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Abstract. The nonlinear dynamics of magneto-hydrodynamic ballooning mode
perturbations is conjectured to be characterised by the motion of isolated elliptical
flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks
is developed using a generalised Archimedes’ principle. The equation of motion for
a tube moving against a drag force in a general axisymmetric equilibrium is derived
and then applied to a simplified ‘s-a’ equilibrium. The perturbed nonlinear tube
equilibrium (saturated) states are investigated in an ‘s-a’ equilibrium with specific
pressure and magnetic shear profiles. The energy of these nonlinear (ballooning)
saturated states is calculated. In some cases, particularly at low magnetic shear, these
finitely displaced states can have a lower energy than the equilibrium state even if
the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at
all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the
saturated tube displacement in such cases can be as large as the pressure gradient scale
length. We conjecture that triggering a transition into these filamentary states can lead
to hard instability limits. A short survey of different pressure profiles is presented to
illustrate the variety of behaviour of perturbed elliptical flux tubes.

1. Introduction

Ballooning modes are pressure driven instabilities that occur in magnetically confined
fusion plasmas and are localized to the bad curvature region [1]. These instabilities
can produce both hard and soft stability limits on the plasma. A soft limit is where the
plasma pressure gradient is held at a critical value. If the profile goes above this value at
any given point the instability is triggered and it produces sufficient transport to drive
the pressure profile back to the soft limit value [2]. This may be the process that limits
the pressure gradient in the pedestal region of a tokamak plasma. However, there are
also hard limits which are characterised by an explosive loss of a significant amount of
plasma energy. Examples of this are Edge Localized Modes (ELMSs) [3, 4], certain types
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of plasma disruptions in tokamaks especially discharges with internal transport barriers
(ITBs) [5] or, the core density collapse in the LHD stellarator [6]. In some cases, e.g.
ITB disruptions, explosive instability caused by a hard limit terminates the plasma. In
other cases, e.g. ELMs, the loss of energy takes the plasma pressure gradient well below
the critical value. The plasma then reheats slowly returning the pressure gradient to the
critical state thereby triggering repeated explosive events. An improved understanding
of what causes a hard limit could lead to strategies to avoid it and thus confidence to run
plasmas with steep pressure profiles such as tokamak plasmas with ITBs which could
improve the economics of fusion power.

In a series of papers we have shown that the early nonlinear stage of the ballooning
mode generates explosively unstable elliptical flux tubes —“filaments” [7, 8, 11]. The
interaction between filaments (flux tubes) tends to suppress the weaker filaments leading
to isolated filaments [12, 13]. Thus we have conjectured that the fully nonlinear state of
the ballooning type modes is isolated displaced elliptical flux tubes [11]. This conjecture
is consistent with observations of (see for example [4—6]). Some progress was made by
Zhu et. al. [9, 10] in describing the transition to a fully nonlinear state. Recently
we investigated the nonlinear states of an elliptical ballooning flux tube in tokamak
geometry [14]. In particular, we derived a generalised Archimedes’ principle [11] and
stated the resulting nonlinear equation in toroidal geometry [14]. We will give the full
details of the calculation and also survey more of the parameter space in this paper.

In [14] we found that there were ballooning flux tubes which were stable to
infinitesimal perturbations but unstable to finite amplitude perturbations. In other
words the flux tubes were metastable. Metastability is ubiquitous in the physical
sciences but it is largely unexplored in magnetically confined fusion plasmas. For a
hard instability limit to be possible a finite displaced lower energy state of the plasma
must be accessible. In this paper (and in [14]) we examine the possible end states of
the ballooning flux tube perturbation — specifically the equilibrium states of the flux
tube. In the metastable cases we indeed find lower energy finitely displaced flux tube
equilibria. When a metastable plasma approaches the linear stability boundary the
energy needed to trigger the nonlinear instability tends to zero. Small amplitude noise
in the plasma can trigger onset of the nonlinear instability close to the linear instability
boundary. We conjecture that the ballooning mode provides a hard instability limit only
if there are metastable flux tubes.

In Section 2 we give details of the derivation of the generalised Archimedes’ principle
In axisymmetric geometry. In Section 3 we calculate the required quantities for the
governing equation for a simplified ‘s — &’ type equilibrium [15]. Section 4 gives the
energy change which results from the flux tube erupting. We discuss the results of
a numerical investigation with given pressure gradient and magnetic shear profiles in
Section 5. Discussion and Conclusions are given in Section 6. In Appendix A we discuss
the conditions under which the perturbation of the field outside the elliptical tube can
be ignored. The details of our simplified equilibrium calculations are given in Appendix
B. Finally in Appendix C we calculate the weakly nonlinear evolution of an elliptical
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Figure 1: An elliptical (orange) flux tube sliding along the (blue) surface
S = So. The external (black) field lines are only slightly perturbed. The tube
crosses the (yellow) unperturbed flux surfaces labelled by the variable r. The
equations for a field line in the tube which starts on the r = ro surface is
r=r(ro, 6,t) and S = So.

flux tube in the ‘s-a’ model.

2. Erupting flux tubes in a general axisymmetric equilibrium

In this Section we generalize the treatment of [11] to the geometry of a single isolated flux
tube in a general axisymmetric stationary magnetic equilibrium. We shall assume that
the flux tube is moving somewhat slower than the sound speed, since we are interested in
the behaviour near marginal stability and the saturated states of the flux tube. Consider
a field aligned tube of plasma that is displaced through the plasma — sliding along a
surface that is parallel to the undisplaced magnetic field lines outside the tube see Figure
1. The field inside the tube is denoted Bi» and the field outside Bou:. The tube has
an elliptical cross section, elongated in the direction of motion and narrower across
(01 K 02), see Fig. 2. The exact cross sectional shape of the tube is not important
here - just that it is narrow enough that the perturbation of the surrounding field
is unimportant and that it is considerably elongated in the direction of motion (see
discussion in Appendix A and [11]).

As the erupting tube moves it must follow a surface S, which is tangent to both the
tube (Bin - VS = 0) and the surrounding field lines (Bout -+ VS = 0 see Figure 1). We
shall assume that the surrounding field is largely unperturbed —i.e. Bour = Bo. We can
therefore take the surface S to be a surface of a Clebsch potential of the unperturbed
field, i.e Bo = Vi x VS. We will use the straight line flux coordinates introduced in
Greene, Johnson and Weimer [16]. Thus we use r to label flux surfaces, ¢ the toroidal
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Figure 2: The filament is assumed to be elliptical in shape of width J1 in
the direction perpendicular the surface S and 62 in the direction of motion
along S with 62 >> 91. The external field Bour bends around the filament —
this perturbation is discussed in Appendix A. The field just inside and just
out the filament are at a finite angle @ to each other — i.e. Bin - Bour ~
Bin -+ Bo = BinBo cos 6. Thus there are current sheets along the sides of the
filament. The fact that the flux tube is elliptical is an assumption, however this
is motivated by previous work and physical intuition. First, in linear theory, [1],
the eigenfunction across the field is elliptical (91 ~ £,J2 ~ & with n >> 1).
Secondly, the weakly nonlinear theory shows that the linear eigenfunction
evolves into a narrow elliptical flux tube [7, 8]. Finally, the elliptical shape
minimizes sideways distortion of the external field (See Appendix A.) to more
efficiently extract energy in the fully nonlinear motion.

angle and, @ the straight field-line poloidal angle. We deviate slightly from [16] in
choosing 8 = 0 to be the outer midplane rather than inner midplane for the simplified
circular flux surface (‘s — ) equilibrium of our example. In the notation of [16]:

Bo=—BoRof (r)Vr x VS where S =g — q(r)(0 — 6o(r)). (1)

Where B and Ro are constants, q(r) is the safety factor and éo(r) is an arbitrary
function. The trajectory of a field line in the flux tube that is displaced from the
surface ro is:

r=r(0,ro,t), and S =constant 2

with the boundary condition r — ro as |#] — oo. Note 8 measures position along the
field line.

The choice of Clebsch potentials is not unique. In principle, we could consider
motion along any S surface defined by any function 6o(r). In the ‘s — a’ examples given
here we restrict ourselves to the choice 6o(r) = 0. This is the choice for the most linearly
unstable motions but not necessarily the most nonlinearly unstable. It is not a priori
obvious how to choose S, the Clebsch surface. Indeed it is likely to be determined by the
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dynamics (i.e. the flux tube defines the Clebsch surface S as it erupts) and outside our
considerations here. Our general theory applies to cases where 9o(r) £ 0 but we have not
explored any specific such cases. The tube wraps around the torus many times and we
consider r(6, ro, t) on the domain —co < @ < co. We ignore the fact that the S surface
intersects itself as @ increases since we assume that the perturbations are sufficiently
localised in @ to avoid self intersection of the flux tube. Note this assumption can hold
even when the tube localisation in @ is much greater than 2z (as long as ro is not a low
order rational surface e.g. q(ro) = 1). We also assume that flux tubes do not intersect
other displaced tubes. The plasma is taken to be perfectly conducting — i.e. the plasma
is frozen to the field. Thus the field lines must remain attached to their original surfaces
and therefore r = r(6, ro,t) = ro as || — oo. Clearly the surface S twists, the local
twist is a measure of the local shear — note the twist of the blue surface in Figure 1. The
twist stretches the flux tube making it narrower and longer (Figure 1) as |0| increases.
We define the perpendicular vector that is also tangent to the S surface
e = _VsxB, ®
0
We define three equilibrium quantities 1
u=u(rd=-B RT B -Vg,
I I 0 0 B_O 0
B 1 l112|el|2I
Uy = Uy(r,0) = BoRof - €, - Vo, w?=wA(r,6) =
0

BZ

(4)
0

Where |Bo| = Bo (not to be confused with the constant B_o). Since Bin - VS =0 we
must be able to write

Bin = B;(6, ro, t)Bo + B, (6, ro, t)e, (5)
The equation for a field line inside the tube is:
‘o' = Bi¥h = m S ©
The force (per unit volum¢) on the plasma is:
F=_1v B_Zﬂmp +L1p.vB (1)
Ho 2 Mo

The force across the narrow tube (in the VS direction) is formally large, O(p/01), and
must cancel to this order, i.e.
( |
Fovs ~ = oSS ps 2 =0 ©®)
. ~— +— =
Lo os HP*

Thus integrating across the tube we get:
: 2.

IJ-Opin + le—n = HOpout + _Bz_t (9)
where ‘in’ refers to inside the tube and ‘out’ refers to just outside the tube (at the same
r and ¢ along the tube). We will assume that the field and pressure outside the tube
are unperturbed (this sets a condition on d1 and d> See Appendix A.) so that:

Pout = po(r) and Bout = BO(r, 9) (10)
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are known. The total pressure forces at a point on the tube are thus identical to the
pressure forces on the plasma it replaced. We shall assume that the motion of the tube
Is slow enough that pressure balance along the tube is established — i.e. pin = p(ro).
This approximation is obviously correct in the stationary end state of the eruption —a
lower energy equilibrium with a finitely displaced tube. Thus

B7, = BS + 2po(p(r) - p(ro)) (11)
Using equation (5) we obtain:
B2 = 1+ 2Wo(p(r) = p(ro)) _ g, ¢, I° (12)
I BZ 1 BZ
0 0
Thus we obtain ?xpressions for B; and B,
20 —p(r0) i \ #
T 14y Cor
(or) 2 (ar)2 L 00
I+ur g, +W2 500 °

i (_\ #
uH@gro. (13)

| 1 + 2#0Pr)=p(ro)
B, = ]( z
L= 8

(ar) 2 ( )
or )2
I+u 0 0 “+w2 00

Substituting r = r(6, ro, t) into p(r), BZ(?', 0), u,(r,0), uy(r, 0 and w?(r, 0) in these
expressions yields By(6, ro, t) and B (0, ro, t) —i.e. along the field line labelled by ro.

The ideal MHD force, F, pushing the field line along S in the direction e, =

(V'S x Bo)/By is:
( \U

F,=F-e,=1— B, -VB, -V " +Upm -e
Ho
= 5B+ VBu ~Bo- VBd] - e,. (14)

Cge,

The second expression follows from Eq. (9) and the unperturbed equilibrium relation
V (B%/Z + Hopo) = Bo - VBo. Eq. (14) is valid when the tube is sufficiently elliptical

that 6°Ro sin? 8 <« 6°, where 6 is the angle betwee Bin and Bout — see Appendix A. The
expression in Eq. (14) is a generalised form of Archimedes’ principle where the net force
is the curvature force of the tube minus the curvature force of the tube it has displaced.

Substituting equation (5) into (14) we obtain (
e
MoF, =4{B -1)(Bo- VBo)-e, +Bo(ByBo +B,e)) -V le] B,
I
() 80
_Bg2B%, -V led” (15)

Equation (15) with B and B, given by equation (13) determines the force given
the shape of the field line, r(6, wo) for each ro. Notfz t?at by definition Bin - Vro =
a

(BuBo+B,e,)-Vro=0and therefore Bin-V = Bin- VO =" 'Ir'oherefore we can treat
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lo as a parameter in equation (15). For an infinitesimal perturbation (r — ro =& < rp)
equation (15) reduces to the form familiar from the linear ballooning equation of Connor
etal. [1]

_ C, p \
= BBy Bo-ve +i(e -Vp)e, +(B_-VB )Z.(16)
BoR of 0 B

The first term in this equation arises from the extra line bending of field lines by the
perturbation and is stabilizing. The second term is the change of the field line bending
force due to the change of field strength (sometimes called the interchange drive)

The flux tube can have several equilibrium states. Obviously the unperturbed state
r=ro, B, =0 and B; = 1 is an equilibrium. We are interested in finding displaced

equilibria. Such states of the flux tube must satisfy F, = 0 which we write as:

(
(Brup — B, u, 8_58% = (BZ - 1)a; + B, Bya, + B & (17)
where u, and u; are defined in equation (4) the coefficients are

éo Rofe, - (Bo- VBo)

ay =afr0)= le, |2Bo
B R fB V('e”z)
az = ax(r,0) = |e E Bo
BoRofel V(e
as = as(r,0) = 2|e,[?Bo ' (18)

Equations (17) and (6) with B;; determined from Equation (12) constitute a second order

system of one dimensional nonlinear ordinary differential equations for r = r(6, ro) and
B, = B,(6, ro) — i.e. the equilibrium shape of the displaced field line. As before the
equilibria are attained through flux frozen motion so the field lines must stay connected
to their original surface. Thus we apply the boundary conditions r — ro as § —» oo.
The tube consists of field lines from a region of ro — we can solve for each field line
independently since ro is merely a parameter in equation (17). However the calculation
of the cross sectional shape of the tube is beyond the scope of this paper — see Appendix
A.

3. Nonlinear Ballooning Equation in simplified toroidal geometry

We next simplify the nonlinear ballooning equation in general geometry to the large
aspect ratio equilibrium with a transport barrier. We calculate the required metrics
in a large aspect ratio toroidal geometry with two regions, an outer region where the
pressure gradient is small and an narrow (of width Ar ~ O(g)) inner region where
the pressure gradient is large, so that we can obtain the nonlinear ballooning equation
for this case. We calculate all the elements of the force equation to find a nonlinear
generalisation of the ‘s — a’ ballooning equation. We need the metric elements from
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the ‘s — &’ large aspect ratio equilibrium. The details of the equilibrium are given in

Appendix B.
Using S = ¢ —q(r)(0 — 6o) and metric coefficients from Appendix A.
le)] 2= |VS|? q [1+(s(9 o) — asin O)’) + 0(9).... ] (19)
where s = rq/q is the magnetlc shear and a = —2uoRopq2/BZO|s the normalised

pressure gradient. We have taken 8o = constant since for this simple case we expect
that 8o = 0. In general we can consider cases with 6o a function of r. Using the metric
coefficients from the Appendix we obtain:

u, = 0=00) , % (20)
r
_ B_or =,
UH - - q2R0 + O(BOQ ) ..... (21)
2 L [1+ 0-6 0% +0 ] 22
W= R (s(0 - o) - asin 0)°) + O(o)... (22)
The magnetic curvature can be expressed as
( & \
(Bo-VBo)-e, =e, -V + po(r)
GB?
= RO [cos @ + sin B(s(0 - Ho) — asin H)] (23)
r'~o
The displacement of the flux tube is taken to be of order the transport barrier width so
that
CGor\

ro
which allows the following simplifications
2Po(p2(r) = p2(ro

Bi-1= > ~ 0(¢%) (25)
0
and
= or -
B, = 2 5 ~0(Burg) (26)
7 g2Ro Y n
B, Bog
(Bin-VO) = — + 0(—) 27)
aRo aRo

We have now calculated all of the elements required for the nonlinear ballooning Eq.
(14). Substituting them into Eq. (14) gives the nonlinear ballooning operator in a large
aspect ratio tokamak with a transport barrier
HogRer _ .
-F, = = (Bn(ro) — Sn(r)) [cos O + sin O(sO — a sin H)]
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.\ ( .\ —
+ - [1+(asin6—s9)2] or
0 . 00 ro
1(ar(2 N
T (asin @ — s0)? (28)
2 80 . o ,
where
Hop2(r) dBy (1)
p (N=2R Q" °_22r - an) = - gr (29)
I 5 r

Our notation for gn(r) is deliberately reminiscent of the normalised beta of Troyon [21],
however our variable is not normalised in quite the same way as Troyon’s. Note that in
Eq. (28) a is a(function of r so that:

\
Oa _(@\ (8_06
00 .= a0 or

ro ro

(30)

Our current equation only gives the force. This will allow us to find the saturated
states, F, = 0, but it does not allow us to look at the time dependent solution of the
system. If we assume the time evolution is dominated by viscous drag we can develop a
time dependent evolution equation. This is probably too simplistic but it does however
allow us the examine the energy evolution. We first need an expression for the velocity,
v = ve, so that

V-Vr:ar — v=-R f8r:_r_8_r (31)
ot O or q ot
where we have used f = P 0O(¢?). We introduce a drag to balance the force
F . =w-e; (simi(lar \o [11]) so that:
v aai L 4 (asin @ — S(9)2)] =
t

(Bn(ro) — Bn(r)) [cos 8 + sin B(sO — asin O)]

.\ ( .\ —
. ol or
+ — 1+ (asinf —sO) —
0 0
1(ar(2 N
T (asin @ — s6)? (32)
2 00 ., o ,

with v = vﬂ%’gf’—. This a nonlinear evolution equation for the flux tube position
r(, ro, t). Note that if we linearise Eq. (32) (r - ro < ¢r) we recover the usual ‘s - a’
equation for ballooning modes.

Figure 1 shows a typical solution of the ballooning mode equation in simplified
toroidal geometry. A orange flux tube has ballooned out, moving along the blue surface
S=0. This surface is twisted because of the magnetic shear in the system. The flux
tube parts the black field lines outside which means that the flux tube can move without
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reconnection ocuring. The displacement of the flux tube is larger on the low field, or
outboard, side. The flux tube is stretched on the inboard side due to the magnetic shear.
In figure 1 the trajectory (in ) of the displaced field lines inside the tube is a solution
of the ballooning equation (32) and the distortion of the cross section by magnetic shear
is calculated — however the outboard shape of the tubes is guessed.

4. Energy Equation

In [11] we derived an energy (or action) functional E = E[r (6, ro), ro] that is stationary
for equilibria and rEinimised for siable equilibria. This is;

- B _.dr= B2—%—
—o0 " —c0 '"B,-,,-V@
z S L¢ .\ = .\

= Buno 1 SR T cwe 7 Rrdo
o ’ R302 oo, 0

where we have used Eq. (22). This integral is performed keeping ro constant — i.e.
we take r = r(6, ro, t). The integral is formally infinite so we should subtract the
unperturbed integral — Eq. (33) with r = ro.

Expanding in inverse aspect ratio for our case we obtain the energy/action
functional:

Z . i .\, #
= w } ir 1+(aSin0—s0)2)
o 2 00
RN )]
- dO A(r,r )gos @+ B(r, r Ysin @ — C(r, r )(sin 6)? (33)

where the new coefficients are:

A(r,ro) = r(ﬂN(rO) - Bn(r))dr
Z

B(r,ro) = r(ﬂN(ro) - Bn(r))s(r)dr
e B )-8 O (34)
o) = 5 N 0 N

It is straight forward to show that equilibrium solutions of equation (32) (F, =0) are
stationary states (0E = O)under variation of r = r(é, ro) in (33). The evolution of E
using Eqg. (32) is i #

z .\ ¢ )

S 0 ing — dE

v a0 _r 1+ (asinf-s0)% _ _ — (35)
—eo ot dt

Note that the energy must always decrease in the drag evolution so that it seeks out

the minimum energy equilibrium states.

ro,0
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Figure 3: Transport barrier profiles used in the numerical investigation: a) magnetic
shear, s(r), and pressure gradient a(r); and b) safety factor and pressure profiles used
for this numerical investigation. The parameters for this case are: so = 0.1, s1 = 0.3,
oo = 0.28, 9 =0.07, ra = 0.7 and rs = 0.72 see equations (36) and (37).

5. Numerical investigation

The nonlinear ‘s — &’ equation derived in the previous section is solved numerically in
this section. We focus on calculating the saturated states from F, = 0 where F, is given
in equation (28). A time dependent method (Solution of equation (32)) was used in
[14].

5.1. Profiles

We investigate the model of a transport barrier type of equilibrium, since we see
filamentary structures exploding from such profiles in tokamak experiments, for example,
ELMs from the edge transport barrier or ballooning modes from ITBs in TFTR [5]. The
model is specified in terms of magnetic shear s(r), and pressure gradient, a(r). The

pressure gradient for this model is ¢ \
— El@ — 2 —Ia
o= - = a sech (36)
dr 0 0
and the shear profile is \ \
S1—So r—rs
s(r)=so+ 5 tanh +1 . (37)
9
These produce pressure an(j S proﬁlef W\
r—r,
p2(r) = gp2 1 —tanh (38)
4
which gives a plasma fSn preﬁle ( W\
B, () =ape 1—tanh ¢ (39)
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For instability (linear or nonlinear) it is not sufficient that a displaced stationary
(equilibrium) state is available for a flux tube, such states must be energetically
favourable (i.e. E < 0) as well. We therefore need to calculate the change in energy for
our profiles. The integrals in equation (34) can be calculated exactly for the profiles of
pressure and shear that W% are using by noting that

r

A(r,ro)=  (Bn(r) (— BN (r(o))dr'

r ( A\ ¢ _ N,
= oao ¢log cosh “ _r'tanh 22—« (40)
9 9 ro
Z,
B(r( r0)+: \ Bn(r) - Bn (rz))s(r)dr\
= 2FS5 A(r,r) + oa 51— S0 x
2 0 0 2
( ( \N(C ( (. \\ C (. \Il-
' | 7Sl r —rq —Is
r + ocoth log cosh '—<* —log cosh
( N v O e w0 o
- 9?a0 S1.=S0 {anp Fo—=Fa |oq COSh T — s (41)
2 Q Q ro
1 2
cr,ry_ B (N-p (r))
0) = é( N N0 \ N
0’ ( r—rq (ro —ra
= —— ftanh — tanh (42)

5.2. Solving for stationary equilibrium states

Any elliptical flux tube is made up of a bundle field lines from differing surfaces ro —
each can be treated separately. We find for each field line (ro) the time independent
(stationary) equilibrium states by setting the time derivatives in Eq. (32) to zero and
using a shooting method. Specifically we take a long domain, —fmax < 6 < @max, Where
Omax > 1. We solve the second order nonlinear ordinary differential equation:

0 = (Bn(ro) — Bn(r)) [cos & + sin O(sO — asin H)]

( \ —
Ca® : 2](dr
+ — 1+ (asing—s6) —
RN o
1°dr 2
T (asin @ — s6)? (43)
2 do ., dr ,

o
for r = r(6, ro) with the boundary conditions r(=6max, ro) = 0 and 4 (-Omax, ro) =
Ushoot. BY Vvarying Ushoot and resolving equation (43) we find the values of Ushoor fOr which
r(@max, ro) = 0 — these are the stationary field line equilibrium states r = req(8, ro). For
each equilibrium state we calculate the energy E from equation (34) with r = req(6, o)
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in the coefficients given by equations (40), (41) and (42). Clearly the unperturbed state,
Ushoot = O for which E = 0, is always an equilibrium state. For the profiles we considered
we found that field lines originating from a given ro could be in one of four distinct
categories. The first category is field lines that are both linearly and nonlinearly stable
in which there is only one equilibrium state, the stable unperturbed state with E = 0—
see Figure (4.a). The second category is linear and nonlinearly stable field lines where
there are three equilibrium states: a stable unperturbed state with E = 0, an unstable
displaced equilibrium state with E = E; > 0 and, a linearly stable displaced equilibrium
state with E = E> > 0 and E1 > E> > 0 — see Figure (4.b). The third category
is metastable field lines where there are three equilibrium states: a linearly stable
unperturbed state with E =0, an unstable displaced equilibrium state withE =E1 >0
and, a stable displaced equilibrium state with E = E> < 0 — see Figure (4.c). Finally
the fourth category is linearly unstable field lines where there are three equilibrium
states: a unstable unperturbed state with E = 0, a metastable displaced equilibrium
state with E = E1 <0 and, a stable displaced equilibrium state with E = E> <E; —see
Figure (4d). In some profiles field lines from different ro are in different categories and a
flux tube perturbation may contain field lines from several categories. Finding the field
line equilibria is considerably faster than the time dependent method used in [14] and
so we focus on it here. We have looked at the convergence with respect to the truncated
domain length (i.e. Gmax) and we have picked a value of the Omax (a typical value is
Omax = 300 radians) such that the results (r = req(6, ro) and E) are well converged yet
the run takes a reasonable time.

5.3. First category profiles

In this section we find profiles for which all field lines (ro) are in the first category,

I.e. they have only one equilibrium state, the unperturbed state, and it is stable —
see Figure (4.a). We call such profiles first category profiles. Profiles are visualised by
plotting the trajectory of s(ro) and a(ro) in ‘s = «’ space as ro varies from 0 to 1. In Fig.
5 and in Fig. 6 we plot eight trajectories (dashed-dotted lines) that are first category
profiles. We also show the well known linear stability boundary for the ‘s-a’ model [15].
These profiles were chosen by first fixing the values of So and si, which amounts to
specifying the magnetic shear profile. Then we varied the pressure profile (ao) until
we found the largest possible ao for a first category profile with the given shear profile.
Therefore profiles with larger oo must be in either the second third or fourth category.
If there is no space between the profile trajectory and the linear stability boundary
then there are no second or third category field lines (see Figures (4.b) and (4.c)) for
that magnetic shear profile. A large space between the profile and the linear stability
boundary means that displaced filamentary states (second or third category field lines)
are available in that region. These plots therefore give an indication of the boundaries of
the region in ‘s—a’ space where nonlinear displaced states are available. However, these
are not necessarily lower energy states with third category field lines (metastability).
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Figure 4: Schematic visualisation of field line energy surfaces for the four categories.
The horizontal axes “represents” displacement — strictly speaking energy is a functional
of r(@, ro) and therefore the energy surface is in a infinite dimensional function space not
the one dimensional line plotted here. In a) (the first category) the field line is stable
to linear and nonlinear perturbations. In b) (the second category) the field line is also
stable to linear and nonlinear perturbations — although it would be possible for a field
line to be caught in the metastable displaced state with energy E>. Field lines in the
third category are metastable and are illustrated in c) — an energy greater than E1 is
needed to destabilise the unperturbed state. In d) the field lines are linearly unstable
(category four). Drag evolution will take an arbitrary field line perturbation to an
energy minimum equilibrium — see equation (35).

The results in Fig. 5 show that there are more displaced states available at lower shear.

5.4. Profiles with second and third category field lines

Next, we look at a set of profiles which are stable throughout but have regions of
second and third category field lines — displaced equilibrium states. Figures 7, 8
and 9 show three such profiles. Figure 7 has the largest pressure and the profile
is close to the linear stability boundary. There are displaced equilibrium field line
states for a broad range 0.6 < ro < 0.7 — outside this range all field lines are in the
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Figure 5: Trajectories (dashed-dotted lines) in the ‘s — &’ diagram for first category
profiles, see Subsection (5.3), and the linear stability boundary (solid line). The profile
starts with the lower value of magnetic shear at the magnetic axis of the plasma and
ends at the higher value of shear at the plasma edge. These plots are calculated by fixing
the values of sp and s1 and then varying oo to find the highest value of ag for a first
category profile with the given shear profile. The region between the profile trajectory,
dashed-dotted line, and the ballooning stability boundary, solid line, indicates the region
where nonlinear displaced states are available. The values of shear profiles for each plot
are: (a) so = 0.6, s1 = 0.8; (b) so = 0.4, s1 = 0.6; (c) so = 0.2, s1 = 0.4; and (d)
So=0.1,s1 =0.3.

first category. For 0.6 < ro < 0.64 the field lines are in the second category, i.e.
E> > 0. There is also a region of third category (metastable) field lines where energy
is released in a displacement from the unperturbed state to the displaced equilibrium
state, ro =0.64 - 0.7, i.e. E2 < 0. The critical amplitude for the metastable field lines
to exceed the potential barrier (rmax for the E = E; state, the dashed line in figure 7.b)
varies with the starting radius, ro, but for this profile the critical amplitude is small
especially near ro = 0.69. This means that only a small perturbation is required for
the filament to reach the lower energy E = E> displaced state. In Figure 8, we take a
lower value of maximum pressure, however the region where there are third category
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Figure 6: As for Figure 5. The values of shear profiles for each plot are: (a) so = 0.4,
s1 =0.8; (b) s0 =0.2,51=0.6; (c) so =0.1, s1 =0.5; and (d) so = 0.2, s;1 =0.8.

(metastable) field lines is similar ro = 0.65 — 0.69 to the case in Figure 7. The critical
perturbation to reach the lower energy states is larger and the energy released is slightly
lower. Finally, Figure 9 uses a yet lower value of ao. Here the displacement rmax values
are similar to the previous cases but the range of ro where a displaced states exist
is smaller ro = 0.62 — 0.68 and all these field lines are second category — there is no
metastability in this profile.

Note that in these calculations there is a region where lower flux tubes end up in
saturated states further out than flux tubes starting further up, i.e. for two flux tubes
where ro1 < ro2, We have rmax1 > rmax2, i.€. the flux tubes overtake.

5.5. Linearly unstable profile

Figure 10 shows a case where the profile crosses the marginal linear stability boundary.
For ro=0.54to ro = 0.72 displaced equilibrium states exist. From ro = 0.54 to ro = 0.63
the field lines are in the second category; from ro = 0.63 to ro = 0.67 the field lines
are in the third category; from ro = 0.67 to ro = 0.72 the field lines are in the fourth
category (the unperturbed state is linearly unstable); from ro = 0.72 to ro = 0.723
the field lines are in the third category but both displaced states have rmax < ro (i.e.
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Figure 7: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s — &’ space; (b)
plot of the location of the maximum rmax = req(0, ro) of the displaced states (solid line
is the E = E state and the dashed line is the E = E; state) against starting flux surface
ro; (¢) the energy change of the displaced states versus the initial position (again solid
line is E = E2 and the dashed line is E = E1). Here the trajectory approaches the linear
ballooning boundary. The region of third category metastable field lines is for starting
locations from ro = 0.64 to ro = 0.7.
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Figure 8: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s — &’ space; (b)
plot of the location of the maximum req(0, ro) of the displaced states (solid line is the
E = E: state and the dashed line is the E = E; state) against starting flux surface ro;
(c) the energy change of the displaced states versus the initial position (again solid line
is E = E> and the dashed line is E = E1). Here the trajectory is further from the linear
ballooning boundary than figure (7). The region of third category (metastable) field
lines is for starting radii from ro = 0.65 to ro = 0.69.

they are displaced inwards) and; from ro = 0.723 to ro = 0.724 field lines are in the
second category but both displaced states have rmax < ro. We see that in the region
where the profile is linearly unstable there is no critical perturbation required to access
a displaced state and one state, E = E, is displaced outwards and the other, E = Eq, is
displaced inwards. The energy change of the outward displaced state —E> is significantly
higher (by several orders of magnitude) than the energy —E:1 of the one that is displaced
inwards, although both have a lower energy level than the initial state.
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Figure 9: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s — a’ space; (b)
plot of the location of the maximum rmax = req(0, ro) Of the displaced states (the upper
solid line is the E = E; state and the lower dashed line is the E = E: state) against
starting flux surface ro; (C) the energy change of the displaced states versus the initial
position (again solid line is E = E» and the dashed line is E = E1). Here the trajectory is
further still from the linear ballooning boundary. There is no region where the displaced
states have lower energy — i.e. all field lines from ro = 0.62 to ro = 0.68 are in the second
category.
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Figure 10: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s — «’ space.
The trajectory crosses the linear ballooning boundary and therefore part of the plasma
is linearly unstable. (b) plot of the location of the maximum rmax = req(0, ro) of the
displaced states (the lower line is the E = E> state and the upper line isthe E = E; state)
against starting flux surface ro. The dotted line shows rmax = ro. Field lines are in the
second category from ro = 0.54 to ro = 0.63 and the third category from ro = 0.63 to
ro = 0.67. From ro = 0.67 to ro = 0.72 the unperturbed state is linearly unstable (the
fourth category) and one displaced state has rmax > ro and the other displaced state
has rmax < ro; (c) the energy change of the displaced states versus the initial position
(lower line is E = E2 and the upper line is E = E1). From ro = 0.67 to ro = 0.72 both
displaced states have negative energy 0 > E1, E> — this is shown by making both lines
solid. From ro = 0.72 to ro = 0.723 both displacements are inward and field lines are in
the third category. From ro = 0.723 to ro = 0.724 field lines are in the second category.
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6. Discussion and Conclusions

6.1. Discussion

There is ample evidence of filament states in experiments, for example ELM filaments [4]
are ubiquitous in tokamak H-mode plasmas and in [14] we discussed the results of
Fredrickson [5] where a ballooning mode is responsible for the disruption of an internal
transport barrier. More recently core plasma limits have been observed at LHD [6].
These may be driven by a three dimensional version of the phenomena presented here.
KSTAR [24] has looked at ELM filament dynamics in more detail experimentally using
an ECEI diagnostic. That work shows the emergence of filament structures at the edge
of the plasma that saturate and persist for a period of time before the final ELM crash
occurs. This at least has qualitative similarity to the saturation phase of the model
presented here. We hope to investigate these experimental cases more quantitatively in
future work.

It has been suggested [25] that pressure profiles in edge transport barriers
(pedestals) are limited by some soft limit from the kinetic ballooning mode (KBM).
If this is the case then the profile will sit near the linear ballooning stability boundary.
Clearly, in this scenario, the kinetic ballooning modes are assumed to have no explosive
behaviour — no access to finitely displaced equilibrium states. However such profiles
do develop filamentary eruptions — perhaps when sufficiently large filaments (perhaps
arising from low n number instabilities associated with the peeling modes) become
unstable. The EPED model [25] predicts that a broad region of the profile should be
at the marginal stability boundary. This qualitatively agrees with observed ELMing
profiles. The analysis in this paper shows that profiles with a broad region close to the
linear stability boundary can have finitely displaced filament equilibria. In future work
we will calculate displaced equilibrium states in pedestals with experimental profiles to
determine when and how such profiles exhibit explosive instability — ELMS.

Numerical simulations have investigated the eruption of flux tubes, for example
[27, 28] where a nonlinear plasma model examined a 2/1 mode in a hybrid scenario and
demonstrated that explosive filament growth was possible. Myers et al [29] used an
ideal MHD model to look at a slab version of the model presented here. They found
a time where the simulation first settled down to the linear eigenmode shape, then a
linear growth phase followed by a nonlinear growth, and finally an explosive final phase.
It is likely that the explosive phase was under resolved and an extended physics model
would almost certainly be necessary in this phase.

The two key approximations of the present model are: the unperturbed equilibrium
is large aspect ratio and the filaments have an elliptical shape. The large aspect ratio
approximation can be relaxed and the metric quantities in Equation (18) can instead be
taken from a numerical equilibrium code. Indeed this work is underway. The assumption
of the elliptical filaments is more fundamental it is justified by the linear [1] and weakly
nonlinear calculations of the expected structure [7, 8] and by the results from numerical
investigations [26—29]. The elliptical shape can also be justified from physical intuition.
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It is energetically favourable for the erupting flux tube to perturb the ambient external
field as little as possible and this is achieved with an elliptic flux tube — this is discussed
in Appendix A.

Full nonlinear simulations of the process described in this paper are challenging.
[27,28] The spatial resolution required to capture for an isolated flux tube is made harder
by the discontinuities (current sheets and contact discontinuities) that develop between
the tube and its surroundings [10, 26, 29]. Also the temporal resolution requirements
to resolve the slow unperturbed equilibrium evolution and the rapid motion of the flux
tube are demanding. Nonetheless full understanding of the eruption must surely require
extensive numerical investigation.

If we accept that the saturated filament states exist, then it will be important to
understand the next steps in the dynamics. It may be that the field lines in the flux
tube reconnect with the ambient magnetic field at some location, but it is not obvious
where this location is. It maybe that there is significant cross field transport out of the
ballooned filament, given there will be a strong temperature gradient as suggested in
the ‘Leaky hosepipe’ model [30]. These issues will be addressed in future work.

6.2. Conclusions

The results shown here exhibit a rich dynamics. The key result is that linearly
stable flux tubes can erupt to saturated ballooning states, i.e. they are metastable.
The experimental transport barrier profiles are likely to sit near the ballooning mode
marginal stability boundary and so these modes are likely to appear if a critical
perturbation is available. We conjecture that hard stability limits arise when the plasma
is in a metastable state with a large energy difference between the unperturbed and
perturbed equilibria. The closer the profile is to marginal stability, the larger the region
of the plasma that has saturated states available and the more favourable the energy
change associated with the saturated states. The current model uses a large aspect ratio
‘s — o’ model equilibrium but we fully expect that the key qualitative results will also
appear when we use realistic experimental geometry in future work. The model may
be able to explain key elements of ITB distruption and ELM dynamics when applied to
realistic geometry.
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Appendix A. Perturbation of the field outside the filament.

In this paper we have assumed that the perturbations of the field outside the filament

have a negligible effect on the filament. Here we estimate the effect of such perturbations.
From Fig. 2 the perturbation of the field outside the filament dBout ~ Bo(ﬂ) n ~
1}

Bo(4)sin® fi where i = VS/|VS| and Bo - Bin = BoBinCos . Thus the curvature
force on one side of the filament in the VS direction is
i (Bout - VBout) - fi ~ 1_ B2 51_sin2 0. (A.1)
Ho o °65
For a symmetric filament the net force from the external curvature forces on the two
sides cancel. A shift of the filament by a distance of order d1 in the fi direction changes
the curvature forces by a factor of order one. Thus an asymmetric filament can adjust
its position by a negligible shift to achieve net force balance. However the curvature
forces squeeze the filament from both sides and change the pressure balance. Thus there
is a perturbation of the total internal pressure:
2
1

B2 of .
Haapin + ) ~ By ysin® . (A2)

This pressure perturbation varies finitely in the filament — it will try to elongate (flatten)
the filament in the e, direction. The extra elongating force in the e, direction is
10 + B2 1 . &2
(Hopm T_) ~ B%_ ! sin?e. (A.3)
Ho 702 o ° ré%
Note that sin & ~ fq;owhere Ar is the radial displacement of the filament. Estimating
the force on a perturbed filament ignoring the external perturbations we get:

Bb

~

oF-e = oF
1 L~

Fo~ Bb Ar- sin @ (A.4)
HooR% HoRor
Thus the external perturbations can be ignored if:
§fRo )
oF1L K FiL - 5T3|n(9 <1 (A.5)
2

This provides a condition on the ellipticity of the filament for our treatment to be correct.
In linear theory, [1], the eigenfunction across the field is elongated (61 ~ £,52 ~ £
with n > 1) — thus in this case 6F, ~ n"¥2sin OF, « F,. In the weakly nonlinear
theory [7, 8, 12, 13] the linear eigenfunction evolves into an even narrower elliptical
flux tube. The weakly nonlinear theory includes the external perturbations and the
interaction of filaments because the displacement is ordered to be small Ar ~ 61 ~ £
and the system is assumed to be close to marginal stability so that 0F, ~ F,. However
as the filaments evolve in the weakly nonlinear theory they evolve into the isolated tubes
considered here [11, 13].

As shown above elliptical tubes that originate as perturbations of the linear
eigenfunction shape are expected to be unaffected by the perturbation of the external
field. The external forces will, however, often change the shape of the filament —
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specifically flattening the ellipse — detailed calculation of this flattening is beyond
the scope of this paper. Nonetheless we can estimate the flattening of the displaced
equilibrium filament. To lowest order the displaced equilibrium field lines satisfy F,(r,
0, ro) = 0 giving r = rsa(6, ro) — solutions of equations (17), (6) and (12). For small
displacements about this lowest order solutions we can write r = dr(0, ro) + rsat(0, ro)
and linearise the force operator F, ~ Lsat(dr). Thus equilibrium is modified

OF, + F, ~0F, + Lsat(dr) = 0. (A.6)
Estimating o we obtain:
or 5fRo -
q?o ~ 75%_5|n 0. (A7)

For the linear eigenfunction shape 6r ~ &2 sin? §. Thus when the displacement is finite
(sin & ~ 1) the filament is flattened by order the elongation i.e. r = rsac + O(J2). This
is a finite change in the shape but a small change in the filament position. We hope to
develop a asymptotic solution of the equilibrium shape in future work.

We have focussed on perturbations shaped like the linear eigenfunctions since these
will be easier to destabilise (even in metastable situations). It is possible that in
some meta-stable cases a finite perturbation with a shape that violates the condition
in equation (A.5) can be destabilised. We cannot treat such cases with the method
developed in this paper.

Appendix B. Model equilibrium

In these notes we calculate the large aspect ratio (¢ = r/R <« 1) equilibrium with two
regions; an Outer Region where the pressure gradient is small (rp/B? ~ 0(¢?)) and
anarrow (Ar ~ ¢or) Transport Barrier around r = rr g where the pressure gradient
is close to the ballooning threshold (rp/B? ~ 0O(g)). Note that the plasma beta is
everywhere small i.e. p/B? ~ 0(o?). We shall take the safety factor, g, and the global
magnetic shear, rq’, to be finite in the transport barrier — however r?q" can be large in
the transport barrier. All symbols have their usual meaning!

Appendix B.1. Inverse Equilibrium

We use the usual inverse equilibrium approach of Weimer, Greene and Johnson. The
radial variable r labels flux surfaces, € is a poloidal angle and ¢ is the usual cylindrical
toroidal angle. In axisymmetry the cylindrical coordinates (R, ¢, Z) are functions of
the flux coordinates (r, 6) — i.e. R = R(r,8) and Z = Z(r, 6).

The magnetic field is given by:

B = BoRo{f (Vg x Vr +g(r)Ve} (B.1)

where B ¢ is a normalising field so that g ~ O(1) and Ro is the radius of the magnetic

axis. The equilibrium Grad-Shafranov equation in flux coordinates is:
R2

10 0 1 . ,
F o (FF1VT1 ) + £ 5 (V- VO) + £(09 + P ) = 0. (B.2)
0=0
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The jacobian of the transformation to the flux coordinates (r, 8, ¢) is chosen to keep
the field lines straight in 6 — ¢ space on a flux surface:

( \
]:(ervg.v¢)_1: E:R OR 8Z_8R82 (B.3)
Ro 00 or  or 00
and then the safety factor is q(r) = 2 Note that:
(Vrx Vo) = &Vq) (B.4)

We expand R and Z as: r
R =Ro +rcosd+Ry(r) cos20 + R (r) + O(o?r).....
Z=-rsin@+Zy(r)sin20+ 0(o?r)..... (B.5)
where Ry, R ; and Z; are O(p7). We have chosen 6 = 0 to be the outer (larger R)

mid-plane of each flux surface — this differs from the choice in [16] where 6 = 0 is on the
inner R mid-plane. We define B ¢ so that:

g=1+02+0(°, g2~0(? (B.6)
and q is finite so that f = f, = et 0(p?). To denote order we write p(r) = pz(r).
We seek expanded expressions as functions of r and 4 of the metric elements:

i
i R (O P
|vr|2: RS (a_R 2 a_Z
r2R2 @ 00 I
_ OROR 0ZoZ
Vr-vo=- R +
rlz?z 8\(9 ar( 8< %?
2 “pR Z ‘oz *?
o= Ro S5, €2 (B.7)
r2R2 or or

to substitute into the ballooning equations of Section 2.
The regions are:
Outer Region where |r —rrs| > or and all radial derivatives are finite i.e.
0 1 0 F\71 az~1 aF_Q
_ ~0(), , L, —t .0 B.8
or r or or r ©) B8

rp'/BZO~ 0(o?), rg'2 ~ 0(p?) and f,rf ~ 0(9)

Transport Barrier where |r — rrs| ~ or and radial derivatives are large:
O oty o 07, R
or or or or oOr

~ 0(}), (B.9)
9

rp'/820~ 0(o), rg'2~ O(p) and f,rf ~ O(p) but r?f", r2g” ~ 0(1)
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Appendix B.2.

Outer Region

Substituting expressions from Eq. (B.5) into Eqg. (B.3) we obtain:

which yields:

and

We will need:

r? cos 6 ~ ~ 0Z 4
=2R1sin@sin 260 — 271 cos 0 cos 20 — r sin #sin 2(96—
~ — r
OoR OoR
+rcosfcos20 L +rcosf - +0(ro?)
or or
Z~1 :—ﬁl
OR r2 ~ O0R 1
r = __ —2Ri-r—
o  Ro YT
From Eq. (B.7) we define A’ so that:
|Vr|?2 =1+ 2A cosé......
- r2 rA'
~Ri=oR T 2
_ r2 rA' A
=R~ 2
( \
i . o
Vr-VO=-=—rA +A + sSin 6.
r Ro
o | , |
R2_1+& ) (r2 +%+rA (rA+ r2 ”
— = cos 6 — + .
R3 Ro ﬁ,? Ro  Ro Ro 2R§ cos

and

1 € , .
IVOZ= = 1+2(" = A)cos @+ (rA"sin )2....0(p?)

r2 RO

24

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

We have kept the terms that become large in the transport barrier — where rA" ~ 1.
The equilibrium relation, Eq.((B.Z), belcomes to 0(p?):

1d 1. p,
rdr (rfy) + fi 2

©

onN

N { I
1 2Roq? ,24d '
A:__Lqp_g_ g—Z—JA
Ro rtg r qdr

(B.16)

(B.17)
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Appendix B.3. Transport barrier

The equations derived in the previous section, Egs. (B.12) - (B.17), remain valid to the
order we need. Since g and r are roughly constant across the Transport barrier we can

integrate Eq. (B.16) for g, and Eq. (B.17) for A" in the layer.

P2
g2 =- 2 + constant (B.18)
0
2Ro9? P, 1 , 2Roq% P2
~ - —~0() » A=- — +constant  (B.19)
r | % r r g

Note the constants are slowly varying functions of r so they are effectively constant
across the transport barrier. The magnetic shear is taken to be finite and finitely
varying across the barrier, so that:

f=f(m+f( 2
LA

g=- —ot + 22 (B.20)

dr r r
We introduce the s and a parameters of Connor, Hastie, Taylor [1]:

rq

s=__
q p.

a=-2Rq*"? (B.21)

0

L3
Note that both these parameters are finite and vary finitely over the transport barrier
so that s ~ O(l) and o ~ O(l)p. Then A" = «. To lowest (finite) order the metric

coefficients are

vri? =1
2Ro02 P’ \
Vr-ve = o9 ?_22 sind=-%siny (B.22)
r 0 r
1 ¢ o, . - | |
Vo> =" 1+(2Rg? _225|n 0)2....0(p) = __"1+ (asin 6)>0(p)

We shall also need the derivatives of R.

R .
8_: cos @ — asin? @+ 0(o)....
or

OR .
= = —rsin@+ 0(9).... (B.23)

Appendix C. Weak Nonlinearity — with Inertia

Here we investigate the weakly nonlinear case with inertia. The dynamics is interesting
because the mode spreads along the field lines as it evolves explosively. With inertia
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and r — ro ~ or equation (32) becomes:

o4r
= L)+ (asino - s0))! =

(Bn(ro) — Bn(r)) [cos & + sin B(sO — asin 6)]
.\ ( ](ar\_

+ — 1+ (asin @ — s6)? %0

60 0 ro
%N
1 eor . )
_ (asin @ — s0) (C.1)
2 00 or o,

o
2p2
where TAz = %%I—RO MEX=1-r; < 0(5 r) « or and we are close to marginal stability
th 95~ 0(5%’9, Eq. (C.1) can be expanded in powers of x. We define the linear
operator:

L(X) = ao [c0s 8 + sin O(So0 — ao Sin O)] x

C \ ( (. \ —
+ 9 1+(asin9—se)2] ox
20 . 0 0 20 .
(C.2)
where so = s(ro) and ao =(a(ro). The expanded nonlinear operator is: |
N(xx) = “2cosd+6sino(™ >+ s + 3% % G2 g w2
2 2
\ ( \
+(_a (o sin @ — 5, 0)(a Sin O — e)x(a—x
0 , R w0,
(8x \2 , .
- 6_49 (g SIN O — s (00 SiN G — Sp6) (C.3)

o

and sy = 4o ir and gy = 4o ~ Elr- The equation of motion, to the order we need
becomes

\
2 (%%‘ L1 + (@sing - s6)3] = L) + N (x, %) (C.4)

The solution has two regions: an inner region where  ~ O(1) and inertia is unimportant
and an outer region where 8 ~ 0(¢/0) and nonlinearity is unimportant. This is similar
to the treatment in [8].

Appendix C.1. Inner region

In the region x ~ 0O(5) the left hand side of Eq. (C.4) (inertia) is ~ 0(5%?). The
nonlinear term is of order ~ 0(6%). To order 6 we have:

0 = L(x) + 0(6?) (C.5)
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Then we can write:
x(6, t) = A(t)xL(0) + ox(6, 1) (C.6)

where xL(H) is the linear solution to L(x.) = 0 that is even in ¢ and normalised so that
x£(0) = 1 — thus A ~ 0(9). ox(6, t) ~ 0(6%0) is driven by the nonlinear term. As we
will see below the solution as |f] — oo censmts o\the ”small” and ”large” solutions:
XSL _ 1 1

X, (0) > X, , X 0+A' (C.7)
where Xxs. iz and A° = Xsi/Xs. are constants. To be consistent we need to be
sufficiently close to marginal stability &_ = 0) such that E{ ~ 0(0/9). Thus the “large”
solution is the same size as ox(6, t) ~ 0(6%/) and we must calculate the corrections due
to the nonlinear term to get the correct asymptotic behaviour when 8 > 1. To order
0(0%/p) the inner region solution satisfies:

0 = L(X) + A®N (X, Xr) (C.8)

Multiplying Eq. (C.8)by x.(#) and integrating from 6 = 0 to € = 6 (in the matching
region where 1 < 0m < ¢/0) we obtain:

( |
oxy, Oox
92 xX(6,,t 0, =
On .8 o, ~ X5y,
Z g, (( , o : I\
2 _|_ + %0 . 2 3
A do ?cosH+Hsm¢9( S oct0) sin® @ x;
0
Zg, N\ _
—3A2  dox. T E 2(ag sin 6 —sy0) (a0 sin 6 - sof)
0 a
= cnLAZ, (C.9)

The constant cy. defined by Eq. (C.9) is O(1) and insensitive to the choice of O as long
asitisintherange 1 < Om << 9¢/0 — the particular choice makes a difference to cn. Of
order 6%?. Since the nonlinear terms in Eq. (C.8) die away rapidly for asymptotically
large O (see next subsection) we can write:

x(@ ) — A(t)— + X (® (C.10)
m Hm Large
Substituting into Eq. (C.9) we obtain the relation
arge A !
Ko _ A Lo p2 (C.11)
Xs A NL

where ¢y, = £

SL

Appendix C.2. Outer Solution

Now let us expand Eq. (C.4) in powers of 6 with ;2 ~ 0(d/p), & ~ 0O(p/0) and
x ~ 0(6%/0). We treat the @ variation as having two scales: the fast periodic scale
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I ~0(1 andtheslowscale 6 ~ 0(56/0); then 9 = 9 + 9 and &s ~ O(p/5) — thus
2 ~0() (9/p); then 2 = 2 + 0. (0/0)

x(6F, 0s,t). We wrlte(x X2 + X3 + X4.... where X, ~ 0(67/o"™1). To O(p) we obtain:

2 %Xz
=6, o — Xz = X2(6s, 1) (C.12)
In O(J) we obtain:
= 5302 (6 X3 + aoSo SINGrlsxa — X3 = X2 csinty (C.13)
/ so 0
In 0(62/0) we obtain:
2 2 2 02 2.0 ( 2 Ox2
TaS00s @ = @0COS Orx2 + S 50, 0 o0,
( 5 5x3 ax3 8x2 5 28x4\
+— 2s @2 — 20 § €sin 9,)(95( 895) 587@ (C.14)

Note the Iargest nonlinear term is 0(5%/) and is therefore ignored to this order.
We average Eq. (C.14) over the fast scale 6r to obtain the evolution equation for x:

(C \ (C \
0°X2 - O (jz@ (C.15)

o 00s  ° 00
Since x> only depends on the one, slow, scale we drop the subscript s on @ and write
X2 = fﬁg. Then Eg. (C.15) becomes the wave equation:

rAt9

2 O°f o°f
“or = o (€19
To satisfy the boundary conditions we take outgoing waves:
f(0,t) = f(t — wa0). (Ca7)

Now we match our solution to the inner solution: The outer solution for 1 < 6 < ¢/
matches Eg. (C.10), so expanding x» for small 8 we find:

L _fammo) ) TO-ap e g (C.18)
‘ 0 o A dt g e
Thus:
df (t) dA
f(t) = A(t)xse and Xcvarge(t) = —za gt = TXSLTA Gp (C.19)

Then Eqg. (C.11) becomes:
A AL a2 (C.20)

A a E NL
Note this equation is only valid close to the marginal point where A" ~ 0(9/5). The

solution for A(t =0) = Ao is:
1

At) = AOeV'-‘ (C.21)
1+ cAo(ert-1)
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where 74y = -A™! and ¢ = ¢y, A. The potential energy for this system is:
Ca2 3\
VA =-— A _ A (C.22)
ay 2 3

For linearly damped modes (y < 0) the energy has a local minimum (V =0)atA=0
and a local maximum (V = 1/(6c?za|y|) at A = 1/c. If the initial condition cAo < 1
thenast— oo then A— 0. When cAo > 1 the solution grows explosively and reaches
a finite time singularity when t = (1/y) In (1 - ﬁ{b) (see [7]). In this case the field line
is in the third category see Figure (4.c). Clearly the weak nonlinear assumption will be
violated before the tube reaches infinite amplitude — a full nonlinear solution is needed
in these cases to find the final equilibrium with energy E2. When y > 0 the field line is
in the fourth category see Figure (4.d) but again the lowest energy equilibrium state is
outside the amplitude expansion. In [7] and [8] the weak nonlinear dynamics close to
linear marginal stability is treated without the assumption of isolated flux tubes — this
is a more complete treatment than this appendix since it includes the evolution of the
flux tube cross section. Zhu et. al. [9, 10] have explored an expansion which extends
the weakly nonlinear analysis from amplitudes of order 1 to amplitudes of order J-.
To determine the equilibria the finite amplitude treatment explored in this paper is
required.
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