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estimate human error rates in
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In current telerobotics and telemanipulator applications, operatorsmust perform
a wide variety of tasks, often with a high risk associated with failure. A
system designed to generate data-based behavioural estimations using observed
operator features could be used to reduce risks in industrial teleoperation.
This paper describes a non-invasive bio-mechanical feature capture method
for teleoperators used to trial novel human-error rate estimators which, in
future work, are intended to improve operational safety by providing behavioural
and postural feedback to the operator. Operator monitoring studies were
conducted in situ using the MASCOT teleoperation system at UKAEA RACE; the
operators were given controlled tasks to complete during observation. Building
upon existing works for vehicle-driver intention estimation and robotic surgery
operator analysis, we used 3D point-cloud data capture using a commercially
available depth camera to estimate an operator’s skeletal pose. A total of
14 operators were observed and recorded for a total of approximately 8 h,
each completing a baseline task and a task designed to induce detectable but
safe collisions. Skeletal pose was estimated, collision statistics were recorded,
and questionnaire-based psychological assessments were made, providing a
database of qualitative and quantitative data. We then trialled data-driven analysis
by using statistical andmachine learning regression techniques (SVR) to estimate
collision rates. We further perform and present an input variable sensitivity
analysis for our selected features.

KEYWORDS

bio-mechanical modelling, feedback systems, psychology, sensory integration,
applications in industrial activities

1 Introduction

In hazardous environments, telemanipulators play a vital role in reducing risks to
human operators. Nuclear teleoperations are typically characterised by low automation
reliance (Seward and Bakari, 2005; Tokatli et al., 2021) and rely heavily on human-operated
systems (Chen and Barnes, 2014). This study focuses on the MASCOT teleoperation system
(Skilton et al., 2018) at the UK Atomic Energy Authority’s (UKAEA) Joint European Torus
(JET) fusion laboratory.

MASCOT operations require reliable and effective human-telemanipulator interfaces;
it is therefore imperative that control complexity and task load parameters are not
worsened by any implemented system. Therefore, a non-invasive sensor approach,
with an appropriate method of assessing the operator had to be used, where human
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factors have been considered to be able to test a minimally-invasive
monitoring system.

In the development and prototyping process, operator feedback
suggested a desire for training tools designed to encourage good
habits and any mechanisms that might improve operator health
and operational safety. Preliminary sensor data analysis suggests a
potential link between operator pose and task load (Piercy et al.,
2022), laying the foundation for further investigation.

To explore the relationship between bio-mechanical features and
operational safety, a teleoperation task designed to induce operator
errors was formulated. This task involved a wire loop buzzer game,
similar in design to a surgical robot training task (Liu and Curet,
2015), and a baseline ‘simple’ task. Operator monitoring studies
collected bio-mechanical data, task execution times, collision rates,
and workload assessments. Machine learning techniques were then
applied to estimate operator safety factors based on bio-mechanical
features, offering the potential for real-time safety warnings in
shared control models.

Szczurek et al. (2023) state that the success of teleoperations
hinges on three key aspects: Operators must effectively achieve
mission goals, adapt to unexpected challenges while minimising
risks to human life and equipment, and remain aware of their
changing capabilities throughout the task. They further assert
that these factors are closely tied to the operator’s emotional and
physiological state, which in turn impacts the operational success
rate. In line with this and other works (Chen and Barnes, 2014), we
included a task load measurement to analyse any confounding effect
of subjective task load on operator bio-mechanical data.

The aims of this research are to investigate the relationships
between bio-mechanical features and task performance, to
investigate and present relationships for more targeted further
study, and to improve operator monitoring systems based on the
previous points. This publication makes significant contributions in
two key areas. Firstly, it advances bio-mechanical feature analysis
for observing operators during telerobotic tasks. A novel collision-
rate estimation system is introduced, monitoring operator bio-
mechanical pose and estimating collision rates based on non-
intrusive sensors. Secondly, it offers a comparison of operators
through various metrics, shedding light on task performance and
factors influencing operator proficiency. The experiments were
conducted in a demanding environment at the JET facility in RACE,
providing valuable insights for improving human-telemanipulator
interaction in a real setting.

Section 2 describes the telemanipulator, sensor setup,
experimentation, and data processing. Section 3 presents results,
while section 4 and section 5 offer discussions and conclusions,
respectively.

2 Materials and methods

2.1 System description

The system has five main components that interact: the
telemanipulator (MASCOT remote side), the local manipulator (the
MASCOT local side), the visual interface, the operator, and the
operatormonitoring described in this paper. See Figure 1 for further
detail.

MASCOT (MAnipolatore Servo COntrollato Transistorizzato)
(Skilton et al., 2018) is a bilateral manipulator robot where the local
side is in a control room and the remote side is mounted on a
retractable boom arm that reaches inside the reaction vessel of the
JET fusion reactor (see Supplementary Figure S1). It is operated
by one primary operator who physically manipulates the arms of
the local system (see Supplementary Figure S2) and two secondary
operators. The remote MASCOT exactly mirrors the movements of
the local MASCOT.

Cameras are used to see inside the reaction vessel and the
MASCOT is also tracked via a digital twin that is displayed to the
operators. The secondary operators are responsible for monitoring,
boom arm and general system control, and camera aiming.

Azure Kinect depth-camera devices were used as a non-invasive
sensor to record the participants as they completed the tasks. The
pointcloud recordingswere used to estimate skeletal position of each
participant (Kar, 2011) (see Supplementary Figure S3) - this device
is validated for accurate skeletal tracking in bio-mechanical studies
(Clark et al., 2019).

2.2 Experimental data gathering

The studies were conducted in situ using the MASCOT
teleoperation system at UKAEA RACE. A total of 14 operators were
recorded using RGBD cameras for a total of approximately 8 h,
each completing two tasks. Operators were also asked to complete
questionnaires. During the wire loop task, collisions were recorded
and timestamped. A repeated measures design (all participants do
all tasks) was used, where the monitored variables were skeletal
position, as estimated from depth camera data, questionnaire
responses, and time and number of errors made. The Kinect devices
were placed on the same reference marker for each operator—2.3 m
to the front and 2.0 m to the right of the MASCOT base—and were
mounted on a tripod making it 1.63 m from the ground. The two
tasks consisted of dexterity tests to be completed using theMASCOT
telemanipulation device; this took less than 40 min per participant.
A total of 14 participants were sampled from the available operator
staff from RACE, but only 13 results were fully useable. Written
informed consent was obtained from all participants in line with
the School of Engineering Research Ethics Committee, University
of Manchester, who also approved the study.

Participant information was gathered at the start of the
experiment. This asked for teleoperation experience in hours,
dominant hand, height in metres, and hours of experience. After
each task, the participants were asked to complete a NASA-
TLX questionnaire (Hart and Staveland, 1988) and the Stanford
sleepiness scale (Shahid et al., 2012).

Both tasks were designed tomimic standard training operations.
The first task was the wire-wrapping task: This asked the participant
to wrap a wire around pegs in a specified pattern. The second task
was a wire loop buzzer game, which is similar to a training task used
for a surgical telemanipulation device (Liu and Curet, 2015), but was
a novel challenge for the MASCOT operators. The objective of this
game was to guide wire loops along a wire course without allowing
them to touch.

The wire-wrapping task counted how many pegs the
participant could wrap a wire around in a specified pattern in
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FIGURE 1
System overview presenting main components of the human-telemanipulator interface along with the experimented operator monitoring system and
the proposed entry point for operator feedback. The robot is controlled and exchanges data with the operator via the MASCOT local. The local
telemanipulator exactly matches the remote’s state and mirrors inputs from the operator. The operator monitoring block using the depth camera is our
contribution. The red dotted arrow represents planned further work.

a given time limit of 10 min. Clear instructions were given to
participants with regard to the pattern and the parameters for
testing.

The wire loop game timed how long it took each participant to
guide a wire loop along a wire path. Collisions between the wire
loop and the wire path caused an LED to light. The times of the
collisionswere recorded as they happened by time-stamping them to
the recording of the operator. This experiment took between 15 and
25 min for each participant.Theparticipantswere given instructions
on scoring and timing.

2.3 Data study

The purpose of this data study is to investigate links
between estimated skeletal position and operators’ errors. The
data study presented here is, therefore, a trial analysis, and
it is suggested that methodologies may be improved upon in
further work.

The data gathering study produced a dataset (3.4 TB) of 30 Hz
depth camera recordings to be processed. The first step of this
was skeletal position estimation using code based on the Microsoft
Azure Kinect development kit (Microsoft, 2023). This resulted in
8 h of skeletal tracking data. A computer-assisted observational
analysis was first used to identify any occlusion, loss of tracking,
and drift. Any such errors were noted and the times that the
errors occurred were excluded from the data. A double exponential
smoothing filter (Tang and Wang, 2016) was then applied to
all readings.

The proposed features for examination, based on previous
work (Abdel-Malek and Yu, 2001; Lowes et al., 2013; Solomon and
Wang, 2015; Liu et al., 2017; Pulgarin et al., 2018) and qualitative
analysis, are operator posture and arm movement dynamics. By
extracting specific motion parameters, we aim to gain insights
into the kinematic patterns exhibited during the tasks as they
relate to the rate of collisions. Data-driven techniques have proven
successful in HRI and driver-monitoring tasks (Pulgarin et al.,
2018; Wang et al., 2018) and also more specifically in human
action recognition using skeletal position estimation (Barkoky and
Charkari, 2022).

Therefore, a number of data-driven methodologies including
SVM, k-means classification, and incorporating time-series data
using distance-based approaches were trialled. Ultimately, we
could not reliably classify error events with these methods.
We next trialled regression analysis methods which seek to
match a function to an output based on dataset features. In
this case, we took the collision rate to be the time-series
output and trialled a kernel-based regressive machine-learning
solution (Regressive Support Vector Machine) for collision rate
estimation.

Support Vector Machines (SVMs) (Cristianini and Ricci, 2008)
operate in a high-dimensional space and function by maximising
the separation margin between classes or the distance to the
nearest training data points. In the context of skeletal data analysis,
SVMs offer an effective approach for bounding different features
extracted from the skeletal position data (Pulgarin et al., 2018).
SVR (Regressive SVM) (Yu and Kim, 2012; Zhang and O’Donnell,
2020) models operate by maximising margins from input vectors
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to a function in order to define an appropriate hyperplane to
describe the desired output while fitting the error margin to
an acceptable threshold (ϵ). In this way, SVR aims to optimally
minimise the distance from an estimated function output to the
true output—in this case the collision rate by optimising the
weight and bias coefficients of the input feature vectors. A radial-
based kernel function was used to accommodate both a non-
linear output response and a highly dimensional cross-sectional
input (Aizerman, 1964; Francis and Raimond, 2021). As we are
using time-series data, it is highly likely that the current estimation
will be similar to the previous estimation. For this reason, we
included some properties of the previous 5 s of estimation as a
feature vector.

The hyper-parameters of SVR are ϵ, C, and γ. The Parameter ϵ
controls the width of the insensitive tube around the prediction
hyperplane (i.e., allowable noise in training), C controls
the number of support vectors selected, and γ controls the
kernel size. We used the Keras tuner O’Malley et al. (2019)
to select optimal hyper-parameters through a random search
algorithm.

2.3.1 Data labelling
We recorded three states for each operator: resting, operating,

and errormade. Resting states were recorded when operators locked
the telemanipulator into place and released the input controls.
Resting states were excluded from data processing. The collision
label started 2 s before a collision was made and lasted for 5 s. The
collision rate was then a derived value equal to the mean of the
previous 30 s of collision data—it was calculated as amoving average
over 900 frames (30 s at 30 Hz) for each operator:

Average collision rate = ̄Rc =
∑n

i=n−900+1
Pi

900
,

where 900 is the number of data entries over 30 s, P is the value
of collision at each data point—either zero or one, and n is the
total number of entries. The average collision rate was around
one collision per 10 s (0.123 Hz), so 30 s was selected as a time
window to minimise regions of the collision rate output with a
value of zero.

2.3.2 Feature selection and extraction
Features can be derived from various aspects of the skeletal

estimation, such as joint angles, velocity profiles, or joint positions.
These features then serve as the input to the SVR and are the
independent variables for regression, allowing for meaningful
collision rate estimation. A time-series feature allows the model to
take previous estimations as an input. Spinal posture (lordosis and
vertical alignment) and arm movement dynamics were selected for
feature extraction, along with an input vector derived from previous
estimations in the time series.

Spinal lordosis (curve) and vertical alignment (lean) are
identified as key parameters in optimal sitting biomechanics
for vehicle drivers (Harrison et al., 1999) and work requiring
concentration and focus (Bhatnager et al., 1985; Drury et al.,
2008), which suggests validity for task performance
estimation. Arm movement dynamics are identified as a
key parameter for a number of studies tracking arm fatigue
(Takahashi et al., 2006; Hincapié-Ramos et al., 2014) and

general arm movement characterisation (Vermeulen et al., 2002;
Clark et al., 2019), including in teleoperation studies (Li et al.,
2018), which also suggests validity for task performance
estimation.

Spinal parameters were derived by isolating the spine
skeletal position estimates: neck, chest, navel, and pelvis, see
Supplementary Figure S3. These label points were analysed
trigonometrically to derive spinal lean and curve. Lean (Spinal
vertical alignment) was calculated as a measure of the total
angle of deflection from upright (determined by Azure Kinect
accelerometer) between the pelvis and neck. This is a measure of
how upright the operator is sitting:

Z− axis displacement from pelvis to neck

= zneck − zpelvis = zdisp,

Planar displacement from pelvis = p = √(x2
disp + y

2
disp),

Lean = L = tan−1(
p

zdisp
).

See Supplementary Figure S4.
The spinal curve (lordosis) was derived by measuring the

cumulative total angle of deflection between the pelvis and neck—it
is the sum of the magnitude of the angle of deflection from
each joint to the next (from the pelvis to the neck). This is
a measure of how ‘hunched’ the operator is. The deflection is
calculated by:

Height o f Pelvis to Navel link

= Δzpelvis−navel = zNavel − zPelvis,

Pelvis to Navel planar displacement

= ppelvis−navel = √(xnavel − xpelvis)
2 + (ynavel − ypelvis)

2,

De flection = dpelvis−navel = tan−1(
ppelvis−navel
Δzpelvis−navel

).

This deflection is calculated for each link: Pelvis to the navel, navel
to chest, and chest to neck. The total curve is then the sum of these
deflections,

Total curve = Ctotal =
neck

∑
pelvis

de flection.

See Supplementary Figure S5.
This process was repeated for both task datasets for each

participant, giving a baseline spine lean and curve, as well as a spine
lean and curve, over a time series during the error-inducement task.
When one is subtracted from the other, we are left with a relative
deviation from the baseline for each participant; the purpose of
this step is to normalise the data across participants to allow for
comparison over the time series.

The arm movement dynamics were extracted by isolating the
arm skeletal position and rotation estimates: neck, shoulder, elbow,
wrist, and hand. Each of these is given as a relative displacement
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FIGURE 2
SVR model system diagram.

from the previous joint. Velocity, acceleration, angular velocity,
and angular acceleration were calculated for each point through
numerical differentiation with regard to the previous sample period
(at 30 Hz). No steps were taken to normalise these values across
participants as they describe overallmotion dynamics, which is what
is being examined.

The time series features are three values derived from
the SVR outputs. These values are the previous discrete
estimation:

R̂(n−1),

the mean of the previous 5 s of estimations:

∑n−1
i=n−150

R̂i

150
,

and the value of the previous estimation subtracted from the
estimation 5 s ago:

R̂(n−150) − R̂(n−1).

2.3.3 Collision rate estimation models
The collision rate is to be estimated for every next sample at

30 Hz (Sampling period = τ = 0.0 ̇3 s), using the previously discussed
SVR over the time series. The discrete output of the SVR (R̂n) is
a periodical estimation of the 30-s average error rate, where the
training objective is the average rate of collisions over the previous
30 s. See Figure 2 for an input and output overview of the SVR
model.

Five tests were done to evaluate model effectiveness. One test
was completed to establish a baseline, and three further tests
were conducted as a preliminary independent variable sensitivity
analysis. These tests are designed to address our primary aim
of investigating the relationships between bio-mechanical features
and task performance. As part of a secondary aim inspired by
Pulgarin et al. (2018), one further test was conducted to evaluate
the model’s suitability for extrapolation. The results of the testing
are Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) which are used to compare model fitness (Chai and
Draxler, 2014).

The baseline test uses data from each participant individually
and estimates the collision rate of that participant. For training,
70% of the data was used, and validation was done with the
remaining 30%. Input vectors were arm dynamics features, spinal
features, and time-series features. This test was run on each
participant and used to evaluate a collision rate estimation
model for an individual. An example model output is given
in Figure 3 of the results.

Sensitivity tests were conducted to evaluate the model’s
sensitivity to the selected independent variables. All sensitivity tests
were conducted using 70% of the data for training, and validation
was done with the remaining 30% and was conducted for each
participant. The sensitivity tests are similar to the baseline test but
omit a feature vector.

The first sensitivity test does not use any time-series knowledge.
Input vectors are spine features, and armdynamics features only.The
second sensitivity test does not use any spinal features, and the third
sensitivity test does not use any arm dynamics features. The purpose
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FIGURE 3
Collision Rate Estimation Example. Participant 7–true collision rate and estimated collision rate showing separated testing data in green. This model is
trained with all feature data on the first 70% of the data and collision rate is estimated for the remaining 30%. The RMSE for the testing data is 0.026.

of these tests is to evaluate the effect of the missing input on the
model.

The extrapolation test was conducted to evaluate the
generalisability of the collision rate estimator by estimating the
collision rate of a participant using a group-generated model: The
test uses data from all participants and estimates the collision rate of
one unknown participant. All input vectors were used, and this test
was run on each participant.

3 Results

3.1 Testing results

Supplementary Table S1 shows the overview of the testing
results of each participant–participant 11 is excluded from analysis.
The maximum number of collisions during the wire loop game
task was 149, the minimum was 76, and the average was 102
with a standard deviation of 19.6. The average time taken was
832 s (13.9 min) with a standard deviation of 210 s (3.5 min); the
minimum time taken was 597 s (10 min), and the maximum was
1443 s (24 min).

3.2 NASA TLX responses

Supplementary Table S2 shows NASA-TLX results which
examine the self-reported workload, and these results are presented
graphically in Supplementary Figure S6. In the NASA TLX
assessment methodology, the ratings range from 0% to 100%.
Groups were also separated by experience, with the requirements
being more than 1000 h of experience, less than 1000 h but more
than 100, and less than 100 h of experience. Separated groups are
represented graphically in Supplementary Figure S7.

Beginners reported higher mental, physical, and temporal
demands compared to experts. Both beginners and experts often
reported higher felt performance than intermediate operators.
Experts also reported significantly lower effort compared to
others, while frustration levels were relatively consistent across
all groups.

3.3 Bio-metrics

There was no detectable relationship between groups separated
by handedness, height, or sleepiness. Raw data are shown in
Supplementary Table S3. Sleepiness was rated using the Stanford
sleepiness scale—modified to use the same marking scheme as
NASA-TLX. A total of 11 out of 13 participants were right-handed
(P11 excluded), average height was 1.77 m, and average sleepiness
was 2.9 on a modified Stanford sleepiness scale. This indicates
‘Functioning at high levels but not at the peak and ability to
concentrate’ (see Supplementary Table S4).

3.4 Collision rate estimation

3.4.1 Sensitivity analysis
The collision rate estimator results in Table 1 show the testing

results for individual interpolation along with tests where an
independent variable was excluded. Presented is the mean number
of collisions per second, the mean absolute error (MAE), and the
RMSE (Root Mean Square Error) in collisions per second for each
participant under each testing condition.

The lowest average RMSE and MAE were obtained where Spine
data was not used. The RMSE and MAE range and standard
deviation were also the lowest for this group. The next lowest RMSE
andMAEwere using all data, then armdynamics excluded, and then
the time-series data excluded group.
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TABLE 1 Error Rate Estimation Sensitivity Test results table: Showing SVR results from testing data (30% of each data set) with feature sets removed. Presenting
the average number of collisions per second and theMean Absolute Error (MAE) and RMSE (Root Mean Square Error) in collisions per second. Themean standard
deviation and range of these values are also presented.

  All data
included
(baseline)

Time-series
data excluded

Spine data
excluded

Time-series
data excluded

  Mean
collision
rate

MAE RSME MAE RMSE MAE RMSE MAE RMSE

p1 0.124 0.023 0.030 0.122 0.133 0.016 0.020 0.040 0.044

p2 0.090 0.022 0.027 0.085 0.097 0.021 0.026 0.026 0.034

p3 0.153 0.033 0.041 0.141 0.155 0.024 0.031 0.043 0.056

p4 0.132 0.025 0.032 0.124 0.135 0.019 0.023 0.036 0.042

p5 0.117 0.026 0.032 0.112 0.124 0.022 0.026 0.038 0.048

p6 0.146 0.033 0.040 0.136 0.151 0.024 0.032 0.052 0.069

p7 0.103 0.021 0.026 0.098 0.107 0.019 0.022 0.029 0.035

p8 0.103 0.027 0.033 0.099 0.111 0.023 0.028 0.040 0.049

p9 0.084 0.019 0.023 0.081 0.088 0.019 0.023 0.027 0.035

p10 0.130 0.024 0.031 0.121 0.132 0.018 0.023 0.038 0.049

p12 0.155 0.030 0.037 0.148 0.156 0.020 0.025 0.036 0.048

p13 0.148 0.025 0.031 0.138 0.147 0.019 0.023 0.035 0.047

p14 0.112 0.021 0.026 0.109 0.117 0.017 0.021 0.033 0.044

Mean 0.123 0.025 0.031 0.116 0.127 0.020 0.025 0.036 0.046

Std. Dev 0.023 0.004 0.005 0.021 0.021 0.002 0.004 0.007 0.009

Range 0.071 0.014 0.018 0.068 0.068 0.008 0.013 0.026 0.035

Presented in Figure 3 is an example of the error rate estimator
against the true error rate for one participant.This estimationmodel
is trained on the first 70% of the data and collision rate is estimated
for the last 30% using all feature data. The RMSE for the testing data
is 0.026 collisions per second.

3.4.2 Extrapolation
The collision rate estimator (Supplementary Table S5) shows

the testing results for the entire group against an unknown
individual.

3.5 Other notes

Participant 11 was excluded from all processing as they did not
follow instructions during the wire loop task. Participant feedback
indicated that the wire loop task-induced concentration, frustration,
fatigue, and a sense of competition. The wire wrapping task was
simple and did not induce such responses, making it potentially

suitable as a baseline. There were also observable trends such as
the number of errors appearing to negatively correlate with the
time taken, indicating that slower operators committed fewer errors.
During the debriefings, participant feedback seemed to indicate that
posture and work position may have been influencing performance
and fatigue felt and that fatigue may have been influencing
posture, equally.

4 Discussion

NASA-TLX results indicate some methodological validity as
the wire loop task was able to produce a varied response across
experience ranges, and it was found to be similarly frustrating by
all participants. This suggests that task difficulty, not experienced
task load, was the primary collision-rate influence. It is important
to note that these results are self-reported and should be interpreted
cautiously, considering factors like over or under-confidence
(McKendrick and Cherry, 2018).
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Additional questionnaires provided data for normalisation
but have not shown significant correlations with specific
features. Further investigation is needed, particularly considering
individual differences such as height, handedness, and sleepiness,
which could impact body dynamics and lead to a more
generalised model.

Using the regression models, we were able to demonstrate that
there is a detectable and consistent property of arm dynamics
that can be used to predict the error rate for this task for
individual operators. The regression model proved most effective
when using participants’ own data to estimate their collision rates.
The generalisation tests did not demonstrate error rate prediction
results significantly better than random (Mean RMSE = 0.073).
Individual differences in error reactions may contribute to this
inaccuracy, suggesting the need for new techniques or features to
enhance model generalisation.

RMSE values from the feature sensitivity testing allow for a
comparison between models. The mean RMSE values, given in the
number of collisions per second, across participants, were 0.031 (all
data), 0.127 (no time-series data), 0.025 (No spine data), and 0.046
(no arm dynamics data). From this, we can infer that arm dynamics
and time-series data played significantly more influential roles than
posture on model accuracy.

Due to the use of the kernel trick (Aizerman, 1964; Francis
and Raimond, 2021), it is not possible to directly examine the
relationships between the estimation and specific feature variables
(Üstün et al., 2007). In this instance, it was a necessity to use a kernel-
based methodology as the data was both cross-sectional and in a
time series, and the required output was a complex polynomial.
Since there does seem to be enough vector data to moderately
accurately estimate the collision rate, it would suggest that further
study is warranted.

Comparison of RMSE between participants indicates that
more accurate models can be made for some participants than
others; this may imply that the behaviour of some participants
is more consistent than others. The accuracy of the results
gained through support vector machines for body motion analysis
is comparable to other works in this domain (Perego et al.,
2009; Alghowinem et al., 2013; Shetty and Rao, 2016), which
implies that the information gained by the skeletal estimation
is suitably discriminating for individual operator performance
estimation.

As all on-site testing was completed within 1 h for each
participant, it is possible that the success of the estimation
model is due to very consistent input data. This means that
the regression model may be over-suited for that particular
task on that particular day and factors such as clothes, day of
the week, tiredness, fluctuations in mood, and health may all
have a significant impact on the model accuracy in a multi-day
scenario.

The findings from these results could have a significant
impact on industrial telemanipulation safety though it is only a
first step. A generalisable and all-purpose human error detector
for manipulation would be a very desirable tool though much
more development would be needed in a number of fields for
this to become feasible. The results presented here show that
using a non-invasive sensing solution, it is possible to build a
collision rate estimator for an individual for one task. Currently,

the potential uses for such an estimator are for the purposes
of a monitored, repeated training exercise and for monitoring
very repetitive tasks. With further studies, it may be possible
to construct more generalisable estimators in two domains:
generalisability to people and generalisability to tasks. If it is
possible to generalise across people, this tool could be used as a
feedback method as part of a training program or be used for
operator performance evaluation. If it is possible to generalise tasks,
then this tool could be trained for an individual and deployed
for improved operational safety, as well as health and safety
monitoring.

5 Conclusion

This paper contributes to the methodology for human-
telemanipulator interface evaluation, incorporating the bio-
mechanical pose, the NASA TLX assessment method,
questionnaires, task execution time, and recorded collisions.
It introduces novel approaches for identifying operator errors
and evaluating operator performance. The insights gained here
can guide research in other human-telemanipulator interaction
applications and contribute to the field of AI estimation for
enhanced operational safety in high-risk environments. Future work
will explore different analysis techniques, includingNeural-Network
and Deep Learning approaches, with data from additional field
studies.

Due to the non-invasive bio-mechanical feature capture
methodology, the techniques explored here can easily be applied
to many other domains such as medical teleoperations. Further
studies could also explore the integration of other data sources
such as physiological sensors, Infrared sensors, or eye tracking
cameras.

The telerobotic tasks in hazardous and sensitive environments
are a source of increased operator stress and workload. Therefore,
the design, development, and evaluation of human-centred robot
interfaces play an essential role in the success of reliable and safe
operations. This publication has presented important first steps
aimed at improving the monitoring process for telemanipulator
operators and informing the subsequent developments of human-
telemanipulator interfaces.

Data availability statement

The datasets presented in this article are not readily available
because of a UKAEA and project funding agreement. Data available
upon request to author after 01/01/2025. Requests to access the
datasets should be directed to TP thomas.piercy@manchester.ac.uk.

Ethics statement

The studies involving humans were approved by the University
of Manchester Ethics Review Board. The studies were conducted in
accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study. Written informed consent was obtained

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1287417
mailto:thomas.piercy@manchester.ac.uk
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Piercy et al. 10.3389/frobt.2023.1287417

from the individual(s) for the publication of any potentially
identifiable images or data included in this article.

Author contributions

TP: Conceptualisation, Formal Analysis, Investigation,
Methodology, Writing–original draft, Writing–review and editing.
GH: Supervision, funding acquisition, Writing–review and editing.
AC: Supervision, Writing–review and editing. IZ: Supervision,
Writing–review and editing. EL: Writing–review and editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article.
This work has been carried out within the framework of the
EUROfusion Consortium, funded by the European Union via the
Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion) and from the EPSRC [grant number
EP/W006839/1]. Supported by The University of Manchester and
UKAEA RACE.

Acknowledgments

This work has been carried out within the framework of the
EUROfusion Consortium, funded by the European Union via the
Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion) and from the EPSRC (grant number
EP/W006839/1). Views and opinions expressed are, however,

those of the authors only and do not necessarily reflect those
of the European Union or the European Commission. Neither
the European Union nor the European Commission can be held
responsible for them. This work was supported by The University
of Manchester and UKAEA RACE.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that theywere an editorial boardmember
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2023.
1287417/full#supplementary-material

References

Abdel-Malek, K., and Yu, W. (2001). Realistic posture prediction for maximum
dexterity. SAE Trans. 110, 2241–2249. doi:10.4271/2001-01-2110

Aizerman, M. A. (1964). Theoretical foundations of the potential function method
in pattern recognition learning. Automation Remote Control 25, 821–837.

Alghowinem, S., Goecke, R., Wagner, M., Parkerx, G., and Breakspear, M. (2013).
“Head pose and movement analysis as an indicator of depression,” in Humaine
Association Conference on Affective Computing and Intelligent Interaction, New York,
2-5 Sept. 2013 (IEEE), 283–288. doi:10.1109/ACII.2013.53

Barkoky, A., andCharkari, N.M. (2022). Complex network-based features extraction
in rgb-d human action recognition. J. Vis. Commun. Image Represent. 82, 103371.
doi:10.1016/j.jvcir.2021.103371

Bhatnager, V., Drury, C. G., and Schiro, S. G. (1985). Posture,
postural discomfort, and performance. Hum. Factors 27, 189–199.
doi:10.1177/001872088502700206.PMID:4018811

Chai, T., and Draxler, R. R. (2014). Root mean square error (rmse) or mean absolute
error (mae)? – arguments against avoiding rmse in the literature. Geosci. Model. Dev. 7,
1247–1250. doi:10.5194/gmd-7-1247-2014

Chen, J. Y. C., and Barnes, M. J. (2014). Human–agent teaming for multirobot
control: a review of human factors issues. IEEE Trans. Human-Machine Syst. 44, 13–29.
doi:10.1109/THMS.2013.2293535

Clark, R. A., Mentiplay, B. F., Hough, E., and Pua, Y. H. (2019). Three-dimensional
cameras and skeleton pose tracking for physical function assessment: a review of
uses, validity, current developments and kinect alternatives. Gait Posture 68, 193–200.
doi:10.1016/j.gaitpost.2018.11.029

Cristianini, N., and Ricci, E. (2008). Support vector machines. Boston, MA: Springer
US, 928–932. doi:10.1007/978-0-387-30162-4_415

Drury, C. G., Hsiao, Y. L., and Pennathur, P. R. (2008). Posture and
performance: sitting vs. standing for security screening. Ergonomics 51, 290–307.
doi:10.1080/00140130701628790.PMID:18311608

Francis, D. P., and Raimond, K. (2021). Major advancements in kernel
function approximation. Artif. Intell. Rev. 54, 843–876. doi:10.1007/s10462-020-
09880-z

Harrison, D. D., Harrison, S. O., Croft, A. C., Harrison, D. E., and Troyanovich, S. J.
(1999). Sitting biomechanics part i: review of the literature. J. Manip. PhysiologicalTher.
22, 594–609. doi:10.1016/S0161-4754(99)70020-5

Hart, S. G., and Staveland, L. E. (1988). “Development of nasa-tlx (task load index):
results of empirical and theoretical research,” in Human mental workload of advances
in Psychology. Editors P. A. Hancock, and N. Meshkati (China: North-Holland), 52,
139–183. doi:10.1016/S0166-4115(08)62386-9

Hincapié-Ramos, J. D., Guo, X., Moghadasian, P., and Irani, P. (2014). “Consumed
endurance: a metric to quantify arm fatigue of mid-air interactions,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, York, NY,
USA, April 22 - 27, 2006 (Association for Computing Machinery), 1063–1072.
doi:10.1145/2556288.2557130

Kar, A. (2011). Skeletal tracking using microsoft kinect.

Li, H., Zhang, L., and Kawashima, K. (2018). Operator dynamics for
stability condition in haptic and teleoperation system: a survey. Int. J. Med.
Robotics Comput. Assisted Surg. 14, e1881. doi:10.1002/rcs.1881.E1881RCS-17-
0057.R4

Liu, B., Li, Y., Zhang, S., and Ye, X. (2017). Healthy human sitting posture
estimation in rgb-d scenes using object context.Multimedia Tools Appl. 76, 1573–7721.
doi:10.1007/s11042-015-3189-x

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1287417
https://www.frontiersin.org/articles/10.3389/frobt.2023.1287417/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2023.1287417/full#supplementary-material
https://doi.org/10.4271/2001-01-2110
https://doi.org/10.1109/ACII.2013.53
https://doi.org/10.1016/j.jvcir.2021.103371
https://doi.org/10.1177/001872088502700206.PMID:4018811
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1109/THMS.2013.2293535
https://doi.org/10.1016/j.gaitpost.2018.11.029
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1080/00140130701628790.PMID:18311608
https://doi.org/10.1007/s10462-020-09880-z
https://doi.org/10.1007/s10462-020-09880-z
https://doi.org/10.1016/S0161-4754(99)70020-5
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1002/rcs.1881.E1881RCS-17-0057.R4
https://doi.org/10.1002/rcs.1881.E1881RCS-17-0057.R4
https://doi.org/10.1007/s11042-015-3189-x
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Piercy et al. 10.3389/frobt.2023.1287417

Liu, M., and Curet, M. (2015). A review of training research and virtual
reality simulators for the da vinci surgical system. Teach. Learn. Med. 27, 12–26.
doi:10.1080/10401334.2014.979181.PMID:25584468

Lowes, L. P., Alfano, L. N., Yetter, B. A., Worthen-Chaudhari, L., Hinchman,
W., Savage, J., et al. (2013). Proof of concept of the ability of the kinect
to quantify upper extremity function in dystrophinopathy. PLoS Curr. 5, 1.
doi:10.1371/currents.md.9ab5d872bbb944c6035c9f9bfd314ee2

McKendrick, R. D., and Cherry, E. (2018). A deeper look at the nasa tlx and
where it falls short. Proc. Hum. Factors Ergonomics Soc. Annu. Meet. 62, 44–48.
doi:10.1177/1541931218621010

Microsoft. Azure kinect development kit. Available at: https://learn.microsoft.
com/en-gb/azure/kinect-dk/.Online; Accessed: 2023-April-10.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019).
Kerastuner. Available at: https://github.com/keras-team/keras-tuner.

Perego, P., Forti, S., Crippa, A., Valli, A., and Reni, G. (2009). “Reach and
throw movement analysis with support vector machines in early diagnosis of
autism,” in Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, USA, 15-19 July 2024, 2555–2558. doi:10.1109/IEMBS.2009.
5335096

Piercy, T., Herrmann, G., Skilton, R., Cangelosi, A., Romeo, M., and Pulgarin, E. J.
L. (2022). “Investigating the relationship between posture and safety in teleoperational
tasks: a pilot study in improved operational safety through enhanced human-machine
interaction,” in Towards autonomous robotic systems: 23rd annual conference, TAROS
2022, culham, UK, september 7–9, 2022, proceedings (Berlin, Heidelberg: Springer-
Verlag), 29–39. doi:10.1007/978-3-031-15908-4_3

Pulgarin, E. J. L., Herrmann, G., and Leonards, U. (2018). “Drivers’ manoeuvre
prediction for safe hri,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), New York, October 23–27, 2022 (IROS).

Seward, D., and Bakari, M. J. (2005). “The use of robotics and automation in nuclear
decommissioning,” in 22nd International Symposium on Automation and Robotics in
Construction, USA, June 3-5, 202 (IEEE).

Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M. (2012). Stanford sleepiness
scale (SSS). New York, NY: Springer New York, 369–370. doi:10.1007/978-1-4419-
9893-4_91

Shetty, S., and Rao, Y. S. (2016). Svm based machine learning approach to identify
Parkinson’s disease using gait analysis. Int. Conf. Inventive Comput. Technol. (ICICT) 2,
1–5. doi:10.1109/INVENTIVE.2016.7824836

Skilton, R., Hamilton, N., Howell, R., Lamb, C., and Rodriguez, J. (2018).
Mascot 6: achieving high dexterity tele-manipulation with a modern architectural
design for fusion remote maintenance. Fusion Eng. Des. 136, 575–578.
doi:10.1016/j.fusengdes.2018.03.026

Solomon, C., and Wang, Z. (2015). Driver attention and behavior detection with
kinect. J. Image Graph 3, 84–89. doi:10.18178/joig.3.2.84-89

Szczurek, K. A., Cittadini, R., Prades, R. M., Matheson, E., and Di Castro, M. (2023).
Enhanced human–robot interface with operator physiological parameters monitoring
and 3d mixed reality. IEEE Access 11, 39555–39576. doi:10.1109/ACCESS.2023.
3268986

Takahashi, C. D., Nemet, D., Rose-Gottron, C. M., Larson, J. K., Cooper, D.
M., and Reinkensmeyer, D. J. (2006). Effect of muscle fatigue on internal model
formation and retention during reachingwith the arm. J. Appl. Physiology 100, 695–706.
doi:10.1152/japplphysiol.00140.2005.PMID:16254073

Tang, T. Y., and Wang, R. Y. (2016). “A comparative study of applying low-latency
smoothing filters in a multi-kinect virtual play environment,” in HCI international
2016 – posters’ extended abstracts. Editor C. Stephanidis (Cham: Springer International
Publishing), 144–148.

Tokatli, O., Das, P., Nath, R., Pangione, L., Altobelli, A., Burroughes, G., et al.
(2021). Robot-assisted glovebox teleoperation for nuclear industry. Robotics 10, 1.
doi:10.3390/robotics10030085

Üstün, B., Melssen, W., and Buydens, L. (2007). Visualisation and interpretation
of support vector regression models. Anal. Chim. Acta 595, 299–309.
doi:10.1016/j.aca.2007.03.023

Vermeulen, H.M., Stokdijk, M., Eilers, P. H. C., Meskers, C. G.M., Rozing, P. M., and
Vlieland, T. P. M. V. (2002). Measurement of three dimensional shoulder movement
patterns with an electromagnetic tracking device in patients with a frozen shoulder.
Ann. Rheumatic Dis. 61, 115–120. doi:10.1136/ard.61.2.115

Wang, P., Liu, H., Wang, L., and Gao, R. X. (2018). Deep learning-based human
motion recognition for predictive context-aware human-robot collaboration. CIRP
Ann. 67, 17–20. doi:10.1016/j.cirp.2018.04.066

Yu, H., and Kim, S. (2012). SVM tutorial — classification, regression and ranking.
Berlin, Heidelberg: Springer Berlin Heidelberg, 479–506. doi:10.1007/978-3-540-
92910-9/TNQDotTNQ/15

Zhang, F., and O’Donnell, L. J. (2020). “Chapter 7 - support vector regression,” in
Machine learning. Editors A. Mechelli, and S. Vieira (USA: Academic Press), 123–140.
doi:10.1016/B978-0-12-815739-8.00007-9

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1287417
https://doi.org/10.1080/10401334.2014.979181.PMID:25584468
https://doi.org/10.1371/currents.md.9ab5d872bbb944c6035c9f9bfd314ee2
https://doi.org/10.1177/1541931218621010
https://learn.microsoft.com/en-gb/azure/kinect-dk/.Online
https://learn.microsoft.com/en-gb/azure/kinect-dk/.Online
https://github.com/keras-team/keras-tuner
https://doi.org/10.1109/IEMBS.2009.5335096
https://doi.org/10.1109/IEMBS.2009.5335096
https://doi.org/10.1007/978-3-031-15908-4_3
https://doi.org/10.1007/978-1-4419-9893-4_91
https://doi.org/10.1007/978-1-4419-9893-4_91
https://doi.org/10.1109/INVENTIVE.2016.7824836
https://doi.org/10.1016/j.fusengdes.2018.03.026
https://doi.org/10.18178/joig.3.2.84-89
https://doi.org/10.1109/ACCESS.2023.3268986
https://doi.org/10.1109/ACCESS.2023.3268986
https://doi.org/10.1152/japplphysiol.00140.2005.PMID:16254073
https://doi.org/10.3390/robotics10030085
https://doi.org/10.1016/j.aca.2007.03.023
https://doi.org/10.1136/ard.61.2.115
https://doi.org/10.1016/j.cirp.2018.04.066
https://doi.org/10.1007/978-3-540-92910-9/TNQDotTNQ/15
https://doi.org/10.1007/978-3-540-92910-9/TNQDotTNQ/15
https://doi.org/10.1016/B978-0-12-815739-8.00007-9
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 System description
	2.2 Experimental data gathering
	2.3 Data study
	2.3.1 Data labelling
	2.3.2 Feature selection and extraction
	2.3.3 Collision rate estimation models


	3 Results
	3.1 Testing results
	3.2 NASA TLX responses
	3.3 Bio-metrics
	3.4 Collision rate estimation
	3.4.1 Sensitivity analysis
	3.4.2 Extrapolation

	3.5 Other notes

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

