shape specified in the (R, Z) coordinates on the
poloidal plane [34] and normalized by the plasmamajor radius
R0 (which is assumed to be 3 m)

R(θ) = 1+ εcos(θ+ δ sin(θ)) (2.1)

Z(θ) = εκsin(θ)− bexp

[
−
(∣∣∣θ+ π

2

∣∣∣/c)3/2
]

(2.2)

where the parameters ε, δ, κ define the inverse aspect ratio
of the plasma, the triangularity and elongation of the plasma
boundary shape. In order to construct a lower single null
plasma configuration, we specify, b = 0.08 and c = 0.5. The
parameters ε and κ are fixed at 1/3 and 1.5, respectively, in
this study. The key parameter that we vary is the boundary
triangularity δ. Figure 1(a) shows examples of the construc-
ted plasma boundary shape while varying δ from −0.3 to 0.3.
As will be reported later, choosing this range of δ well cov-
ers the physics regime (the GGJ-regime) of interest here—the
GGJ-effect disappears when δ < −0.3 for the series of equi-
libria considered. We emphasize that the δ-value here refers to
that of the plasma boundary shape. In consistently computed
equilibria as in our study, the triangularity varies inside the
plasma, vanishing at the magnetic axis. In this study, we con-
sider a parabolic equilibrium pressure profile P = P0(1−s2)
shown in figure 1(b). Other types of pressure profiles have also
been examined showing no qualitativemodification to the final
conclusion.

An important consideration in studying the TM is the safety
factor profile q, which is known to strongly affect the mode
stability via the radial location of the associated rational sur-
faces as well as the local magnetic shear. In order to elim-
inate the effect of the q-profile on the TM stability while
scanning plasma triangularity, we tune the plasma current
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Figure 1. The (a) plasma boundary shapes (normalized by the major radius R0) with varying triangularity; (b) radial profiles of the pressure
specified as P= P0(1−s2); (c), (e) radial profiles of the surface-averaged toroidal current density of the plasma; and (d), ( f ) radial profiles of
the safety factor q, considered in this study. The vertical dash-dotted line in (d), ( f ) indicate the radial location of the q = 2 rational surface.

density profile (which is one of the input data of our fixed-
boundary equilibrium solver [35]) to ensure nearly identical
safety factor profiles. Note that the safety factor is the output
of the Grad-Shafranov solver here, and is numerically self-
consistently computed. In this study, we utilize the CHEASE
code [35, 36] for this purpose. The code takes the plasma
boundary shape (e.g. figure 1(a)), the equilibrium pressure
profile (figure 1(b)), and the surface-averaged toroidal current

density of the plasma (figures 1(c) and (e)) as input, then solves
the fix-boundaryGrad-Shafranov equation to obtain consistent
numerical equilibria.

Two types of current density profiles (figures 1(c) and (e))
are considered, yielding two q-profiles (figures 1(d) and ( f )).
Figures 1(c) and (d) corresponds to one set of equilibria with
q0 = 1.2 and q95 < 3. This is a case where the q = 2 rational
surface is located near the plasma edge (at s= 0.95) where the
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pressure gradient is also large. The triangularity values at the
q= 2 surface are−0.25,−0.18,−0.09, 0, 0.08, 0.18, 0.28. As
a contrasting case (figures 1(e) and ( f )), we construct a set of
equilibria with q0 = 1.98 and q95 > 3. In this case, the q = 2
rational surface is located near the plasma core (at s = 0.21)
where the pressure gradient is also small. The triangularity val-
ues at the q= 2 surface are−0.07,−0.04,−0.03, 0, 0.03, 0.04,
0.05 in this case. Note that to avoid the internal kink instability,
we fixed the on-axis safety factor to be q0 >1 for both cases.

3. Modeling results

We focus on investigating the effect of NT on the stability of
the n = 1 TM at the q = 2 surface. Three plasma equilibrium
parameters are of our primary concern while scanning the tri-
angularity, i.e. the plasma pressure (βN), resistivity (Lundquist
number S), and the plasma toroidal rotation.We start by report-
ing the modeling results for plasmas with vanishing flow. In
what follows (figures 2–5), we consider first the set of equilib-
ria (with varying triangularity) described above with q95 < 3.
This is the case where the contrast in the local (i.e. at the loc-
ation of the TM) triangularity is more prominent.

Figures 2 and 3 report the MARS-F computed TM growth
rate and mode frequency, respectively, for a series of equilib-
ria with different triangularity while performing scans in 2D
parameter space of βN and S. The range for βN is 0–1.77. The
upper bound here is chosen to be reasonably below the Troyon
no-wall limit for the onset of the n= 1 ideal kink instability. At
βN > 1.77, we find that the TM eigenfunction becomes more
global and starts to resemble that of an ideal kink. The range
for the Lundquist number S is chosen to be 2× 106−1010. This
covers the values for the Lundquist number in typical toka-
mak discharges. Note that the Lundquist number is defined as
S = τR/τA, where τR = µ0a2/η (η being the plasma resistiv-
ity and µ0 vacuum permeability) is the resistive decay time
of the plasma current and τA = R0

√
µ0ρ0/B0 is the toroidal

Alfvén time (R0 and a are the plasma major and minor radii,
respectively).

Figure 2 shows that the TM growth rate generally decreases
with increasing trangularity (from the negative to positive val-
ues). In fact with δ ⩾ 0 and sufficiently high Lundquist num-
ber (S ⩾ 108), stable TM is computed in certain parameter
spaces. At a given triangularity, the TM growth rate decreases
with increasing Lundquist number. This is expected since the
TM is driven by the plasma resistivity. It is on the other hand
interesting to observe the different dependence of the mode
stability on βN between the NT- and PT-plasmas. For a NT-
equilibrium (figures 2(a)–(c)), higher plasma pressure drives
more unstable TM. The trend is however reversed for the PT-
counterpart (figures 2(e) and ( f )). The finite-pressure induced
TM stabilization in PT-plasmas is associated with the GGJ-
effect. The lack of such stabilization in the NT-plasmas indic-
ates a weak GGJ-effect—an important finding of this study
which will be further elaborated later on.

The presence of GGJ-stabilization often results in finite
mode frequency (even in the absence of plasma rotation). This

is indeed the case for the PT-plasmas as shown in figure 3. As δ
is progressively increased from the negative to positive values,
a region of finite-frequency appears in the (βN, S) domain. This
region emerges from the high-S end for plasmas with weak
NT (figures 3(c) and (d)), and becomes as a prominent feature
for PT-plasmas (figures 3(e)–(h)). Presence of finite mode fre-
quency is a clear indication of the GGJ-effect on the TM (at
intermediate finite plasma pressure). Note that the regions with
prominent frequency also correspond to the ‘meta-stable’ TM
stability shown in figure 2. Absence of such regions for equi-
libria with strongly NT (figures 3(a) and (b)) indicates lack
of GGJ-stabilization independent of the plasma pressure and
resistivity.

As direct evidence for the presence or absence of the GGJ-
effect, figures 4(a) and (b) shows the ideal (DI) and resist-
ive (DR) Mercier indices evaluated at the q = 2 surface, for
the equilibria considered here. These equilibrium quantities
are presented in the 2D parameter space of (βN, δ). Note that
DI = 1/4 corresponds to the case of vanishing plasma pres-
sure where noGGJ-effect is present for all triangularity values.
This quantity increases with both βN and δ. We mention that
DI exceeding unity corresponds to the ideal kink stability limit
[37], which has evidently not been accessed for our series of
equilibria.

The computedMercier indexDR is of small negative values
for the PT-plasmas at sufficiently high pressure (figure 4(b)). A
negative DR is directly associated with the GGJ-stabilization,
which is proportional to DR [10]. This quantity is however
close to 0 for NT-equilibria, for a large range of βN values.
Figure 4(b) thus reveals the reason for the robust TM instabil-
ity computed for the NT-plasmas as reported in figure 2.

Since the Shafranov shift is also known to affect the MHD
instability, we evaluate this quantity as well for our equi-
libria, with results plotted in figure 4(c). Here, we define
the Shafranov shift as the radial distance of the magnetic
axis (Raxis) with respect to the geometrical center (R0) of the
plasma. The normalized quantity reported in figure 4(c) is thus
∆/R0 = (Raxis – R0)/R0. Figure 4(c) shows that the plasma pres-
sure enhances the Shafranov shift, as expected. More import-
antly, increasing the plasma triangularity (from negative to
positive values) results in reduced Shafranov shift. Since the
Shafranov shift typically stabilizes MHD instabilities (in par-
ticular ballooning type of modes), the computed destabiliza-
tion of the TM in the NT-plasmas (with large Shafranov shift)
is not due to this effect. We thus conclude that the lack of the
GGJ-stabilization is the main reason for the more unstable TM
in NT-plasmas.

We have performed denser scan of the plasma triangularity
than that reported in figures 2 and 3. Figure 5 show two rep-
resentative examples of the computed TM growth rate versus
δ. One case (βN = 0 and S = 108) is chosen from the top-
left corner of the 2D parameter domain in figure 2, where the
mode growth rate is too small to be clearly compared in the 2D
plots. The other case (βN = 0.5 and S= 2× 106) is chosen near
the bottom-middle region from figure 2, where the instability
remains relatively strong for all triangularity values. Note that
we are also comparing two cases here with (βN = 0.5) and

4



Nucl. Fusion 63 (2023) 066001 X. Yang et al

Figure 2. Plotted are the growth rate of the mode from negative to positive triangularity, while varying the βN and the Lundquist number S.

Figure 3. Plotted are the real frequency of the mode from negative to positive triangularity, while varying the βN and the Lundquist
number S.

Figure 4. The (a) ideal and (b) resistive Mercier index at the q = 2 surface, and (c) normalized Shafranov shift, while varying the βN and
the triangularity δ.

without (βN = 0) the GGJ-effect. The presence of the favor-
able average curvature effect evidently results in substantial
stabilization of the TM as we increase the plasma triangularity
from negative to positive values. The slight stabilization (with
decreasing δ) of themode for the case of vanishing equilibrium
pressure (thus no GGJ-stabilization) is related to the increase
of the Shafranov shift as shown in figure 4(c).

We have so far systematically investigated stability of the
TM located near the plasma edge. As mentioned earlier,
this is motivated by the fact that the difference in the local
triangularity (between the NT and PT configurations) is only
prominent towards the plasma edge region. On the other hand,
the Shafranov shift in the plasma core is significantly larger
in NT plasmas (figure 4(c)). This can affect the stability of
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Figure 5. The normalized growth rate of the n = 1 tearing mode versus the plasma boundary triangularity δ, computed assuming
(a) βN = 0 and S = 108, and (b) βN = 0.5 and S = 2 × 106.

Figure 6. The (a) normalized Shafranov shift, (b) resistive Mercier index at the q = 2 surface, and (c) growth rate of a core-localized n = 1
tearing mode while varying the triangularity δ, assuming S = 106. Compared are two cases with vanishing (blue dashed lines) and finite (red
solid lines) equilibrium pressures. The equilibria correspond to the safety factor profiles shown in figure 1( f ).

a core-localized TM despite of the vanishing difference in
the local triangularity between the NT and PT configurations
towards the magnetic axis. Because the Shafranov shift is sta-
bilizing, we expect a more stable core-localized TM in the NT
plasma, provided that the GGJ effect is sufficiently weak in
both configurations (as it should be the case due to small equi-
librium pressure gradient in the plasma core). The MARS-F
computations (figure 6), utilizing the set of equilibrium pro-
files shown in figures 1(e) and ( f ), indeed confirm the above
hypothesis.

Figure 6 show results of the (plasma surface) triangularity
scan, while fixing the location of the q= 2 surface at the minor
radius of s= 0.21. Compared are two cases—one with vanish-
ing equilibrium pressure (blue dashed lines) and the other with
a finite but low pressure (red solid lines). In both cases, the
TM is more stable towards the NT configuration (figure 6(c)).
Note the strong increase of the core Shafranov shift NT plas-
mas (figure 6(a)), which stabilizes the TM. The more negative
DR values (and hence more GGJ stabilization, figure 6(b)) in
the finite-βN case help stabilize the TM in PT plasmas, but this
effect is somewhat weaker than that of the Shafranov shift sta-
bilization. Further increasing βN results in all equilibria being
stable to the TM across our δ-scan range.

As a final study of this work, we consider the NT effect
on the TM stability in toroidally rotating plasmas. We again
focus on the case with the mode located near the plasma
edge. We consider two flow models, i.e. a uniform rotation
along the plasma minor radius (Ω = Ω0) and a sheared rota-
tion (Ω = Ω0 (1 − s2)). The modeling results are reported in
figure 7, again for the two cases of (βN = 0, S = 108) and
(βN = 0.5, S = 2 × 106) as in figure 7. Note that, with the
same on-axis rotation frequency Ω0, the plasma rotation at the
q= 2 rational surface is much slower for the sheared flow case,
as compared to the uniform flow. This motivates our choice of
larger ranges forΩ0 for sheared flow cases, in particular for the
case with finite equilibrium pressure as shown in figures 7(d)
and (h).

In general, we find that the plasma toroidal rotation reduces
the TM growth rate independent of the flow models. For the
βN = 0 case (figures 7(a) and (b)), the degree of stabilization
is similar between NT- and PT-plasmas. At finite equilibrium
pressure (figures 7(c) and (d)), however, the TM growth rate is
less affected by plasma rotation for NT-equilibria. In all cases,
the mode frequency roughly linearly increases with the plasma
local rotation frequency at the q= 2 surface (figures 7(e)–(h)),
as expected.
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Figure 7. The computed normalized (a)–(d) growth rate, and (e)–(h) real frequency of the n = 1 tearing mode, assuming ((a), (b), (e), ( f ))
βN = 0 and S = 108, and ((c), (d), (g), (h)) βN = 0.5 and S = 2 × 106, while varying the plasma toroidal rotation frequency. Assumed are
two rotation profile models, with ((a), (c), (e), (g)) a uniform rotation profile Ω = Ω0 along the plasma minor radius and ((b), (d), ( f ), (h)) a
sheared rotation profile Ω = Ω0 (1 – s2).

4. Conclusion and discussion

We have numerically investigated the influence of (negative)
plasma triangularity on the n = 1 TM in this work. By match-
ing the safety factor profile for a series of toroidal equilibria,
we scan several plasma parameters including the triangularity,
the plasma equilibrium pressure, the plasma resistivity as well
as the toroidal rotation.

For the TM located near the plasma edge, where the local
triangularity differs the most between the NT and PT config-
urations, the instability is found to be more unstable in NT-
plasmas as compared to the PT-counterpart. The fundamental
reason for this difference is the lack of favorable average
curvature stabilization in NT-plasmas, at least for the TM. (We
point out that this lack of curvature stabilization also applies to
other instabilities such as the ballooning-type of modes in NT
plasmas.) Comparison of the Mercier index corroborates this
conclusion. The Shafranov shift, which tends to be larger for
the NT-equilibria, does not help to stabilize the mode except
for the peculiar case of vanishing equilibrium pressure.

On the other hand, the core-localized TM is found to be
more stable in the NT configuration. This is primarily due
to the much stronger Shafranov shift in the plasma core in
NT plasmas, as compared to the PT counterpart. The GGJ-
effect is generally weaker in both NT and PT plasmas due
to smaller equilibrium pressure gradient in the plasma core.
These numerical findings clearly illustrate the two competing
effects—the Shafranov shift and the GGJ-effect—for the TM
stabilization as long as the plasma triangularity is concerned.
The radial location of the mode plays an important role in
determining whether the (negative) triangularity is stabilizing
or destabilizing.

The plasma toroidal flow generally stabilizes the TM in
plasmas with both NTs and PTs. For the cases of vanishing
equilibrium pressure, the degree of stabilization is similar

between the NT- and PT-plasmas. For finite pressure cases,
however, we find that the flow stabilization is weaker for the
NT-plasma.

The above findings, in particular the physics understanding
revealed by the numerical modeling, can be useful for inter-
preting experimental results in NT-plasmas. On the other hand,
we point out that not all physics effects have been included
in our present study, such as the neoclassical effects (NTM)
and the non-linear effects, effects beyond standard single-
fluid MHD model (e.g. anisotropic thermal transport effect
which we will study in the near future). Some of these effects
may also significantly affect the TM behavior in negative-
triangularity plasmas.
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