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Abstract. The nonlinear dynamics of magneto-hydrodynamic ballooning mode 

perturbations is conjectured to be characterised by the motion of isolated elliptical 

flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks 

is developed using a generalised Archimedes’ principle. The equation of motion for 

a tube moving against a drag force in a general axisymmetric equilibrium is derived 

and then applied to a simplified ‘s-α’ equilibrium. The perturbed nonlinear tube 

equilibrium (saturated) states are investigated in an ‘s-α’ equilibrium with specific 

pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) 

saturated states is calculated. In some cases, particularly at low magnetic shear, these 

finitely displaced states can have a lower energy than the equilibrium state even if 

the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at 

all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the 

saturated tube displacement in such cases can be as large as the pressure gradient scale 

length. We conjecture that triggering a transition into these filamentary states can lead 

to hard instability limits. A short survey of different pressure profiles is presented to 

illustrate the variety of behaviour of perturbed elliptical flux tubes. 

 

 

 

1. Introduction 
 
Ballooning modes are pressure driven instabilities that occur in magnetically confined 

fusion plasmas and are localized to the bad curvature region [1]. These instabilities 

can produce both hard and soft stability limits on the plasma. A soft limit is where the 

plasma pressure gradient is held at a critical value. If the profile goes above this value at 

any given point the instability is triggered and it produces sufficient transport to drive 

the pressure profile back to the soft limit value [2]. This may be the process that limits 

the pressure gradient in the pedestal region of a tokamak plasma. However, there are 

also hard limits which are characterised by an explosive loss of a significant amount of 

plasma energy. Examples of this are Edge Localized Modes (ELMs) [3, 4], certain types 
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of plasma disruptions in tokamaks especially discharges with internal transport barriers 

(ITBs) [5] or, the core density collapse in the LHD stellarator [6]. In some cases, e.g. 

ITB disruptions, explosive instability caused by a hard limit terminates the plasma. In 

other cases, e.g. ELMs, the loss of energy takes the plasma pressure gradient well below 

the critical value. The plasma then reheats slowly returning the pressure gradient to the 

critical state thereby triggering repeated explosive events. An improved understanding 

of what causes a hard limit could lead to strategies to avoid it and thus confidence to run 

plasmas with steep pressure profiles such as tokamak plasmas with ITBs which could 

improve the economics of fusion power. 

In a series of papers we have shown that the early nonlinear stage of the ballooning 

mode generates explosively unstable elliptical flux tubes –“filaments” [7, 8, 11]. The 

interaction between filaments (flux tubes) tends to suppress the weaker filaments leading 

to isolated filaments [12, 13]. Thus we have conjectured that the fully nonlinear state of 

the ballooning type modes is isolated displaced elliptical flux tubes [11]. This conjecture 

is consistent with observations of (see for example [4–6]). Some progress was made by 

Zhu et. al. [9, 10] in describing the transition to a fully nonlinear state. Recently 

we investigated the nonlinear states of an elliptical ballooning flux tube in tokamak 

geometry [14]. In particular, we derived a generalised Archimedes’ principle [11] and 

stated the resulting nonlinear equation in toroidal geometry [14]. We will give the full 

details of the calculation and also survey more of the parameter space in this paper. 

In [14] we found that there were ballooning flux tubes which were stable to 

infinitesimal perturbations but unstable to finite amplitude perturbations. In other 

words the flux tubes were metastable. Metastability is ubiquitous in the physical 

sciences but it is largely unexplored in magnetically confined fusion plasmas. For a 

hard instability limit to be possible a finite displaced lower energy state of the plasma 

must be accessible. In this paper (and in [14]) we examine the possible end states of 

the ballooning flux tube perturbation – specifically the equilibrium states of the flux 

tube. In the metastable cases we indeed find lower energy finitely displaced flux tube 

equilibria. When a metastable plasma approaches the linear stability boundary the 

energy needed to trigger the nonlinear instability tends to zero. Small amplitude noise 

in the plasma can trigger onset of the nonlinear instability close to the linear instability 

boundary. We conjecture that the ballooning mode provides a hard instability limit only 

if there are metastable flux tubes. 

In Section 2 we give details of the derivation of the generalised Archimedes’ principle 

in axisymmetric geometry. In Section 3 we calculate the required quantities for the 

governing equation for a simplified ‘s − α’ type equilibrium [15]. Section 4 gives the 

energy change which results from the flux tube erupting. We discuss the results of 

a numerical investigation with given pressure gradient and magnetic shear profiles in 

Section 5. Discussion and Conclusions are given in Section 6. In Appendix A we discuss 

the conditions under which the perturbation of the field outside the elliptical tube can 

be ignored. The details of our simplified equilibrium calculations are given in Appendix 

B. Finally in Appendix C we calculate the weakly nonlinear evolution of an elliptical 
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Figure 1: An elliptical (orange) flux tube sliding along the (blue) surface 

S = S0. The external (black) field lines are only slightly perturbed. The tube 

crosses the (yellow) unperturbed flux surfaces labelled by the variable r. The 

equations for a field line in the tube which starts on the r = r0 surface is 

r = r(r0, θ, t) and S = S0. 

 

flux tube in the ‘s-α’ model. 

 

2. Erupting flux tubes in a general axisymmetric equilibrium 
 
In this Section we generalize the treatment of [11] to the geometry of a single isolated flux 

tube in a general axisymmetric stationary magnetic equilibrium. We shall assume that 

the flux tube is moving somewhat slower than the sound speed, since we are interested in 

the behaviour near marginal stability and the saturated states of the flux tube. Consider 

a field aligned tube of plasma that is displaced through the plasma – sliding along a 

surface that is parallel to the undisplaced magnetic field lines outside the tube see Figure 

1. The field inside the tube is denoted Bin and the field outside Bout. The tube has 

an elliptical cross section, elongated in the direction of motion and narrower across 

(δ1 ≪ δ2), see Fig. 2. The exact cross sectional shape of the tube is not important 

here - just that it is narrow enough that the perturbation of the surrounding field 

is unimportant and that it is considerably elongated in the direction of motion (see 

discussion in Appendix A and [11]). 

As the erupting tube moves it must follow a surface S, which is tangent to both the 

tube (Bin · ∇S = 0) and the surrounding field lines (Bout · ∇S = 0 see Figure 1). We 

shall assume that the surrounding field is largely unperturbed – i.e. Bout = B0. We can 

therefore take the surface S to be a surface of a Clebsch potential of the unperturbed 

field, i.e B0 = ∇ψ × ∇S. We will use the straight line flux coordinates introduced in 

Greene, Johnson and Weimer [16]. Thus we use r to label flux surfaces, φ the toroidal 
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Figure 2: The filament is assumed to be elliptical in shape of width δ1 in 

the direction perpendicular the surface S and δ2 in the direction of motion 

along S with δ2 >> δ1. The external field Bout bends around the filament – 

this perturbation is discussed in Appendix A. The field just inside and just 

out the filament are at a finite angle θ to each other – i.e. Bin · Bout ∼ 

Bin · B0 = BinB0 cos θ. Thus there are current sheets along the sides of the 

filament. The fact that the flux tube is elliptical is an assumption, however this 

is motivated by previous work and physical intuition. First, in linear theory, [1], 

the eigenfunction across the field is elliptical (δ1 ∼ R0 , δ2 ∼ R0 with n ≫ 1). 

Secondly, the weakly nonlinear theory shows that the linear eigenfunction 

evolves into a narrow elliptical flux tube [7, 8]. Finally, the elliptical shape 

minimizes sideways distortion of the external field (See Appendix A.) to more 

efficiently extract energy in the fully nonlinear motion. 

 

angle and, θ the straight field-line poloidal angle. We deviate slightly from [16] in 

choosing θ = 0 to be the outer midplane rather than inner midplane for the simplified 

circular flux surface (‘s − α′) equilibrium of our example. In the notation of [16]: 

B0 = −B̄ 0R0f (r)∇r × ∇S where S = φ − q(r)(θ − θ0(r)). (1) 

Where B̄ 0  and R0 are constants, q(r) is the safety factor and θ0(r) is an arbitrary 

function. The trajectory of a field line in the flux tube that is displaced from the 

surface r0 is: 

r = r(θ, r0, t),   and  S = constant (2) 

with the boundary condition r → r0 as |θ| → ∞. Note θ measures position along the 

field line. 

The choice of Clebsch potentials is not unique. In principle, we could consider 

motion along any S surface defined by any function θ0(r). In the ‘s − α’ examples given 

here we restrict ourselves to the choice θ0(r) = 0. This is the choice for the most linearly 

unstable motions but not necessarily the most nonlinearly unstable. It is not a priori 

obvious how to choose S, the Clebsch surface. Indeed it is likely to be determined by the 
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dynamics (i.e. the flux tube defines the Clebsch surface S as it erupts) and outside our 

considerations here. Our general theory applies to cases where θ0(r) /= 0 but we have not 

explored any specific such cases. The tube wraps around the torus many times and we 

consider r(θ, r0, t) on the domain −∞ < θ < ∞. We ignore the fact that the S surface 

intersects itself as θ increases since we assume that the perturbations are sufficiently 

localised in θ to avoid self intersection of the flux tube. Note this assumption can hold 

even when the tube localisation in θ is much greater than 2π (as long as r0 is not a low 

order rational surface e.g. q(r0) = 1). We also assume that flux tubes do not intersect 

other displaced tubes. The plasma is taken to be perfectly conducting – i.e. the plasma 

is frozen to the field. Thus the field lines must remain attached to their original surfaces 

and therefore r = r(θ, r0, t) → r0 as |θ| → ∞. Clearly the surface S twists, the local 

twist is a measure of the local shear – note the twist of the blue surface in Figure 1. The 

twist stretches the flux tube making it narrower and longer (Figure 1) as |θ| increases. 

We define the perpendicular vector that is also tangent to the S surface 

e = 
1 
∇S × B 

B0 
0, (3) 

We define three equilibrium quantities 

u = u (r, θ) = − B̄  R f 
1 

B · ∇θ, 
II II 0  0 0 

0 
1 

 
u2|e⊥|2 

u⊥ = u⊥(r, θ) = B̄0 R0f e  · ∇θ, w2 = w2(r, θ) = 
 I     I  

. (4) 
B0  ⊥ B2 

Where |B0| = B0 (not to be confused with the constant B̄ 0 ).  Since Bin · ∇S = 0 we 

must be able to write 

Bin = BII(θ, r0, t)B0 + B⊥(θ, r0, t)e⊥ (5) 

The equation for a field line inside the tube is: 
( 

∂r 
\ 

 = 
Bin · ∇r 

= 
 B⊥  

(6) 

The force (per unit volume) on the plasma is: 

 1  
F = − ∇ 

µ0 

B2 

2  
+ µ0p 

1  
+ B · ∇B. (7) 

µ0 

The force across the narrow tube (in the ∇S direction) is formally large, O(p/δ1), and 

must cancel to this order, i.e. 

 1  
F · ∇S ∼ − 

µ0 
|∇S| 

2  ∂  

∂S 

B2 

µ0p + 
2
 = 0 (8) 

Thus integrating across the tube we get: 

B2 
µ0pin + in 

2 

B2 

= µ0pout + out
 

2 
(9) 

where ‘in’ refers to inside the tube and ‘out’ refers to just outside the tube (at the same 

r and θ along the tube). We will assume that the field and pressure outside the tube 

are unperturbed (this sets a condition on δ1 and δ2 See Appendix A.) so that: 

pout = p0(r)   and   Bout = B0(r, θ) (10) 

l 

r0,t 
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are known. The total pressure forces at a point on the tube are thus identical to the 

pressure forces on the plasma it replaced. We shall assume that the motion of the tube 

is slow enough that pressure balance along the tube is established – i.e. pin = p(r0). 

This approximation is obviously correct in the stationary end state of the eruption – a 

lower energy equilibrium with a finitely displaced tube. Thus 

2 = B2 + 2µ0(p(r) − p(r0)) (11) 

Using equation (5) we obtain: 

B2 = 1 + 2µ0(p(r) − p(r0)) |e |2 
− B 

 

(12) 
II 2 2 

Thus we obtain expressions for BII and B⊥ 

BII = 

1

I
I

t( 
1 + 2µ0(p(r)−p(r0)) 

  
 

 

i

1 + u⊥ 

 
 

( 
∂r 
\ #

 
 

 

  
 

 

B⊥ = 

1

I
I

t( 

 

1 + 2µ0(p(r)−p(r0)) 

  
 

i

u 

( 
∂r 

\
 

 

# 

. (13) 

Substituting r = r(θ, r0, t) into p(r), B2(r, θ), u⊥(r, θ), uII(r, θ) and w2(r, θ) in these 

expressions yields BII(θ, r0, t) and B⊥(θ, r0, t) – i.e. along the field line labelled by r0. 

The ideal MHD force, F⊥ pushing the field line along S in the direction e⊥ = 

(∇S × B0)/B0 is: 

F⊥ = F · e⊥ = 1 
 1  

∇ ∇
 

µ 
in in 

B2 

+ µ p 
2 

· e⊥ 

= 
µ  

[Bin · ∇Bin − B0 · ∇B0] · e⊥. (14) 

The second expression follows from Eq. (9) and the unperturbed equilibrium relation 

∇ (B2/2 + µ0p0) = B0 · ∇B0. Eq. (14) is valid when the tube is sufficiently elliptical 

that δ2R0 sin2 θ ≪ δ3, where θ is the angle betwee Bin and Bout – see Appendix A. The 
1 2 

expression in Eq. (14) is a generalised form of Archimedes’ principle where the net force 

is the curvature force of the tube minus the curvature force of the tube it has displaced. 

Substituting equation (5) into (14) we obtain 

µ0F⊥ = (B  − 1)(B0 · ∇B0) · e⊥ + B0(BIIB0 + B⊥e⊥) · ∇ 

(
|e⊥|2 

B⊥

\

 
II 

 

− B2 B 
 
2e⊥ · ∇ 

( 
|e⊥|2 

\
 

 
 

 

B0 
 
. (15) 

⊥ 2B0 

Equation (15) with BII and B⊥ given by equation (13) determines the force given 

the shape of the field line, r(θ, ψ0) for each r0.  Note that by definition Bin · ∇r0 = 

(BIIB0 + B⊥e⊥)· ∇r0 = 0 and therefore Bin · ∇ ≡ Bin · ∇θ 
(

 ∂  
) 

. Therefore we can treat 

∂θ r0 

B 

0 

( 

1 + u 

1 + u 

r0 

0 0 
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∂θ II ⊥ II ⊥ 
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r0 as a parameter in equation (15). For an infinitesimal perturbation (r − r0 = ξ ≪ r0) 

equation (15) reduces to the form familiar from the linear ballooning equation of Connor 

et al. [1] 

 −µ0  

B̄ R f 
F⊥ ∼ B0B0 · ∇ 

|e⊥|2 
 

 

B2 
B0 · ∇ξ

\

 + 
2µ0 

(e  · ∇p)e  · (B · ∇B )ξ.(16) 
B3 ⊥ ⊥ 0 0 

0  0 0 0 

The first term in this equation arises from the extra line bending of field lines by the 

perturbation and is stabilizing. The second term is the change of the field line bending 

force due to the change of field strength (sometimes called the interchange drive) 

The flux tube can have several equilibrium states. Obviously the unperturbed state 

r = r0, B⊥ = 0 and BII = 1 is an equilibrium. We are interested in finding displaced 

equilibria. Such states of the flux tube must satisfy F⊥ = 0 which we write as: 

 

(B u 

 

− B u ) 

(
∂B⊥ 

\
 

 
= (B2 − 1)a 

 

+ B B a 

 

+ B2 a 

 

(17) 
 

where u⊥ and uII are defined in equation (4) the coefficients are 

a = a (r, θ) = 
B̄0 R0f e⊥ · (B0 · ∇B0) 

|e⊥ |
2B0 

2 

B̄ R f B · ∇( |e⊥
|  

) 

a2 = a2(r, θ) = 
0  0 0 B0 

|e⊥|2 

B̄0R0f e⊥ · ∇(|e⊥|2) 
a3 = a3(r, θ) = 

2|e⊥|2B0 
. (18) 

Equations (17) and (6) with BII determined from Equation (12) constitute a second order 

system of one dimensional nonlinear ordinary differential equations for r = r(θ, r0) and 

B⊥ = B⊥(θ, r0) – i.e. the equilibrium shape of the displaced field line. As before the 

equilibria are attained through flux frozen motion so the field lines must stay connected 

to their original surface. Thus we apply the boundary conditions r → r0 as θ → ∞. 

The tube consists of field lines from a region of r0 – we can solve for each field line 

independently since r0 is merely a parameter in equation (17). However the calculation 

of the cross sectional shape of the tube is beyond the scope of this paper – see Appendix 

A. 

 

3. Nonlinear Ballooning Equation in simplified toroidal geometry 
 
We next simplify the nonlinear ballooning equation in general geometry to the large 

aspect ratio equilibrium with a transport barrier. We calculate the required metrics 

in a large aspect ratio toroidal geometry with two regions, an outer region where the 

pressure gradient is small and an narrow (of width ∆r ∼ O(ǫ)) inner region where 

the pressure gradient is large, so that we can obtain the nonlinear ballooning equation 

for this case. We calculate all the elements of the force equation to find a nonlinear 

generalisation of the ‘s − α’ ballooning equation. We need the metric elements from 

r0 
II ⊥ 1 2 3 
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  1  

( \ 

( \ 

B̄2 

= |∇S| = 
r2

 1 + (s(θ − θ0) − α sin θ) ) + O(ǫ).... 

q2R2 
0 

0 

0 

the ‘s − α’ large aspect ratio equilibrium. The details of the equilibrium are given in 

Appendix B. 

Using S = φ − q(r)(θ − θ0) and metric coefficients from Appendix A. 

2 2 q2 [ 
2 

] 
 

where s = rq′/q is the magnetic shear and α = −2µ0R0p′q2/B̄2 is the normalised 

pressure gradient. We have taken θ0 = constant since for this simple case we expect 

that θ0 = 0. In general we can consider cases with θ0 a function of r. Using the metric 

coefficients from the Appendix we obtain: 

u = 
s(θ − θ0) 

+ O
 

⊥ 
r
 

ǫ 
(  ).... (20) 
r 

 

uII 
B̄0r 

= − 
q2R0 

 

+ O(B̄0ǫ2)..... (21) 

 

w2 = 
[
1 + (s(θ − θ ) − α sin θ)2) + O(ǫ)....

] 
(22) 

The magnetic curvature can be expressed as 
(
B2 

\ 

(B0 · ∇B0) · e⊥ = e⊥ · ∇ 

q B̄ 2
 

0 + p0(r) 
2 

=  0 [cos θ + sin θ(s(θ − θ0) − α sin θ)] (23) 
rR0 

The displacement of the flux tube is taken to be of order the transport barrier width so 

that 

r − r0 ∼ O(rǫ) → 
∂r

 
∂θ ∼ O(rǫ) (24) 

r0 

which allows the following simplifications 

B2 − 1 = 
2µ0(p2(r) − p2(r0)) 

∼ O(ǫ2) (25)
 

 

and 

II 

 

 

B̄0r 
B⊥ = −

q2R
 

¯2 
0 

 

 

∂r 

∂θ r0 

B̄ 0
 

 

 

∼ O(B̄0rǫ2) (26) 

 
B̄ 0 ǫ  

(Bin · ∇θ) = + O( ) (27) 
qR0 qR0 

We have now calculated all of the elements required for the nonlinear ballooning Eq. 

(14). Substituting them into Eq. (14) gives the nonlinear ballooning operator in a large 

aspect ratio tokamak with a transport barrier 

µ0qR2r 
−F⊥  

0  = (βN (r0) − βN (r)) [cos θ + sin θ(sθ − α sin θ)] 

0 

B 

|e⊥| (19) 
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R0q 

∂t 

B2 

∂θ ∂θ 

∂θ ∂θ 

r0 r0 

∂θ 

r0 r0 

+ 

( 
∂ 
\ (

[
1 + (α sin θ − sθ)2

] 
( 

∂r 
\ _

 
 

1 
( 

∂r 
\2 (

 ∂ 
\ 

(α sin θ − sθ)2 (28) 

 

where 

2 ∂θ r0
 ∂r θ 

β (r) = 2R q2 
µ0p2(r) 

→  α(r) = −
dβN (r)

 (29) 
N 0 ¯2 dr

 

Our notation for βN (r) is deliberately reminiscent of the normalised beta of Troyon [21], 

however our variable is not normalised in quite the same way as Troyon’s. Note that in 

Eq. (28) α is a function of r so that: 
(
∂α 

\
 

 

= 

( 
∂r 

\ (
∂α 

\ 
 

  

 
(30) 

Our current equation only gives the force. This will allow us to find the saturated 

states, F⊥ = 0, but it does not allow us to look at the time dependent solution of the 

system. If we assume the time evolution is dominated by viscous drag we can develop a 

time dependent evolution equation. This is probably too simplistic but it does however 

allow us the examine the energy evolution. We first need an expression for the velocity, 

v = ve⊥ so that 

v · ∇r = 
∂r 

→ v = −R f 
∂r 

= −
r ∂r

 (31) 
 

  

∂t 0  ∂t 
 

q ∂t 

where we have used f =  r  + O(ǫ2). We introduce a drag to balance the force 

F⊥ = νv · e⊥ (similar to [11]) so that: 

ν′ 

(
∂r 

\ 
[
1 + (α sin θ − sθ)2)

] 
= 

 

(βN (r0) − βN (r)) [cos θ + sin θ(sθ − α sin θ)] 

+ 

( 
∂ 
\ (

[
1 + (α sin θ − sθ)2

] 
( 

∂r 
\ _

 
 

1 
( 

∂r 
\2 ( 

 ∂ 
\ 

(α sin θ − sθ)2 (32) 

2 ∂θ r0 ∂r θ 

with ν′ = ν µ0 
q2 R0 .  This a nonlinear evolution equation for the flux tube position 

0 

r(θ, r0, t). Note that if we linearise Eq. (32) (r − r0 ≪ ǫr) we recover the usual ‘s − α’ 

equation for ballooning modes. 

Figure 1 shows a typical solution of the ballooning mode equation in simplified 

toroidal geometry. A orange flux tube has ballooned out, moving along the blue surface 

S=0. This surface is twisted because of the magnetic shear in the system. The flux 

tube parts the black field lines outside which means that the flux tube can move without 

∂r θ r0 
∂θ r0 

− 

0 

− 
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−∞ 
in 

−∞ 
in B · ∇θ 

Bin(r, θ) 1 + t 1 + u⊥ + w2   

∂θ 

− 

Z ∞ 

dθ 
[(

A(r, r ) cos θ + B(r, r )θ sin θ − C(r, r )(sin θ)2
)] 

(33) 

dθ 

dθ 

in 

reconnection ocuring. The displacement of the flux tube is larger on the low field, or 

outboard, side. The flux tube is stretched on the inboard side due to the magnetic shear. 

In figure 1 the trajectory (in θ) of the displaced field lines inside the tube is a solution 

of the ballooning equation (32) and the distortion of the cross section by magnetic shear 

is calculated – however the outboard shape of the tubes is guessed. 

 

4. Energy Equation 

In [11] we derived an energy (or action) functional E = E[r(θ, r0), r0] that is stationary 

for equilibria and minimised for stable equilibria. This is; 

E = 

Z ∞ 

B · dr = 

Z ∞ 

B2 
 dθ 

 

Z ∞ 
s 

r2|∇r|2 

1
I
( ( 

∂r 
\ _2 ( 

∂r 
\2

 
  

 
     

 

where we have used Eq. (22). This integral is performed keeping r0 constant – i.e. 

we take r = r(θ, r0, t). The integral is formally infinite so we should subtract the 

unperturbed integral – Eq. (33) with r = r0. 

Expanding in inverse aspect ratio for our case we obtain the energy/action 

functional: 

E = 

Z ∞ 
i
1 

( 
∂r 

\2 (
1 + (α sin θ − sθ)2

)
#

 

−∞ 2 ∂θ r0
 

 

 
0 0 0 

−∞ 

where the new coefficients are: 
Z r 

A(r, r0) = 

 

B(r, r0) = 

(βN (r0) − βN (r′))dr′ 
r0 

 

r 

(βN (r0) − βN (r′))s(r′)dr′ 
r0 

 C(r, r 
1 

β (r ) − β  (r))2 (34) 
0) = 

2 
( N 0 N 

It is straight forward to show that equilibrium solutions of equation (32) (F⊥ = 0) are 

stationary states (δE = 0)under variation of r = r(θ, r0) in (33). The evolution of E 
using Eq. (32) is 

ν′ 
Z ∞ 

i( 
∂r 

\2
 

 
 

(
1 + (α sin θ − sθ)2

)
#

 dE 
= − . (35) 

−∞ ∂t r0 ,θ dt 

Note that the energy must always decrease in the drag evolution so that it seeks out 

the minimum energy equilibrium states. 

−∞ R2q2 ∂θ r 0 r 0 

Z 

= qRdθ 
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Figure 3: Transport barrier profiles used in the numerical investigation: a) magnetic 

shear, s(r), and pressure gradient α(r); and b) safety factor and pressure profiles used 

for this numerical investigation. The parameters for this case are: s0 = 0.1, s1 = 0.3, 

α0 = 0.28, ǫ = 0.07, ra = 0.7 and rs = 0.72 see equations (36) and (37). 

 

5. Numerical investigation 
 
The nonlinear ‘s − α’ equation derived in the previous section is solved numerically in 

this section. We focus on calculating the saturated states from F⊥ = 0 where F⊥ is given 

in equation (28). A time dependent method (Solution of equation (32)) was used in 

[14]. 

 

5.1. Profiles 

We investigate the model of a transport barrier type of equilibrium, since we see 

filamentary structures exploding from such profiles in tokamak experiments, for example, 

ELMs from the edge transport barrier or ballooning modes from ITBs in TFTR [5]. The 

model is specified in terms of magnetic shear s(r), and pressure gradient, α(r). The 

pressure gradient for this model is 

α = −
dβN 

= α sech2 

( 
r − rα 

\ 

. (36) 

dr 0 ǫ 

and the shear profile is 

s1 − s0 
( (

r − rs 
\ \

 
s(r) = s + tanh + 1 . (37) 

These produce pressure and β profiles 

p2(r) = ǫp2 

(

1 − tanh 

(
r − rα 

\\ 

(38) 

which gives a plasma βN profile 

β (r) = α ǫ 

(

1 − tanh 

(
r − rα 

\\ 

. (39) 


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Z 

) = ( 

( \ 

dθ 

dθ 

r0 

r′ + ǫcoth 
ǫ 

log 
ǫ 

cosh 

0 tanh − tanh 

A(r, r0) = (βN (r′) − βN (r0))dr′ 

r0 

For instability (linear or nonlinear) it is not sufficient that a displaced stationary 

(equilibrium) state is available for a flux tube, such states must be energetically 

favourable (i.e. E < 0) as well. We therefore need to calculate the change in energy for 

our profiles. The integrals in equation (34) can be calculated exactly for the profiles of 

pressure and shear that we are using by noting that 
Z r 

= ǫα0 

(

ǫ log 

(

cosh 

(
r′ − rα 

\\ 

− r′ tanh 

( 
r0 − rα 

\lr 

(40) 

 

 

B(r, r0) = 

ǫ 

 
r 

(βN (r′) − βN (r0))s(r′)dr′ 
r0 

ǫ r0 

= 

( 
s0 + s1 

\ 

A(r, r ) + ǫα 

(
s1 − s0 

\ 

× 

2 
0 0 

( (
rα − rs 

\ ( ( 
2 
(
r′ − rα 

\\ 
 

 

 

( (
r′ − rs 

\\llr 
 

 

 

− 

(

ǫ2α0 
( 
s1 − s0 

\
 
 
tanh 

(
r0 − rα 

\
 

 
log 

(

cosh 
(
r′ − rs 

\\lr 
 

 
 

 

 

(41) 
2 ǫ 

 

C(r, r 
1 

β  (r) − β  (r ))2 

ǫ r0
 

 

0 
2 

N N 0 

ǫ2α2 
( (

r − rα 
\ (

r0 − rα 
\\2

 
 

   

 

5.2. Solving for stationary equilibrium states 

Any elliptical flux tube is made up of a bundle field lines from differing surfaces r0 – 

each can be treated separately. We find for each field line (r0) the time independent 

(stationary) equilibrium states by setting the time derivatives in Eq. (32) to zero and 

using a shooting method. Specifically we take a long domain, −θmax < θ < θmax, where 

θmax ≫ 1. We solve the second order nonlinear ordinary differential equation: 

0 = (βN (r0) − βN (r)) [cos θ + sin θ(sθ − α sin θ)] 
 

 
d 

+ 
dθ r0

 

(
[
1 + (α sin θ − sθ)2

] 
( 

dr 
\ _

 
 

1 
( 

dr 
\2 (

 d 
\ 

(α sin θ − sθ)2 (43) 

2 dθ r0 
dr θ 

for r = r(θ, r0) with the boundary conditions r(−θmax, r0) = 0 and dr (−θmax, r0) = 

ushoot. By varying ushoot and resolving equation (43) we find the values of ushoot for which 

r(θmax, r0) = 0 – these are the stationary field line equilibrium states r = req(θ, r0). For 

each equilibrium state we calculate the energy E from equation (34) with r = req(θ, r0) 

r0 

2 ǫ ǫ 

cosh − log 
ǫ 

= (42) 

− 
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in the coefficients given by equations (40), (41) and (42). Clearly the unperturbed state, 

ushoot = 0 for which E = 0, is always an equilibrium state. For the profiles we considered 

we found that field lines originating from a given r0 could be in one of four distinct 

categories. The first category is field lines that are both linearly and nonlinearly stable 

in which there is only one equilibrium state, the stable unperturbed state with E = 0– 

see Figure (4.a). The second category is linear and nonlinearly stable field lines where 

there are three equilibrium states: a stable unperturbed state with E = 0, an unstable 

displaced equilibrium state with E = E1 > 0 and, a linearly stable displaced equilibrium 

state with E = E2 > 0 and E1 > E2 > 0 – see Figure (4.b). The third category 

is metastable field lines where there are three equilibrium states: a linearly stable 

unperturbed state with E = 0, an unstable displaced equilibrium state with E = E1 > 0 

and, a stable displaced equilibrium state with E = E2 < 0 – see Figure (4.c). Finally 

the fourth category is linearly unstable field lines where there are three equilibrium 

states: a unstable unperturbed state with E = 0, a metastable displaced equilibrium 

state with E = E1 < 0 and, a stable displaced equilibrium state with E = E2 < E1 – see 

Figure (4d). In some profiles field lines from different r0 are in different categories and a 

flux tube perturbation may contain field lines from several categories. Finding the field 

line equilibria is considerably faster than the time dependent method used in [14] and 

so we focus on it here. We have looked at the convergence with respect to the truncated 

domain length (i.e. θmax) and we have picked a value of the θmax (a typical value is 

θmax = 300 radians) such that the results (r = req(θ, r0) and E) are well converged yet 

the run takes a reasonable time. 

 

5.3. First category profiles 

In this section we find profiles for which all field lines (r0) are in the first category, 

i.e. they have only one equilibrium state, the unperturbed state, and it is stable – 

see Figure (4.a). We call such profiles first category profiles. Profiles are visualised by 

plotting the trajectory of s(r0) and α(r0) in ‘s − α’ space as r0 varies from 0 to 1. In Fig. 

5 and in Fig. 6 we plot eight trajectories (dashed-dotted lines) that are first category 

profiles. We also show the well known linear stability boundary for the ‘s−α’ model [15]. 

These profiles were chosen by first fixing the values of s0 and s1, which amounts to 

specifying the magnetic shear profile. Then we varied the pressure profile (α0) until 

we found the largest possible α0 for a first category profile with the given shear profile. 

Therefore profiles with larger α0 must be in either the second third or fourth category. 

If there is no space between the profile trajectory and the linear stability boundary 

then there are no second or third category field lines (see Figures (4.b) and (4.c)) for 

that magnetic shear profile. A large space between the profile and the linear stability 

boundary means that displaced filamentary states (second or third category field lines) 

are available in that region. These plots therefore give an indication of the boundaries of 

the region in ‘s−α’ space where nonlinear displaced states are available. However, these 

are not necessarily lower energy states with third category field lines (metastability). 
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Figure 4: Schematic visualisation of field line energy surfaces for the four categories. 

The horizontal axes “represents” displacement – strictly speaking energy is a functional 

of r(θ, r0) and therefore the energy surface is in a infinite dimensional function space not 

the one dimensional line plotted here. In a) (the first category) the field line is stable 

to linear and nonlinear perturbations. In b) (the second category) the field line is also 

stable to linear and nonlinear perturbations – although it would be possible for a field 

line to be caught in the metastable displaced state with energy E2. Field lines in the 

third category are metastable and are illustrated in c) – an energy greater than E1 is 

needed to destabilise the unperturbed state. In d) the field lines are linearly unstable 

(category four). Drag evolution will take an arbitrary field line perturbation to an 

energy minimum equilibrium – see equation (35). 

 

The results in Fig. 5 show that there are more displaced states available at lower shear. 

 

5.4. Profiles with second and third category field lines 

Next, we look at a set of profiles which are stable throughout but have regions of 

second and third category field lines – displaced equilibrium states.  Figures 7, 8 

and 9 show three such profiles.  Figure 7 has the largest pressure and the profile 

is close to the linear stability boundary. There are displaced equilibrium field line 

states for a broad range 0.6 < r0 < 0.7 – outside this range all field lines are in the 

E E 
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Figure 5: Trajectories (dashed-dotted lines) in the ‘s − α’ diagram for first category 

profiles, see Subsection (5.3), and the linear stability boundary (solid line). The profile 

starts with the lower value of magnetic shear at the magnetic axis of the plasma and 

ends at the higher value of shear at the plasma edge. These plots are calculated by fixing 

the values of s0 and s1 and then varying α0 to find the highest value of α0 for a first 

category profile with the given shear profile. The region between the profile trajectory, 

dashed-dotted line, and the ballooning stability boundary, solid line, indicates the region 

where nonlinear displaced states are available. The values of shear profiles for each plot 

are: (a) s0 = 0.6, s1 = 0.8; (b) s0 = 0.4, s1 = 0.6; (c) s0 = 0.2, s1 = 0.4; and (d) 

s0 = 0.1, s1 = 0.3. 

first category. For 0.6 < r0 < 0.64 the field lines are in the second category, i.e. 

E2 > 0. There is also a region of third category (metastable) field lines where energy 

is released in a displacement from the unperturbed state to the displaced equilibrium 

state, r0 = 0.64 − 0.7, i.e. E2 < 0. The critical amplitude for the metastable field lines 

to exceed the potential barrier (rmax for the E = E1 state, the dashed line in figure 7.b) 

varies with the starting radius, r0, but for this profile the critical amplitude is small 

especially near r0 = 0.69. This means that only a small perturbation is required for 

the filament to reach the lower energy E = E2 displaced state. In Figure 8, we take a 

lower value of maximum pressure, however the region where there are third category 
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Figure 6: As for Figure 5. The values of shear profiles for each plot are: (a) s0 = 0.4, 

s1 = 0.8; (b) s0 = 0.2, s1 = 0.6; (c) s0 = 0.1, s1 = 0.5; and (d) s0 = 0.2, s1 = 0.8. 

 

(metastable) field lines is similar r0 = 0.65 − 0.69 to the case in Figure 7. The critical 

perturbation to reach the lower energy states is larger and the energy released is slightly 

lower. Finally, Figure 9 uses a yet lower value of α0. Here the displacement rmax values 

are similar to the previous cases but the range of r0 where a displaced states exist 

is smaller r0 = 0.62 − 0.68 and all these field lines are second category – there is no 

metastability in this profile. 

Note that in these calculations there is a region where lower flux tubes end up in 

saturated states further out than flux tubes starting further up, i.e. for two flux tubes 

where r0,1 < r0,2, we have rmax,1 > rmax,2, i.e. the flux tubes overtake. 

 

5.5. Linearly unstable profile 

Figure 10 shows a case where the profile crosses the marginal linear stability boundary. 

For r0 = 0.54 to r0 = 0.72 displaced equilibrium states exist. From r0 = 0.54 to r0 = 0.63 

the field lines are in the second category; from r0 = 0.63 to r0 = 0.67 the field lines 

are in the third category; from r0 = 0.67 to r0 = 0.72 the field lines are in the fourth 

category (the unperturbed state is linearly unstable); from r0 = 0.72 to r0 = 0.723 

the field lines are in the third category but both displaced states have rmax < r0 (i.e. 
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Figure 7: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s − α’ space; (b) 

plot of the location of the maximum rmax = req(0, r0) of the displaced states (solid line 

is the E = E2 state and the dashed line is the E = E1 state) against starting flux surface 

r0; (c) the energy change of the displaced states versus the initial position (again solid 

line is E = E2 and the dashed line is E = E1). Here the trajectory approaches the linear 

ballooning boundary. The region of third category metastable field lines is for starting 

locations from r0 = 0.64 to r0 = 0.7. 
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Figure 8: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s − α’ space; (b) 

plot of the location of the maximum req(0, r0) of the displaced states (solid line is the 

E = E2 state and the dashed line is the E = E1 state) against starting flux surface r0; 

(c) the energy change of the displaced states versus the initial position (again solid line 

is E = E2 and the dashed line is E = E1). Here the trajectory is further from the linear 

ballooning boundary than figure (7). The region of third category (metastable) field 

lines is for starting radii from r0 = 0.65 to r0 = 0.69. 

 

they are displaced inwards) and; from r0 = 0.723 to r0 = 0.724 field lines are in the 

second category but both displaced states have rmax < r0. We see that in the region 

where the profile is linearly unstable there is no critical perturbation required to access 

a displaced state and one state, E = E2, is displaced outwards and the other, E = E1, is 

displaced inwards. The energy change of the outward displaced state −E2 is significantly 

higher (by several orders of magnitude) than the energy −E1 of the one that is displaced 

inwards, although both have a lower energy level than the initial state. 
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Figure 9: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s − α’ space; (b) 

plot of the location of the maximum rmax = req(0, r0) of the displaced states (the upper 

solid line is the E = E2 state and the lower dashed line is the E = E1 state) against 

starting flux surface r0; (c) the energy change of the displaced states versus the initial 

position (again solid line is E = E2 and the dashed line is E = E1). Here the trajectory is 

further still from the linear ballooning boundary. There is no region where the displaced 

states have lower energy – i.e. all field lines from r0 = 0.62 to r0 = 0.68 are in the second 

category. 
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Figure 10: Plot of: (a) trajectory (dashed-dotted line) of the profile in ‘s − α’ space. 

The trajectory crosses the linear ballooning boundary and therefore part of the plasma 

is linearly unstable. (b) plot of the location of the maximum rmax = req(0, r0) of the 

displaced states (the lower line is the E = E2 state and the upper line is the E = E1 state) 

against starting flux surface r0. The dotted line shows rmax = r0. Field lines are in the 

second category from r0 = 0.54 to r0 = 0.63 and the third category from r0 = 0.63 to 

r0 = 0.67. From r0 = 0.67 to r0 = 0.72 the unperturbed state is linearly unstable (the 

fourth category) and one displaced state has rmax > r0 and the other displaced state 

has rmax < r0; (c) the energy change of the displaced states versus the initial position 

(lower line is E = E2 and the upper line is E = E1). From r0 = 0.67 to r0 = 0.72 both 

displaced states have negative energy 0 > E1, E2 – this is shown by making both lines 

solid. From r0 = 0.72 to r0 = 0.723 both displacements are inward and field lines are in 

the third category. From r0 = 0.723 to r0 = 0.724 field lines are in the second category. 
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6. Discussion and Conclusions 
 

6.1. Discussion 

There is ample evidence of filament states in experiments, for example ELM filaments [4] 

are ubiquitous in tokamak H-mode plasmas and in [14] we discussed the results of 

Fredrickson [5] where a ballooning mode is responsible for the disruption of an internal 

transport barrier. More recently core plasma limits have been observed at LHD [6]. 

These may be driven by a three dimensional version of the phenomena presented here. 

KSTAR [24] has looked at ELM filament dynamics in more detail experimentally using 

an ECEI diagnostic. That work shows the emergence of filament structures at the edge 

of the plasma that saturate and persist for a period of time before the final ELM crash 

occurs. This at least has qualitative similarity to the saturation phase of the model 

presented here. We hope to investigate these experimental cases more quantitatively in 

future work. 

It has been suggested [25] that pressure profiles in edge transport barriers 

(pedestals) are limited by some soft limit from the kinetic ballooning mode (KBM). 

If this is the case then the profile will sit near the linear ballooning stability boundary. 

Clearly, in this scenario, the kinetic ballooning modes are assumed to have no explosive 

behaviour – no access to finitely displaced equilibrium states. However such profiles 

do develop filamentary eruptions – perhaps when sufficiently large filaments (perhaps 

arising from low n number instabilities associated with the peeling modes) become 

unstable. The EPED model [25] predicts that a broad region of the profile should be 

at the marginal stability boundary. This qualitatively agrees with observed ELMing 

profiles. The analysis in this paper shows that profiles with a broad region close to the 

linear stability boundary can have finitely displaced filament equilibria. In future work 

we will calculate displaced equilibrium states in pedestals with experimental profiles to 

determine when and how such profiles exhibit explosive instability – ELMs. 

Numerical simulations have investigated the eruption of flux tubes, for example 

[27, 28] where a nonlinear plasma model examined a 2/1 mode in a hybrid scenario and 

demonstrated that explosive filament growth was possible. Myers et al [29] used an 

ideal MHD model to look at a slab version of the model presented here. They found 

a time where the simulation first settled down to the linear eigenmode shape, then a 

linear growth phase followed by a nonlinear growth, and finally an explosive final phase. 

It is likely that the explosive phase was under resolved and an extended physics model 

would almost certainly be necessary in this phase. 

The two key approximations of the present model are: the unperturbed equilibrium 

is large aspect ratio and the filaments have an elliptical shape. The large aspect ratio 

approximation can be relaxed and the metric quantities in Equation (18) can instead be 

taken from a numerical equilibrium code. Indeed this work is underway. The assumption 

of the elliptical filaments is more fundamental it is justified by the linear [1] and weakly 

nonlinear calculations of the expected structure [7, 8] and by the results from numerical 

investigations [26–29]. The elliptical shape can also be justified from physical intuition. 
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It is energetically favourable for the erupting flux tube to perturb the ambient external 

field as little as possible and this is achieved with an elliptic flux tube – this is discussed 

in Appendix A. 

Full nonlinear simulations of the process described in this paper are challenging. 

[27,28] The spatial resolution required to capture for an isolated flux tube is made harder 

by the discontinuities (current sheets and contact discontinuities) that develop between 

the tube and its surroundings [10, 26, 29]. Also the temporal resolution requirements 

to resolve the slow unperturbed equilibrium evolution and the rapid motion of the flux 

tube are demanding. Nonetheless full understanding of the eruption must surely require 

extensive numerical investigation. 

If we accept that the saturated filament states exist, then it will be important to 

understand the next steps in the dynamics. It may be that the field lines in the flux 

tube reconnect with the ambient magnetic field at some location, but it is not obvious 

where this location is. It maybe that there is significant cross field transport out of the 

ballooned filament, given there will be a strong temperature gradient as suggested in 

the ‘Leaky hosepipe’ model [30]. These issues will be addressed in future work. 

 

6.2. Conclusions 

The results shown here exhibit a rich dynamics. The key result is that linearly 

stable flux tubes can erupt to saturated ballooning states, i.e. they are metastable. 

The experimental transport barrier profiles are likely to sit near the ballooning mode 

marginal stability boundary and so these modes are likely to appear if a critical 

perturbation is available. We conjecture that hard stability limits arise when the plasma 

is in a metastable state with a large energy difference between the unperturbed and 

perturbed equilibria. The closer the profile is to marginal stability, the larger the region 

of the plasma that has saturated states available and the more favourable the energy 

change associated with the saturated states. The current model uses a large aspect ratio 

‘s − α’ model equilibrium but we fully expect that the key qualitative results will also 

appear when we use realistic experimental geometry in future work. The model may 

be able to explain key elements of ITB distruption and ELM dynamics when applied to 

realistic geometry. 
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Appendix A. Perturbation of the field outside the filament. 
 
In this paper we have assumed that the perturbations of the field outside the filament 

have a negligible effect on the filament. Here we estimate the effect of such perturbations. 

From Fig. 2 the perturbation of the field outside the filament δBout ∼ B0( δ1 ) n̂  ∼ 
II 

B0( δ1 ) sin θ n̂ where n̂ = ∇S/|∇S| and B0 · Bin = B0Bin cos θ.  Thus the curvature 

force on one side of the filament in the ∇S direction is 
1 

(Bout · ∇Bout) · n̂ ∼  
1 

B2 
δ1 

sin2 θ. (A.1)
 

   

µ0 µ0 
0 2 

For a symmetric filament the net force from the external curvature forces on the two 

sides cancel. A shift of the filament by a distance of order δ1 in the n̂ direction changes 

the curvature forces by a factor of order one. Thus an asymmetric filament can adjust 

its position by a negligible shift to achieve net force balance. However the curvature 

forces squeeze the filament from both sides and change the pressure balance. Thus there 

is a perturbation of the total internal pressure: 

B2 

δ(µ0pin + 
2

 
 δ

2 

0  2 
2 

This pressure perturbation varies finitely in the filament – it will try to elongate (flatten) 

the filament in the e⊥ direction. The extra elongating force in the e⊥ direction is 
2 1 δ(µ p + B ) 1 δ2 

δF · e = δF 
 

 

∼ 
 0 in 2  ∼

 B2  1  sin2 θ. (A.3) 
⊥ ⊥ 

µ0
 

rδ2 
 

µ0 
0 rδ3 

Note that sin θ ∼  ∆r  where ∆r is the radial displacement of the filament. Estimating 

the force on a perturbed filament ignoring the external perturbations we get: 

B2 B2 

F⊥ ∼  0 ∆r ∼  0   sin θ (A.4) 
µ0qR2r µ0R0r 

Thus the external perturbations can be ignored if: 

 δ
2R0 

δF ≪ F → sin θ ≪ 1. (A.5) 
2 

This provides a condition on the ellipticity of the filament for our treatment to be correct. 

In linear theory, [1], the eigenfunction across the field is elongated (δ1 ∼ R0 , δ2 ∼ R0
 

with n ≫ 1) – thus in this case δF⊥ ∼ n−1/2 sin θF⊥ ≪ F⊥. In the weakly nonlinear 

theory [7, 8, 12, 13] the linear eigenfunction evolves into an even narrower elliptical 

flux tube. The weakly nonlinear theory includes the external perturbations and the 

interaction of filaments because the displacement is ordered to be small ∆r ∼ δ1 ∼ R0 

and the system is assumed to be close to marginal stability so that δF⊥ ∼ F⊥. However 

as the filaments evolve in the weakly nonlinear theory they evolve into the isolated tubes 

considered here [11, 13]. 

As shown above elliptical tubes that originate as perturbations of the linear 

eigenfunction shape are expected to be unaffected by the perturbation of the external 

field.  The external forces will, however, often change the shape of the filament – 
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δ 
∼  1  sin2 θ. (A.7) 

specifically flattening the ellipse – detailed calculation of this flattening is beyond 

the scope of this paper. Nonetheless we can estimate the flattening of the displaced 

equilibrium filament. To lowest order the displaced equilibrium field lines satisfy F⊥(r, 

θ, r0) = 0 giving r = rsat(θ, r0) – solutions of equations (17), (6) and (12). For small 

displacements about this lowest order solutions we can write r = δr(θ, r0) + rsat(θ, r0) 

and linearise the force operator F⊥ ∼ Lsat(δr). Thus equilibrium is modified 

δF⊥ + F⊥ ∼ δF⊥ + Lsat(δr) = 0. (A.6) 

Estimating δr we obtain: 

δr 
 

 

qR0 

 δ
2R0 

3 
2 

For the linear eigenfunction shape δr ∼ δ2 sin2 θ. Thus when the displacement is finite 

(sin θ ∼ 1) the filament is flattened by order the elongation i.e. r = rsat + O(δ2). This 

is a finite change in the shape but a small change in the filament position. We hope to 

develop a asymptotic solution of the equilibrium shape in future work. 

We have focussed on perturbations shaped like the linear eigenfunctions since these 

will be easier to destabilise (even in metastable situations). It is possible that in 

some meta-stable cases a finite perturbation with a shape that violates the condition 

in equation (A.5) can be destabilised. We cannot treat such cases with the method 

developed in this paper. 

 

Appendix B. Model equilibrium 
 
In these notes we calculate the large aspect ratio (ǫ = r/R ≪ 1) equilibrium with two 

regions; an Outer Region where the pressure gradient is small (rp′/B2 ∼ O(ǫ2)) and 

a narrow (∆r ∼ ǫr) Transport Barrier around r = rT B where the pressure gradient 

is close to the ballooning threshold (rp′/B2 ∼ O(ǫ)). Note that the plasma beta is 

everywhere small i.e. p/B2 ∼ O(ǫ2). We shall take the safety factor, q, and the global 

magnetic shear, rq′, to be finite in the transport barrier – however r2q′′ can be large in 

the transport barrier. All symbols have their usual meaning! 

 

Appendix B.1. Inverse Equilibrium 

We use the usual inverse equilibrium approach of Weimer, Greene and Johnson. The 

radial variable r labels flux surfaces, θ is a poloidal angle and φ is the usual cylindrical 

toroidal angle. In axisymmetry the cylindrical coordinates (R, φ, Z) are functions of 

the flux coordinates (r, θ) – i.e. R = R(r, θ) and Z = Z(r, θ). 

The magnetic field is given by: 

B = B̄0R0{f (r)∇φ × ∇r + g(r)∇φ} (B.1) 

where B̄ 0  is a normalising field so that g ∼ O(1) and R0 is the radius of the magnetic 

axis. The equilibrium Grad-Shafranov equation in flux coordinates is: 
1 ∂ 2 ∂ 1 ′ R2 ′ 

(rf |∇r| ) + f (∇r · ∇θ) + (gg 
r ∂r ∂θ f + 

R2B2 p ) = 0. (B.2) 
0  0 
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R0f 

R0q 

∂θ 

∂r ∂r 

The jacobian of the transformation to the flux coordinates (r, θ, φ) is chosen to keep 

the field lines straight in θ − φ space on a flux surface: 

J = (∇r × ∇θ · ∇φ)−1 = rR2 
 

 
 = R 

(
∂R ∂Z 

− 
∂R ∂Z 

\
 

 
(B.3) 

R0 ∂θ ∂r 

and then the safety factor is q(r) =  rg  . Note that: 

∂r ∂θ 

(∇r × ∇θ) = 
R0 
∇φ (B.4) 

r 

We expand R and Z as: 

R = R0 + r cos θ + R̃1(r) cos 2θ + R̄1(r) + O(ǫ2r)..... 

Z = −r sin θ + Z̃1 (r) sin 2θ + O(ǫ2r)..... (B.5) 

where R̃ 1 ,  R̄ 1  and Z̃ 1  are O(ǫr). We have chosen θ = 0 to be the outer (larger R) 

mid-plane of each flux surface – this differs from the choice in [16] where θ = 0 is on the 

inner R mid-plane. We define B̄ 0  so that: 

g = 1 + g2 + O(ǫ3), g2 ∼ O(ǫ2) (B.6) 

and q is finite so that f = f1 =  r  + O(ǫ2). To denote order we write p(r) = p2(r). 

We seek expanded expressions as functions of r and θ of the metric elements: 

 

|∇r|2 = 

 
2 
0 

 

r2R2 

i(
∂R 

\2 
 

 

(
∂Z 

\2
#

 
 

∇r · ∇θ = − 

( 
∂R ∂R ∂Z ∂Z 

l
 

2 
+ 

r2R2 ∂θ ∂r ∂r ∂θ 

 

|∇θ|2 = 

 
2 
0 

 

r2R2 

i( 
∂R 

\2
 

 

( 
∂Z 

\2
#

 
 

 
(B.7) 

to substitute into the ballooning equations of Section 2. 

The regions are: 

Outer Region where |r − rT B| ≫ ǫr and all radial derivatives are finite i.e. 

∂  
∼ O( 

1 
), 

∂r r 

∂ R̃ 1  
, 

∂r 

∂ Z̃ 1  
, 

∂r 

∂R̄1 
 

 

∂r 

 

∼ O(ǫ), (B.8) 

rp′/B2 ∼ O(ǫ2), rg′ ∼ O(ǫ2) and f, rf ′ ∼ O(ǫ) 
0 2 

Transport Barrier where |r − rT B| ∼ ǫr and radial derivatives are large: 

∂  
∼ O( 

1 
), 

∂r ǫr 

∂ R̃ 1  
, 

∂r 

∂ Z̃ 1  
, 

∂r 

∂R̄1 
 

 

∂r 

 

∼ O( 
1 

), (B.9) 
ǫ 

rp′/B2 ∼ O(ǫ), rg′ ∼ O(ǫ) and f, rf ′ ∼ O(ǫ) but r2f ′′, r2g′′ ∼ O(1) 
0 2 

∂θ 

R 

R 

R 

+ 

0 

+ 
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0 

0 

( l 

B 

R2 
= 1 + 

R 
cos θ − 

2R2 
+ 

R 
+ 

R 
+ 

R 
+ 

2R2 

1 2 ¯2 
0 

= 
R0 ¯2 

− 
0 

− 2 
r q dr 

∆ 

0 

Appendix B.2. Outer Region 

Substituting expressions from Eq. (B.5) into Eq. (B.3) we obtain: 

r2 cos θ  ̃  ̃ ∂ Z̃ 1  

R 
= 2R1 sin θ sin 2θ − 2Z1 cos θ cos 2θ − r sin θ sin 2θ 

∂r
 

+r cos θ cos 2θ
∂R̃1 

+ r cos θ
∂R̄ 1 

+ O(rǫ2) (B.10) 

which yields: 

∂r ∂r 

 

Z̃ 1 = −R̃1 

 

∂R̄ 1  r2  ̃ ∂ R̃ 1  

r = 
∂r R0 

− 2R1 − r (B.11) 
∂r 

From Eq. (B.7) we define ∆′ so that: 

|∇r|2 = 1 + 2∆′ cos θ...... 

 

 ̃ r2 r∆′ 
→ R1 = 

2R 
+ 

2
 

 

 ̄ r2 r∆′ 

 
and 

R1 = 
2R 

− − ∆ (B.12) 
2 

∇r · ∇θ = −
1 

(

r∆′′ + ∆′ + 
 r 

\ 

sin θ. (B.13) 

r R0 

We will need: 

R2  2r 
( 

r2 2∆ r∆′ 
l (

r∆′ 3r2 
l
 

 

0 0 

and 

0 0 0 0 0 

|∇θ|2 = 
 1

 

r2 

1 + 2( 
 r  

− ∆′) cos θ + (r∆′′ sin θ)2....O(ǫ2) (B.15) 
R0 

We have kept the terms that become large in the transport barrier – where r∆′′ ∼ 1. 

The equilibrium relation, Eq. (B.2), becomes to O(ǫ2): 

1  d  1 
(rf ) + 

(

g′ + 
p′

2 

l 

= 0 (B.16) 

 
 

′′  1  2R0q
2 p′

2 

( 
3 

 

 

  

2  dq 
l 

′ 

r B 

cos 2θ. (B.14) 

r dr f1 

∆ − (B.17) 
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B 

B 

B 

B 

dr r r 

sin θ = − sin θ (B.22) 
r 

r2 
0 ¯2 

0 r2 

¯2 

Appendix B.3. Transport barrier 

The equations derived in the previous section, Eqs. (B.12) - (B.17), remain valid to the 

order we need. Since q and r are roughly constant across the Transport barrier we can 

integrate Eq. (B.16) for g2
′ and Eq. (B.17) for ∆′ in the layer. 

 p2  
g2 = − ¯2 

+ constant (B.18) 
0 

′′ 2R0q
2 p′

2 1 ′ 2R0q
2 p2 

∆ ∼ − 
r 

∼ O(  ) → ∆ = − 
0 r r ¯2 

+ constant (B.19) 
0 

Note the constants are slowly varying functions of r so they are effectively constant 

across the transport barrier. The magnetic shear is taken to be finite and finitely 

varying across the barrier, so that: 

f = f (r) + f ( 
r − r0 

) 
1 1 2 

ǫ
 

q′ = 
 d 

(
R0f1 

\ 

+ 
R0f2

′ 

... (B.20) 

We introduce the s and α parameters of Connor, Hastie, Taylor [1]: 

rq′ 
s = 

q 

α = −2R q2 
p′2

 (B.21) 
0 ¯2 

0 

Note that both these parameters are finite and vary finitely over the transport barrier 

so that s′ ∼ O( 1 ) and α′ ∼ O( 1 ). Then ∆′′ = α. To lowest (finite) order the metric 
ǫ ǫ r 

coefficients are 

|∇r|2 = 1 

( 
2R0q

2 p′
2 

\ 
α 

  

|∇θ|2 = 
1 

(

1 + (2R q2 
p′

2 sin θ)2....O(ǫ)

l 

= 
1 [

1 + (α sin θ)2 ....... O(ǫ)
]
 

We shall also need the derivatives of R. 
∂R 

= cos θ − α sin2 θ + O(ǫ).... 
∂r 

∂R 
= − r sin θ + O(ǫ).... (B.23) 

∂θ 

Appendix C. Weak Nonlinearity – with Inertia 
 
Here we investigate the weakly nonlinear case with inertia. The dynamics is interesting 

because the mode spreads along the field lines as it evolves explosively. With inertia 

r ¯2 
0 

B B 

∇r · ∇θ = 
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  A 

( \ 

ǫr 

τA 1 + (α sin θ − sθ) ) 

∂θ ∂θ 

∂2x 
∂t2 ∼ O( δ

2 x ), Eq. (C.1) can be expanded in powers of x. We define the linear 

2 2 0 0 
2 

∂θ 
0 0 0 0 

∂θ 

τA 1 + (α sin θ − sθ) ) 

B̄ 

ǫr 

2 

r0 r0 

∂t2 

and r − r0 ∼ ǫr equation (32) becomes: 

2 
(
∂2r 

\ 
[ 2 ] 

 

 

 
(βN (r0) − βN (r)) [cos θ + sin θ(sθ − α sin θ)] 

+ 

( 
∂ 
\ (

[
1 + (α sin θ − sθ)2

] 
( 

∂r 
\ _

 
 

1 
( 

∂r 
\2 ( 

 ∂ 
\ 

(α sin θ − sθ)2 (C.1) 

2 ∂θ r0 
∂r θ 

where τ 2 = µ0 ρ0q2 R2 
. If x = r − r 

(   

  

∼ O(δ r) ≪ ǫr and we are close to marginal stability 

operator: 

L(x) = α0 [cos θ + sin θ(s0θ − α0 sin θ)] x 

+ 

( 
∂ 
\ (

[
1 + (α sin θ − s θ)2

] 
(
∂x 

\ _

 
 

 

∂θ r0 
0 0 

r0  
(C.2) 

where s0 = s(r0) and α0 = α(r0). The expanded nonlinear operator is: 

N (x, x) = 

(
α0

′ 

cos θ + θ sin θ( 
α0

′ s0 
+ s′ α ) + 

3α0
′ α0 

sin2 θ

l 

x2 

+ 

(
 ∂ 
\ (

(α′ sin θ − s′ θ)(α sin θ − s θ)x 

(
∂x 

\ _

 
  

 

∂x 2 
− 

∂θ r0 
(α0

′ sin θ − s′0θ)(α0 sin θ − s0θ) (C.3) 

and s′0 ds0 
dr0 

1  and α0
′
 dα0 

dr0 
∼  1 . The equation of motion, to the order we need 

becomes 

2 
(
∂2x 

\ 
[ 2 ] 

The solution has two regions: an inner region where θ ∼ O(1) and inertia is unimportant 

and an outer region where θ ∼ O(ǫ/δ) and nonlinearity is unimportant. This is similar 

to the treatment in [8]. 

 

Appendix C.1. Inner region 

In the region x ∼ O(δ) the left hand side of Eq. (C.4) (inertia) is ∼ O(δ3/ǫ2). The 

nonlinear term is of order ∼ O(δ2/ǫ). To order δ we have: 

0 = L(x) + O(δ2) (C.5) 

∂t2 

2 
A ǫ2 

r0 r0 

0 

τ 

= ∼ = 

= 

= L(x) + N (x, x) (C.4) 

− 

0 

∂θ 
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2 
x 

= . 

∂t 

L LL 
θ 

SL 
θ ∆′ 

0 m m 
∂θm 

L m 
∂θm 

L 

Then we can write: 

x(θ, t) = A(t)xL(θ) + δx(θ, t) (C.6) 

where xL(θ) is the linear solution to L(xL) = 0 that is even in θ and normalised so that 

xL(0) = 1 – thus A ∼ O(δ). δx(θ, t) ∼ O(δ2/ǫ) is driven by the nonlinear term. As we 

will see below, the solution as |θ| → ∞ consists of the ”small” and ”large” solutions: 

x (θ) → x + 
xSL 

= x 

( 
1 

+ 
 1  
\ 

(C.7) 

where xSL xLL and ∆′ = xSL/xSL are constants. To be consistent we need to be 

sufficiently close to marginal stability (  1  = 0) such that  1  ∼ O(δ/ǫ). Thus the “large” 
∆′ ∆′ 

solution is the same size as δx(θ, t) ∼ O(δ2/ǫ) and we must calculate the corrections due 

to the nonlinear term to get the correct asymptotic behaviour when θ ≫ 1. To order 

O(δ2/ǫ) the inner region solution satisfies: 

0 = L(x) + A2N (xL, xL) (C.8) 

Multiplying Eq. (C.8)by xL(θ) and integrating from θ = 0 to θ = θm (in the matching 

region where 1 ≪ θm ≪ ǫ/δ) we obtain: 

s2θ2 

(

x(θ , t) 
∂xL − x (θ ) 

 ∂x 
l 

= 
 

 

θm 

A2 dθ 
0 

((
α0

′ 

cos θ + θ sin θ( 

 

α0
′ s0 

 

2 

 

+ s′0α0) + 

 

3α0
′ α0 

 

2 
sin2 θ

l 
3

 

−3A2 

Z θm 

dθxL 

((
∂xL 

\2 

2(α0
′ sin θ − s′0θ)(α0 sin θ − s0θ)

_

 

0 ∂θ r0
 

= cNLA2. (C.9) 

The constant cNL defined by Eq. (C.9) is O(1) and insensitive to the choice of θm as long 

as it is in the range 1 ≪ θm ≪ ǫ/δ – the particular choice makes a difference to cNL of 

order δ2/ǫ2. Since the nonlinear terms in Eq. (C.8) die away rapidly for asymptotically 

large θ (see next subsection) we can write: 

x(θ ) → A(t) 
xSL 

+ x (t) (C.10) 
Large 

m 

Substituting into Eq. (C.9) we obtain the relation 

−
xLarge(t) 

= − 
A 

+ c′ A2. (C.11) 
 

 
where c′NL 

xSL 

 cNL  
s2x2 

∆′ NL 

0 SL 

Appendix C.2. Outer Solution 

Now let us expand Eq. (C.4) in powers of δ with  ∂   ∼ O(δ/ǫ), θ ∼ O(ǫ/δ) and 

x ∼ O(δ2/ǫ). We treat the θ variation as having two scales: the fast periodic scale 

\ 

m 
θ 
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f 

θ 

2 
(
∂2x2 

_
 

τAs0θs = α0 cos θf x2 + s0 ∂θ
 θs 

∂θ 

∂θf 0 s ∂θs 
0 0 f s 

∂θf ∂θs 0 s ∂θf 

τAθs 
= 

∂θs 
θs 

∂θ 

0 

s s 

 ∂  ∼ O(1) and the slow scale  ∂  ∼ O(δ/ǫ); then  ∂  =  ∂  +  ∂  and θs ∼ O(ǫ/δ) – thus 
∂θf ∂θs ∂θ ∂θf ∂θs 

x(θf , θs, t). We write x = x2 + x3 + x4.... where xn ∼ O(δn/ǫn−1). To O(ǫ) we obtain: 

 

0 = θs 

 
In O(δ) we obtain: 

 
 

∂θ2 
→ x2 = x2(θs, t) (C.12) 

2 2 

(
∂2x3 

_ 
α0 sin θf 

0 = s0θs 

 
In O(δ2/ǫ) we obtain: 

 
 

∂θ2 
+ α0s0 sin θf θsx2 → x3 = x2 

0 θs 
(C.13) 

2  2 2 

(
∂2x2 

\
 

 

 

2  ∂  
(

 
 

2 ∂x2 
\
 

 

+
 ∂  

(

2s2θ2 
∂x3 − 2α s (sin θ )θ ( 

∂x3 
+ 

∂x2 
) + s2θ2 

∂x4 

\ 

(C.14) 

 

Note the largest nonlinear term is O(δ3/ǫ) and is therefore ignored to this order. 

We average Eq. (C.14) over the fast scale θf to obtain the evolution equation for x2: 

2 2 
( 

∂2x2 
\ 

 ∂  
( 

2 ∂x2 
\

 

  

Since x2 only depends on the one, slow, scale we drop the subscript s on θ and write 

x2 = f(θ,t). Then Eq. (C.15) becomes the wave equation: 

2 ∂
2f 

τA ∂t2 
= 

∂2f 

∂θ2 
(C.16) 

To satisfy the boundary conditions we take outgoing waves: 

f (θ, t) = f (t − τAθ). (C.17) 

Now we match our solution to the inner solution: The outer solution for 1 ≪ θ ≪ ǫ/δ 

matches Eq. (C.10), so expanding x2 for small θ we find: 

x = 
f (t − τAθ) 

→ 
f (t) 

− τ
 

df (t) 
= A(t) 

xSL 
+ x (t) (C.18) 

2 
θ
 

Thus: 

 
  

θ A  dt 
 

 

θ 

 
df (t) 

Large 
 

 
dA 

f (t) = A(t)xSL and xLarge(t) = −τA  
dt 

= −xSLτA 
dt 

(C.19) 

Then Eq. (C.11) becomes: 

dA A 
τ = − + c′ A2. (C.20) 

A dt 
 

 

∆′ NL 

Note this equation is only valid close to the marginal point where ∆′ ∼ O(ǫ/δ). The 

solution for A(t = 0) = A0 is: 

A(t) = A eγt 
1

 (C.21) 
1 + cA0(eγt − 1) 

∂t2 

∂t2 s 

(C.15) 

s 
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cA0 

( 
where τAγ = −∆′−1 and c = c′NL∆

′. The potential energy for this system is: 

 
V (A) = − 

 1  A2 A3 
− c 

 
(C.22) 

τAγ 2 3 

For linearly damped modes (γ < 0) the energy has a local minimum (V = 0) at A = 0 

and a local maximum (V = 1/(6c2τA|γ|) at A = 1/c. If the initial condition cA0 < 1 

then as t → ∞ then A → 0. When cA0 > 1 the solution grows explosively and reaches 

a finite time singularity when t = (1/γ) ln (1 −  1 ) (see [7]). In this case the field line 

is in the third category see Figure (4.c). Clearly the weak nonlinear assumption will be 

violated before the tube reaches infinite amplitude – a full nonlinear solution is needed 

in these cases to find the final equilibrium with energy E2. When γ > 0 the field line is 

in the fourth category see Figure (4.d) but again the lowest energy equilibrium state is 

outside the amplitude expansion. In [7] and [8] the weak nonlinear dynamics close to 

linear marginal stability is treated without the assumption of isolated flux tubes – this 

is a more complete treatment than this appendix since it includes the evolution of the 

flux tube cross section. Zhu et. al. [9, 10] have explored an expansion which extends 

the weakly nonlinear analysis from amplitudes of order δ1 to amplitudes of order δ2. 

To determine the equilibria the finite amplitude treatment explored in this paper is 

required. 
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