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A set of layer equations for determining the stability of semi-collisional tearing modes
in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor
radius limit, is provided. These can be used as an inner layer module for inclusion
in numerical codes that asymptotically match the layer to toroidal calculations of
the tearing mode stability index, A’. They are more complete than in earlier work
and comprise equations for the perturbed electron density and temperature, the ion
temperature, Ampere’s law and the vorticity equation, amounting to a twelvth-order set
of radial differential equations. While the toroidal geometry is kept quite general when
treating the classical and Pfirsch—Schliiter transport, parallel bootstrap current and
semi-collisional physics, it is assumed that the fraction of trapped particles is small
for the banana regime contribution. This is to justify the use of a model collision term
when acting on the localised (in velocity space) solutions that remain after the Spitzer
solutions have been exploited to account for the bulk of the passing distributions. In
this respect, unlike standard neoclassical transport theory, the calculation involves
the second Spitzer solution connected with a parallel temperature gradient, because
this stability problem involves parallel temperature gradients that cannot occur in
equilibrium toroidal transport theory. Furthermore, a calculation of the linearised
neoclassical radial transport of toroidal momentum for general geometry is required
to complete the vorticity equation. The solutions of the resulting set of equations
do not match properly to the ideal magnetohydrodynamic (MHD) equations at large
distances from the layer, and a further, intermediate layer involving ion corrections
to the electrical conductivity and ion parallel thermal transport is invoked to achieve
this matching and allow one to correctly calculate the layer A’.

Key words: fusion plasma, plasma instabilities

1. Introduction

Several phenomena in tokamaks, such as the saw-tooth oscillations, plasma
disruptions and confinement degradation, appear to involve tearing mode activity.
Studies of the linear tearing stability for hot plasma have exploited the separation
of scales between a narrow ‘inner’ radial region around a resonant surface where
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reconnection processes occur and the remaining ‘external’ region where a marginal
ideal magnetohydrodynamic (MHD) model is adequate. The ideal MHD solution,
characterised by a quantity A’, is matched to a corresponding quantity Alw +iy)
calculated from the inner solution in order to determine the mode frequency w and
growth rate, . Whereas early studies of linear stability used a simple resistive MHD
model for the inner layer, present day, hot, tokamaks require a much more complete
physics model.

In a previous paper (Connor, Hastie & Helander 2009) we presented layer equations
for determining the stability of semi-collisional tearing modes in a toroidal plasma
in the banana regime of collisionality (v; ¢ < wy, Where v g ~ vj/f,2 is the effective
collision frequency and wj; ~ f,vwj/L. the bounce frequency of a particle of species j,
fi <1 being the fraction of trapped particles, v; the frequency for 90 degree Coulomb
collisions and L. the connection length around the torus), therefore incorporating
neoclassical physics. The semi-collisional ordering involves the balance: w Nkﬁvfhe /Ve,
where k; = kyx/L, is the wavenumber parallel to the magnetic field (k, is a poloidal
wavenumber, x is the distance from a rational surface and L, is the magnetic shear
length), vy is the electron thermal speed and v, is the electron 90 degree collision
frequency, so that parallel transport processes compete with the mode frequency, w.
This balance serves to define the semi-collisional width, §, = (wv,L?/kjv?)"/2.

These equations were formulated for general axisymmetric geometry, thus in
this respect extending the work of Fitzpatrick (1989). A consistent ordering for
semi-collisional theory requires that, as well as the inclusion of parallel collisional
transport processes, one should also incorporate collisional cross-field transport. The
equations of Fitzpatrick (1989) did indeed include both these transport processes,
albeit using a simplified model collision operator. While Connor er al. (2009)
discussed the role of cross-field transport based on a Lorentz collision operator,
thus ignoring like-particle collisions, the emphasis was on the basic semi-collisional
physics and these effects were ignored in the bulk of the paper. The role of the present
paper is to rectify this limitation by providing a general axisymmetric formulation,
including cross-field transport which can be used as a semi-collisional tearing mode
layer module for inclusion in numerical codes that asymptotically match the layer
to toroidal calculations of the tearing mode stability index, A’ (Glasser, Greene
& Johnson 1975). We also include some additional, relatively small, effects in the
electron continuity and thermal equations arising from the poloidal magnetic drift
that were ignored by Connor et al. (2009).

The model pitch-angle scattering collision operator used by Fitzpatrick (1989)
provides a good description for distribution functions localised in velocity space
around the trapped particle regions, but electric fields, parallel pressure gradients
and thermal forces due to parallel temperature gradients generate distortions of the
whole passing particle region. Nevertheless, this can be circumvented by the use of
the Spitzer functions (Cohen, Spitzer & McR. Routly 1950; Spitzer & Harm 1953)
to account for these drives, as demonstrated by Rosenbluth, Hazeltine & Hinton
(1972), Connor et al. (1973) and Helander & Sigmar (2002); we shall also adopt
this approach here. The calculation closely follows neoclassical transport theory but
differs in one respect. In equilibrium the electron density and temperature are constant
on a flux surface and the only parallel driving force is due to the toroidal electric
field, resulting in a role for the Spitzer function related to electrical conductivity. In
stability theory, however, parallel gradients of both density and electron temperature
can persist, leading to the need to involve the Spitzer function describing the parallel
heat flux. The calculation below makes one assumption, namely that the fraction of
trapped particles is small. This can be relaxed, albeit leading to more complex algebra,
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 3

but the distribution functions become less localised and the asymptotic accuracy of
the approach is compromised. The derivation of the vorticity equation calls for an
expression for the neoclassical radial transport of toroidal momentum and we extend
previous work by Wong & Chan (2005) to cover more general geometry, though
needing to use a model collision operator in order to determine the required adjoint
function.

In §2 we introduce the gyro-kinetic model for electrons and ions. An appropriate
ordering scheme is used to obtain solutions for the ion and electron distribution
functions in §3. To complete these solutions, equations for the perturbed densities
and temperature of the two species are required. These are obtained in §4. The
numerical values of various averages of collision frequencies that are required in
§§3 and 4 are listed in appendix A. Section 5 develops Ampere’s law and the
vorticity equation to complete the set of equations needed to calculate A(w—l—iy).
A calculation of the neoclassical radial transport of toroidal angular momentum for
general geometry, required in the development of the vorticity equation, is performed
in appendix B. Section 6 introduces a set of convenient normalisations for the set
of equations. In § 7 we discuss an intermediate radial region needed to connect the
solutions of this set of equations to the ideal MHD region where A’ is defined.
Finally, we draw some conclusions in § 8.

2. The gyro-kinetic equation

We describe the plasma species j by the gyro-kinetic equation (Tang, Connor &
Hastie 1980):

(—iw+vb -V + vy - V)g; — exp(—iL;) C(g; exp(iLy))

eify v, 6B
= —1% w —a); (((p — vHAH)JO(Zj) + i?”-ll (Zj)) s (21)

J

where b is a unit vector along the magnetic field, v, is the particle velocity along the
magnetic field, @ is the perturbed electrostatic potential, A is the perturbed parallel
component of the vector potential, §B; is the parallel component of the perturbed
magnetic field and we have written the perturbed distribution as

. Ej(p
d8f; = g exp(iL)) — ———fo;s (2.2)
A

with perturbation time dependencies: exp(—iwt). Here, L=k x v, - b/$2;, with k the
wavenumber and v, the velocity perpendicular to the magnetic field, is the gyro-phase
factor, the operation A is a gyro-phase average over the quantity A, J,, are Bessel
functions of argument: z;=k v, /$2;, fo;=n;(x)(m;/2nT;(x))** exp(—m;v*/2T;(x)) are
Maxwell distributions, with x the poloidal flux, and

. my* 3 T; 3¢nn; aenT,;
o, =w,; | 1+n -5)) wy=——, = ;
/ S\ 2T, 2 ej dx d¢nn;

B
R vﬁ:c), Qj:i, IC:b-V-b,
2 I’I’lj

(2.3)

with v the particle speed, £2; the cyclotron frequency of species j, k the curvature
vector, £ the toroidal mode number of the perturbations and all gradients are taken at
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constant (i, v), with u:mjvi/ZB the magnetic moment, or (4, v) with /l=2,u/mjv2
(thus vy = ov+/1 — AB, with o = sign(v)). If 6 is defined so that the safety factor
q=B:-V¢/B-V6O, where B=1IVp + Vg x Vyx with ¢ the axisymmetric toroidal
angle, is a flux function, then

V—bVGaerVa—I a+1a (2.4)
1= 36 Y90 " RB \og " qo0 )" '
If we let ‘
&, 0, 9) = g(x, )™ (2.5)
etc., then
Vg~ (g —m) 4 D] o (2.6)
18 Rqu q 8j 89g’ > .

where £q —m=1{£q'x; ¢ =dq/dy with x=x — x,, x, being the resonant surface where
m=4{£q(x,;). Here prime denotes a derivative with respect to x, or equivalently, x.
Thus

IUH d .y . n T
R'Bg <89 +ilg x) 8+ vy - Vg —iwg; — exp(—iL;)Ci(gj exp(iL;))

ef 5B
= —lej;;)j(w — a)f]) (((p — UHA”)J()(ZJ') + ij:?”]] (Zj)> . (27)

Assuming both species are magnetised with k, v, /§2; <1, we expand exp(iL;) =1 +1iL;
and the Bessel functions for small z;. We also introduce A;:

N o
8=~/ ( - ) + hj, (2.8)

T; w

where Ay =—(1/w)V ¥, so that the parallel electric field, £, is given by

I 9 .,
E = ~ B (ae +itg x> (@ —V). (2.9)

Then the fundamental kinetic equations are

vy (9 ., : AT
R°Bq (89 +itq x) hj + vy - Vh —iwh; — (b)) — L;Ci(gLy)

=—iw—-o)|®-V+-—2L6B | - L ([1--2 VU, 2.10
! T; (@ w*f) ( 282; ! T; w Y4 ( )

J

We note that relations (2.2) and (2.8) imply the perturbed density n; is given by

- ele/ Wy Ej(p ~
= (1= ) =+ 40

J J

where 7; is the leading contribution to the density from #;.
The perturbed and equilibrium quasi-neutrality conditions,

nezﬁ,-

n; n,=n; =np, (2.12a,b)
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allow us to obtain

n, n ed e¥ Wie n n  ed eY¥ T: w,,
= + (1— ); v (14

. (2.13a,b
Tea)) (2.13a,b)

no no Te Te w no no T, T,'

Similarly, from (2.2) and (2.8) we can obtain the perturbed temperatures:

T, T, eV w.n. T, T, eV w.n
Te_T. e¥oun Ti _Ti e¥oen (2.14a,b)
Te T Tg w T, Tz Te ()

where T, = (2T;/3) [ d*v(mv?/2T; — 3/2)h; is the contribution from h; etc.

3. The ion and electron solutions
3.1. The ion solution

We consider the ‘collisional’ case: v; > w. Introducing the proton charge, e, we have

I d -
Rzlg (80 +ilg x) hi + vgi - Vh; — iwh; — Ci(h;) — LiCi(g:L:)

foz UL efOI a)T
= ® —¥ + —45B, . V. (3.1
-z (0 — o) + ) T ) v 3.1

1

We solve this equation by introducing an ordering scheme in terms of a small
parameter, &;, where wg.; ~ v; ~ &;wp;; © ™~ Wgrg ™~ sfa)bi; we also order z; ~ ¢;. Although
we shall later assume a small number of trapped particles, f, < 1, we do not order it
in &;. The radial magnetic drift frequency, wg,;, exceeds the azimuthal drift frequency,
wyrg, because of the narrow radial width of the semi-collisional layer.

Writing h; = ho; + ;1 + €7hy; + - - -, the lowest-order solution satisfies

dho;
Y =0 = hy=hu(v, 4, x, 0), (3.2)
200
while in first order we obtain
IUH 0 f()l Cl)T~ 0
7hl_ ri hl Chl - AP ] 33
ROBq 00 i = ~Vari oi + Ci(hor) — T » )V axlﬁ (3.3)
where we note
V I'U“ 8 IU” (3 4)
Vgri = Vg * = ——]. .
dg =Pt Y X = poBg a6 \ 2
Thus hy; for passing particles can be annihilated by applying the operation:
(B( . .)/UH):
(..)= ) d6 ?{ f(...)dee %dee, (3.5)
B Vo B.VH
since

1 R?
1 _9 (3.6)
B-VO B-V¢o I
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For trapped particles, we integrate along the bounce orbit, summing over ¢ in the
usual way, to obtain the constraint

B
<Ci(h0i)> =0, 3.7
Y
where the integration is now between bounce points. This determines hg;, yielding:
Ay 3\ T
hoi = | — 2o 2 fon 3.8
0 o + (” 2) T } Jo (3.8)

where u? =m;v?/2T; with j=1.
The equation for A; can then be integrated to give

1 U” e Cl)*i lI//‘f + h/ “I‘ H (U /l X, 0 ) (3 9)
i [ i ’ s Ny ’ .
Qi T, w 0 o !

where H;; remains to be determined. This can be rewritten as

hyi=—

P TR O 2 O\ 40| 4l
li — Q 1 + u 2 2 fbl—i_ ll(U’A’x7 G)’

, e’ Wyi A P ed
AD— "7 ( — 7’ 1 ) Sy i) =_ (£ ,
T tm) =\t o T, .10

A — wyin; ey’ + ]A"i/ B Tl/
2 o T, T,) T’

where pg; = nT;, on using (2.13) and (2.14). Note that the quantities p; and T,.’ thus
defined, depend on w.
The equation for h,; is

wl 8, ol 0 (1o ohi _ e (3.11)
RBgdo " RBqoo \ ;) ox T |

(where, for most purposes, we can ignore the small ion—electron collisional term, but
see §7 later), which provides the constraint

<fqmm>=o (3.12)
II

For the ions, we take the model pitch-angle scattering collision operator that conserves
momentum (Rutherford et al. 1970):

2u 0 ad
Cii(h) = vi(u) (L(h) + = U|| ,(h)f()z) , L= :g 91 (/lv” 8/1h>

H,(h) / d lel(u)vH // d Uf(),l)”(lxt)mlUH /2T19 V”(M) — vOlw(u)a

netln A [ m; \* W | 1 ) + n' (1)
wW=—55 =] » ew=[(1-=—=)nu :
O dme2m? \ 2T 4 22 )" 2u

P

n(u):jRAudte . )

(3.13)
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The constraint (3.12) yields an expression for Hy; so that:

hi= U\\—HV||£ AV + (0 > AY ) for+ o HVifo,  (3.14)
2 By 2 T,~ By

where H(A — A.) is the Heaviside function and
o _ ov'Bo /*f da _ By
T2 1wl T Buw

Using (3.14) and integrating over velocity space:

Bm) dvdAa
/(... v—Z/ BRI (3.16)

we can calculate UJ; self-consistently. Thus

(3.15)

1T, B o (uPvy) 5 (BU?)
Us=—-"(1—f— ] AV =AY B 3.17
v fzim,-< f<32>) [ 1 +< vl 2) T ) G0
where we have defined the symbol {.....} by
2\ mv
(w) = /d*vw (’Z;) T”’: 3f/ duw(yute™ (3.18)
and
mv*\ mv,V, B f0 B?
IE mv=\ my vy - 319
/ vw<2T> T By Ta gt (3-19)
where f, =1 —f,, with f, the trapped particle fraction deﬁned by
f=1- 2 /AC 1 (3.20)
o4 )y (JT-2B) '

Solving self-consistently for (BU},), substituting for AY) and AY from (3.10) and using
the values of the collisional integrals from appendix A, we obtain:

o AT | B | e’ I
(BU)=——|—+ —1.17—|. (3.21)
e (po T T;
Then one can calculate the ion parallel flux from (3.14), to give
U — IT; Pl L QD' 7f B2 T/ (3.22)
T eB \pu T K ' '

It remains to address the determination of 7; and f,-; n; is already given in terms of 7
by (2.13), whereas 7; is obtained by applying the operator [ (...)(mv?/2)d’v to the
next-order equation,
U”I ih UHI i (IU) th,
RBq 30 ' R2Bgao \ 2,) ox
i 2
= _ifm(w —l; ( - 2U5i53||> ; (3.23)

since it annihilates the first term on the left by means of the flux surface average and
the collision term, C; (hy;), due to its conservation properties. This will be elaborated
in §4.2.

+ vaoi + Vhoi — iwho; — Ci(hy) — LiCi(goiL;)
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3.2. The electron solution

For the electrons, equation (2.10) becomes

vy (o8 ., - AT
RZBq <80 + lﬁq X) he + Vge * Vhe - lwhe - Ce(he) - Lece(geLe)
efoe

foe r vl
— b -y 6B
T (0 —w,,) ( + 26, B T,

) !
—i (1 _ > Ve V. (3.24)

w

We employ a related ordering scheme to that of the ions to solve (3.24) for the
electrons, introducing another small parameter, &,, where g, ~ V, ~ €,Wpe; © ~ Wag, ~
&2wy.. However, the semi-collisional electron model requires the additional ordering:
kjvine ~ €*vine /L., Where ky = €q'x/Rq. With h, = ho, + &,h1, + €2hy. + - - - , the lowest-
order equation is

dhg,

50 0 = hoee=nhe(v, 4, x,0), (3.25)
while in first order we obtain
IUH 0 0 Eﬁ)e a)T 0
—hie = —Vge—hoo + C,(hg) + — [ 1 — = e —W. 3.26
RoBq ag e = TV pyttoe t Celloe) o ( w ) " ox (9.26)

As in the case of the ions, /s, can be annihilated for passing particles by applying
the operation: (B(...)/v;). For trapped particles, we again integrate along the bounce
orbit, summing over o in the usual way. Thus, we obtain the constraint

B
<Ce(h0€)> =0, (3.27)
Y
which determines hy,, yielding:
i 3\ T,
hoe = | — 2o2) 2 feo 3.28
0 o + (M 2) Te] Jo (3.28)

where now u? = m,v?/2T,. The energy exchange term in the electron—ion collision
operator is neglected (see (3.33) below), which makes the perturbation in the electron
temperature independent of that in the ion temperature.

The equation for 4, can then be integrated to give

_ IU”

hle
2,

e w!
{ (1 _ ) ', —hge] +H, A3, 0), (3.29)
T, w

where the function H;, remains to be determined. This result can be rewritten as

A(e)zelI// (1_a)*g(l+n)> B @_'_Zé __ P, e?
! Te (] ‘ ny Te p()e Te ’ (330)
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with po, =nyT,, where again we have used (2.13) and (2.14). The next-order equation
is

ul 8 ¢ 09 (Iv"> Ie  WIGY, o, 33D

R*Bq 0 ' R2Bq 30 ax = gR’B

e
leading to the constraint

B illgx /1
—C.(h) )= - ) hoe, (3.32)
] g \R

which determines H;.(v, 4, x, o).
The electron collision operator takes the form

Ce(h) = Cee(h) + vei(u) (L(h) + %v” UIIifOe) ; (3.33)

e

where C,.(h) is the electron—electron collision operator, U); is the ion bulk parallel
velocity, v,;(u) = vo./u’ with vy, = nge* In A(m,/2T,)*?/(4reim?).

At this point we introduce the two Spitzer functions (Spitzer & Harm 1953): A()
and h?, where

iregx (n, T, irtq 5\ T.
C.(hV) = 1 qx (e Le foe: C.(h)=v g x (u2 - ) —fo, (3.34a,b)
q Te 2 Te

so that the constraint equation becomes

<fcg(hle _ hm>> 0, (3.35)
[I

with A, = h) + h?. Now that the collision operator is acting on a localised (to the
trapped and barely passing region) distribution function we can use a model pitch-
angle scattering operator for the electron—electron collisions (Rutherford ef al. 1970).

Cee (h) = Uee(u) (L(h) + UII e(h)ﬁ)e)

Uj.(h) = /d3vvee(u)v”h//d3vﬁ,evee(u)mevﬁ/2Te, (3.36)

ee(u) =Voe (p(u) .
u’

To remove the ion flow we write

m,v
@ _— M el
hes _hs +

Ujifoo, h2=h?. (3.37a,b)

e

The functions h{"? are given by Cohen er al. (1950) and Spitzer & Harm (1953):

v D! (“) Vo D¢ (u)
= g .. hY=_l g0 ..
$ R2B fO s RZB .ﬁ]
S(]) _ 4ifei ng/x ;le j\-‘e _ 41Te[ Iﬂq/x ﬁg e(@ — l]/) Wy ey
RN ng T.) 37 g \poe T, o T,
g _ At Itq'x T. it Itgx (T, w.n.e¥
“3Jm q T 3J% ¢ \T, o T,

(3.38)
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10 J. W Connor, R. J. Hastie and P Helander

where 1,; = 3+/7/4v, and DV and D® are related to the normalised responses to a
parallel electric field and thermal force, tabulated in Spitzer & Harm (1953) (to be
precise, D'V = —D/A and D® = 2D/B as given in Spitzer & Harm (1953, Tables I
and II)).

So, on defining v, =v,, + v,;, the constraint equation becomes

B mev
< |:VeL(hle - hv) + T( ee ||g(hle hs) + l)eiUIIi)fOe:| > = 0, (339)

vy e

where hy =h" + h'®. Thus

9 9 Bov? [, 5\ .
o (/1(1)) 81Hw> =50 <A§ ) 4 (uz _ 2) A;>> fi

2 /B SODD () + SOP@
<v(veeU:+ve,-U,»)foe> Cheant (”))”< >f0e (3.40)

mev
2T, 2u

Integrating (3.40) in A, we find

I . B . 5\ .
hle = 5 (U“ — HV) (A(l ) + <M2 — 2> A;)>f0e
m, (SUDD () + SP D (u))
+ |: <B0 (UeeUHe + ver1)> <R2 >:| HVHﬁ)e

T B()M
(3.41)

Using the definition of Uj, in (3.36) and integrating over velocity space, we can
calculate Uy, (hi, — hy) self-consistently. However, as argued by Helander & Sigmar
(2002), <BU|Te> (BUy;) + 0(f,), provided f; < 0(v,;/v.). Thus result (3.41) simplifies

to
1 ~ B 5
hy, = —HV, — A(t’) 2 (6) .
1 7] <U|| ”Bo> ( iy (M 3 Jfo

me(BUy) | (SVDV(u) +SDP ) < 1 > HYV,
+[ T . % )| B foer  (3.42)

It remains to determine 71, and 7,; these are obtained in § 4.1 by applying the operators
(f (..)d%v) and [ (...)(m.v?/2)d*v to the next-order equation:

I 0 I o0 (I oh,, ilL
i h ol <v||> 2 4 qxvllhle+vd0e Vh,

RBqd0 ° ' RBqdo \ 2,) ox ' qR°B
2

iwhg, — Cu(hyy) — LConL) = S w— ol (& —w + 2= 5B
Oe e\Il2e eLel8oele _Te Oe e 20

e

,,) . (3.43)

4. The perturbed density and temperatures

In this section we derive equations for the perturbed electron density and
temperature and ion temperature in terms of the perturbed potentials @ and V.
The ion density perturbation can be obtained from the leading-order quasi-neutrality
condition, see (2.12).
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 11

The other perturbed field that these quantities depend on is éB), which is obtained
from the perpendicular component of Ampere’s law. The perpendicular current can
be calculated from the first order in a Larmor radius expansion of the distribution
function (2.2), again recalling (2.8), (3.8) and (3.28). Introducing this result into the
perpendicular component of Ampere’s law yields (Tang er al. 1980)

8By P,

BT B
In § 5 we will discuss the parallel component of Ampere’s law and find that in leading
order, ¥ is independent of the poloidal angle, 6. Since 7; and f} are also independent
of 6, it follows from (2.13) and (2.14) that n;, T] and @ are also independent of 6.

p=i(T,+T) +no(T, +T). 4.1

4.1. The perturbed electron density and temperature

As mentioned earlier, the determination of 7, and 7, is accomplished by applying
the annihilators ([ (...)d*v) and [ (...)(m,v?/2)d’v to the third-order equation (3.43),
which both eliminate #3,.

The first operation results in

I o0 (I dohs, ilg’
/ d3v ll -— il 2 + . qx/ dstthe
R’Bq 30 \ 2,/ ox R?Bq
+ </ d3vvd9e ° VhOe> - </ d3vLeCE(gOeLe)>

. e 8By
=lwh, + 1ng <T(a) — W) (P — V) — ?(w — (1 + 77e))> . 4.2)

Here one can recognise the first three terms on the left-hand side as representing,
respectively, the surface-averaged contributions to the electron continuity equation of
the divergences of the radial flux, I, (which we will see below is related to Pfirsch—
Schliiter and neoclassical radial transport), the parallel flux, I'j., and the ‘azimuthal
flux’, I'* (Fitzpatrick 1989), while the fourth corresponds to the contribution from
classical radial transport.

The second, the energy moment, takes the form

UHI 0 IUH mgv2 8h2€ lgqu me
</ d3vR23q872 (9 2 ox RZBq Foy e
2
+ </ d3vme2v Vipe 'Vh()e> — </ d3v eCe Le)>

i (34 ™) Cing (20— it £ n@ — )
= Siw | e+ — ing 2T, W — Wy Ne

e

- 55 (@—o.0+ 277e))> ; (4.3)

with a similar interpretation in terms of fluxes.
It is helpful to separate the electron and ion distributions into a Pfirsch—Schliiter-like,

hS, and a banana neoclassical part, A, and express the quantities 7; and f} in terms
of n; and T;. Thus, for the electrons we write

hie — hes = h2S + B2, 4.4)
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12 J. W Connor, R. J. Hastie and P Helander

WP — Tvym, l_iz 1_'_ u2—§ E foe+1v”me 1_372
¢ eB (B%) ) | poe 2) T, eB (B?)

pl ed’ foo— dit,vy Ilg'x [ 1 B 1
X 8 — = —( =
pe )T 3/ g \RB (B \R

y {D“)(”) [ﬁe_ (@ —¥)  w.(l+n) e‘P]
Poe

where

u Te w Te
DPw) | T, win. e¥
e _ . 4.5
u T, o T, fo (4.5)

and

Im, [ B B\ [ 7 5\ 7 1
he* = " — - — P+<uz_>e_117 Joe
e \ (B?) By Doe 2) T,

dit,; Ilg'x [ B HV, 1
— U — —_
3/t g \(B) " B, R

DY) [p.  e(@—¥) w.(l+n.)e¥
X —_— J—
Poe Te @ Te

u

DPw) | T, win.e¥
T, o T,

}ﬁ)e’ (4.6)

u

where we have substituted for Uj; from (3.22).
Similarly, it is convenient to separate hy; in (3.14) into Pfirsch—Schliiter, hl’.’ S and
banana contributions, h?a“, writing:

by = HEY + hPS + nB, (4.7)

where A% describes the mean flow:

v _ _ IvaB pl + ed’ L 17T 7 4.8)
: eB) |po T o '
while
Tvym; B? P ed’ 5\ T
RS = -0 (g — £ 22 ) S 4.9
’ eB &) |pe T T\ T2 | *9)
and
Im; [ Bv HV, T
pBan — 0 2L ) 2 1.33) 2, 4.10
, ; <<Bz> 5| @ =137 (4.10)

The first term represents a drifting Maxwellian and therefore does not contribute to
the ion—ion collision term.
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 13

4.1.1. Electron radial fluxes

First, we consider the radial fluxes arising from classical transport. Recalling the
definitions of Ay and L; and using the conservation of momentum in like-particle
collisions, we obtain

__\ d
</ d3vLeCe(g0eLe)> = 7(Frce>
dr "
T, & /|Vx] eVr p. _e® 5\ L.
_mT. & /|Vx| /d%mvcei o (2o L (2 =2) 2 )|, @i
e dx? \ B? T, po. T 2) T

where r represents a ‘radial-like’ coordinate labelling flux surfaces, v, being the
corresponding radial component of the velocity. We note the gyro-correction to the
scattering target ion distribution has the form

pi  e® , S\ T
. —— | = ;i 4.12
veB<p0,+T,-+(u Z)Tifo ( )

The velocity integral can be evaluated by observing that it involves the matrix
elements of the collision operator between Laguerre polynomials given by Helander &
Sigmar (2002, §4.5). The resultant contribution from (4.11) is the familiar Braginskii

expression:
d T, /IVxP\ & (p 3T,
&ipey ol (IXEN (231, (4.13)
dr' " €21, B2 dx* \ po. 2T,
A similar calculation for the classical heat flux results in
ey mele [VXEN & [ 3h 66 T (4.14)
= — noT,, .
dr 4. ezrei B2 dx2 2 Poe T, 0
so that the classical energy flux, (QF,) = (¢<,) + (5/2)(I5,), satisfies
d . mT, [IVxI*\ d& [ p T,
— =— — | — +091— T,. 4.15
dr(Qr,e) o1, < B2/ dx® \ po. * T, o (4.15)

Turning to the leading term in (4.2), we can eliminate /,, by integrating by parts in
0 and using (3.31) to obtain

/d3v U”I i IU” h2 E(FNC>
R’Bq 30 \ 2.)

I 21 a dhe IEI X
N <Q/ &' leBq 200 ( ) d; + RZZ ﬁhOe UHCe(hle) >, (4.16)
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14 J. W Connor, R. J. Hastie and P Helander

where the first term vanishes if the equilibrium is up—down symmetric, which we take
to be the case here. Thus, finally, we recognise this contribution as the divergence of
the neoclassical radial flux

d d /1
5<F,{Vf> =- <Q / v C,(hy, — B — hg§>)> : (4.17)

Likewise, for the thermal equation, we find

d d /I
a@ff) =% <-Qe/ d3va C (hye —h) — h§§>)> . (4.18)

To evaluate the velocity integrals in (4.17) and (4.18), we recall the result (3.19).
Considering the Pfirsch—Schliiter and banana contributions separately, we introduce
their respective distribution functions. From momentum conservation, it is again clear
that only e—i collisions contribute to (4.17) in both cases. For the Pfirsch—Schliiter
contribution the calculation has the same structure as the classical case, with the
substitution v, — v, in the distribution function. However, since we are now
considering the difference h, — h,,, the scattering ‘ion distribution’ is effectively
at rest when evaluating the collisional matrix elements. Recalling (4.5), the result is

1d () — mT, (/1 1\ & (p 3T,
nodr' "¢° ety B? (B*)) dx*> \ po. 2T,
iIr’eq'T, 1 1 1 d
eq R2B? (B%) \ R? dx
i)e e¢ a)*e ew
x |x(Pe 4 (1 _ Py +ne)) . (4.19)
Doe Te @ Te
For the heat flux, we obtain
1 d T.I 1 1\ d& [ p T,
(o) = -~ ) m o ) s 091
ny Te dr ’ e? Tei B2 (B2> dx? Poe Te
ir’eq'T, 1 1 1 d
eq R2B? (B?) \ R? dx

5 De ed Te ey Wye
x| — — 1— 1+42n, . 4.20
X lzx (pOe T +Te + T ( ” 1+ 77)))] ( )

Finally, we consider the banana contribution. For the classical and Pfirsch—Schliiter
contributions we used the exact collision operator, since the distributions were not
localised in velocity space. However, the banana contribution to k), — hy is localised
and it is sufficient to use the model collision operator (3.36), which leads to:

" I m, mv Ban
(I—VeB ° VX) = _; < B / d 'UU”VE <h1e _h(l) h(Z) T “( Vee He + velUt)ﬁ)e>

4.21)
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15
Substituting expression (4.6), using result (3.22) and approximating (BU},) = (BU);)
as discussed below (3.41), we obtain

1d PmT.{v.} & | p v} S\ T. T,
77<FrBean> — _ftmi{v}i r + fu'v} ) 21174
no dr ' 62 (BZ) dx2 Poe {ve} 2 Te Te

47,ilq  f; I T d De e(@—-V) w,, ey v,DW
+ X E—— (I +n)—
3Jmq (B2 \R*/ e dx Poe T, 1) T

e u
Te Wyelle e veD(z)
+ T e T » . (4.22)

Introducing the numerical values of the various collisional averages given by the
integrals in appendix A, this becomes:

1 d meT & | p T, T,
— By = 153 —— | 41392 —1.17=
l’l()dr( e ) fl ) eidx pOe + Te e:|
itg'T, d De b -y » 17
/i ad o |Pe _ 4@ =W O op)©
( ) R2 eq dx Doe Te w Te
+ oozi (4.23)
0277 ) .
Similarly, we find
1 d, a Pm, T, {u*v,} & | p (uv,) 5\ T, (W) 5\ T
O =g gl g 2) 7 T -3)7
nOTe dr € (B ) dx Poe {Lt Ve} 2 Te {Uii} 2 Te
il P\T,d . -y e 17
L/ x| (Lo~ @B ey )Y o)
qu (B2) \R?/ e dx Doe T, 1) T,
T, wen.e¥
L D?}| |, 4.24
(o) o] w2
leading to
1 d 4 Pm,T, d& | p T, T;
— QP = —1.70f —— — | — —0.40=—1.17—
nOTe di‘ <Qr,e ) ﬁez BZ).[H dx2 [pOE Te e]
I\ itgT, d De b -y » 17
_ogr i (ENEGTd (P AP W) 0wy gs, Y
(BZ} R2 eq dx Poe Te w e
T.
+o.25TD . (4.25)

4.1.2. Parallel electron fluxes and plasma current
The contribution to (4.2) from the parallel flux I, i

illg'x illg'x
<R2Bq / d3vv|lh]e>=<RzB UHe( le)> (426)
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16 J. W Connor, R. J. Hastie and P Helander

The part arising from the Pfirsch—Schliiter-like part of %, can be calculated directly,
but for the banana contribution we take advantage of the self-adjointness of the
collision operator to circumvent the fact that A, is not localised in pitch angle, while
still allowing us to use the model collision operator (Helander & Sigmar 2002).

We first consider the parallel current, which is needed for Ampere’s equation, but
also provides an expression for U;,. We can readily calculate jﬁ’s, the current arising
from the Pfirsch—Schliiter-like contributions to the electron and ion distribution
functions given in (4.5) and (4.9), obtaining:

1 B > 41, illg'xpo.e

:PS — _I~/ -
4 b (B B)) " 3/m mg

1 B /1 b _e@—¥) o, ew [DV
(ms—w () | (-5 - a7

+ Te Wyelle ev D(Z) (4 27)
T, o T, u ’ '
which becomes
1 B i10q'xpo,
= —dp (= — o ) = 197,
B (B?) m.q
1 B /1 Pe  e(@—w) 0347, o, ew
—— — (= —— — 14+1.34n,)— ||.
* <R23 (B?) <R2>> Kpoe T T e 0TI )]
(4.28)
To calculate the banana regime neoclassical contribution, we write
Ji=Jis + Gy = Jis) =Jis — e/ vy, — hey), (4.29)
where
j”S:I’l()EU”i —6‘/ d3vv||hex, (430)
so that
. 4z, illg'x T,
g = ———Npe—— —
Jn 3/ " RBgm,
DD (w) pe  e(@—V¥) w, e¥
= — - (1 +n0)
u Poe Te w Te
DPw) (T. w.n.e¥
Ze , 4.31
+ { u } T, o T, *31)
which reduces to
, ilgx T, | p. e(® —V) T, . ew
;=197 i—— | —— ——+0.34— — — (14 1.34n, . (4.32
it M0 B . [poe T + T P n)Te (4.32)
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 17

Now, recalling (3.34), we can write

(e = hgy) — HD).

eR*B / 4, )

Ji=s= _e/ dovy(h, —hy) —hQ) = — <O

Oe
(4.33)
Using the self-adjointness property of C,(h'"), we obtain
o ¢R’B A
=== / Fo=—Collne =) = ), (4.34)
Oe
so that
47, D
Gi =) =~ R )UHC (e = hy) — h))

3w

4 ei D(l) e

= A [ @2 (= h® My ) @3s)
3ﬁ u Te

where we have used the definitions (3.38) and the model electron—electron collision

operator (3.36), since (hj, —h{) —h?) is now localised. Evaluating this expression

using result (4.6)

_ 4tang f,BIT v, DD 5 O\ vwDP) T
Gy = Jis)™ 3w | i =
pOe u 2 u T,
5 {uzuﬁ} v, DY T/ 41, \* f,Biltgxny | 1\ eT,
2 {u) u T, 37 (B%)q R/ m,
P e(@—W) w,, ew v, D12
Pe =7 77 1 .
* |: (poe Te ( + 7 ) Tg u?
T,  en.e¥ v, DY DP
o o) e g (436
leading to
f:BIpge P T T/
)P = 1612 11 19 ¢ +1.95-+%
(] J” (BZ) Doe e Te
Biltq' eC Lei 1 Ne D -V *e Te
_ o sglBiltdxpoce T [ 1 L_u_w (141, 17,76) Yoo kel
<B2>qme R2 Poe Te e Te
4.37)
Combining expressions (4.28), (4.32) and (4.37), we obtain
1 B iltq'xpy.e B 1
o= (L2 B gy, we B/ 1
B (B m.q (B*) \R?

[(1 —1.31f) < _Ae—9) w*e(l 0 ) +0.34(1 — 0.69f,)
Poe Te e

T, wun.e¥
X — — PR
T, o T,
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18 J. W Connor, R. J. Hastie and P Helander

The first term is the usual Pfirsch—Schliiter current while the second term represents
the effects of the parallel electron pressure gradient, the parallel electric field and
parallel thermal force, whereas the final term is the bootstrap current.

We can now calculate U), from

Ji
Uje=Uji — e’ (4.39)

with U); given by (3.22). The contribution to the electron continuity equation from
the divergence of the parallel flux (4.26) is then:

illg'x
0\ Zapg Ve
R?Bq
_iPg'x, 1 1 1 N i’ 0q'xpof; /1
~ g P \\rB/ T B \R e(Bq \R?
X [167—1 19——312 ]
Poe Te Te
iI*Lq'xpo. 1 P; n ed’ 1.17 / 1 'Ti’
eq R*B? Poe Te <B2> R? Te
1.97 7, (1eq'x)*po. / 1 \°
me(B)q*

R2

[ ( D e(®—-Y) o, eW)
a-131H) | —— — — 1+ n.)— ) +0.34(1 — 0.691))
Poe Te w Te

Te Wyelle ew
X —_—
T, w T,

The energy equation involves the parallel heat flux

Qe=/dv

We can decompose Q). as

(4.40)

5 m,v> 5
U”h]e =d)e + 2n0T UHea e :/ dBU < 5 — 2Te> thle~ (441)

evz
Uuhm. (442)

5 . ) s m
QHe = Qllse + (qlle - q‘\se) - B (]H _.]Hs)Te; QHse = d’v
npé

The Spitzer contribution is given as

5 4T, 1€Iqx T,
7n0TeUHl 3\/—’10 eRzB m

QHse = )

(4.43)
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 19

resulting in

5 IT, | (p: e® 1. 17B2 T/
Qer = ——nol,— [("‘ ) fl ]

2 eB Poe Tg (BZ

- 6.26”0Te

itlgxt; T, [ p. e(®—¥) T, w. ew
= -—+058=—-—=(1+1583)— ] .

Rqu M\ Poe Te Te w Te
(4.44)

Introducing the Pfirsch—Schliiter part of h;., equation (4.5), we can calculate the
corresponding Pfirsch—Schliiter contribution to Q. directly, obtaining:

PS ~ 5 .
51T, B ' T 1eg'xT, 1 B 1
Zle S I + 2|+ 6_26n0Tfei£ = [ =
Poe 2 e B (B2> Poe Te meq R2B <B2> R2

[([ye o(@—w) 0587, w. w)]
x [ =% - + (1+158ne) : (4.45)

Poe Te Te Te

We formulate the banana neoclassical contribution for g, by analogy to the
neoclassical current, jj., as in (4.35), so that it can also be evaluated using the
localised distribution function (4.6):

_dn [ DO
(Gje — Gjse) = —7

Using expression (4.6), we obtain the banana contribution to g.:

) vV <hle —h — @ — @U”i f06> . (4.46)

e

BITe B / T/ T,
(@je = q1se)™" _ BT | 04 P +0.64-¢ — 0.05-%
e(B2> p()e Te e
.Iﬁ ! Te e Lei B 1 ~e @ _ lI/ e
1 0.46/116d T PocT 1 &_u_” (1+194ne)7
m.q (B2) \R>/ | po. T T,
T.
+0.94T] . (4.47)

Inserting the results (4.37), (4.44), (4.45) and (4.47) into (4.42), we finally obtain

1 iEIq’xQ _ 5iPqxT, 1 1 1 4 N T
noT, \R?Bq "/ ~ 2 ¢q RB2/ (B2) \R? poe T,
f < 1 > 012¢/xT, [ P T T/] 5101%¢/xT,

4. 18— —236— —7.86
(BZ) R2 eq Poe Te Te 2 eq

1 / @’ 117 / 1\ T gx)? /1 \* T,z
w | (LN (P e®) T JINT ¢ pettla” [ 1 Ter
RZBZ Poe Te (BZ) R2 Te (Bz}CIZ R2 m,

T, o T,
Te e *e lI/
+ 0.58(1 — 0.31f) ( _ e € ) (4.48)
T, w T,

Downloaded from https://www.cambridge.org/core. UKAEA, on 19 Sep 2019 at 10:10:57, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377817000757


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377817000757
https://www.cambridge.org/core

J. W Connor, R. J. Hastie and P Helander

20
4.1.3. Azimuthal electron fluxes
Finally, we require the contributions from the azimuthal drift terms that appear in

(4.2) and (4.3).
</ d3vvde-Vh0e> = —i<// d3vvde-(mV9—€Vgo)hOe>
m, T, o

- —i<" X (VInB+k) - (mV6 — LV )
v B
_i<n X(“‘)m—'_).(mvg_gv(p)><
m, \ngp T,

2. B
(4.49)

This can be expressed as
L0 ( +B) + LY’ Vx-Vo o’
HoPo RB® X 30

</ dPovy, VhOe> =i£f <<32 o
(4.50)

e(d—Y) D (1 N e) )

(136 _e@e-v)
Poe Te

Similarly, we also obtain
5 mev?
d’v Vye * Vh()g
5. T, 1 a( B+ 1 2V W)aB2
= —1L— —_—
2 By P RB? 20
Te e(d—-v Wi ey
AP ZE) ey 2ne>> noT..
w T,

Pe
X | —+ -
(p()e Te Te

e
(4.51)

4.2. The perturbed ion temperature

In the case of the ions there is no need to obtain the ion density equation for #; as

it is determined by quasi-neutrality and given in (2.13). To obtain the equation for T,
) (mv?/2) v to (3.23).

we apply the operator [ (
/d3v U”I 0 IU” mivz% T /d3vm,v2
R’Bq 80 2 ox
muv—__ 3. pi  ed eV T; w,.
— 43 C..(o.L: z - 14+ 22 1 .
(f etz (7 5 (o em))
@ -0+ 280 (o L 1420
> B @ Tea)*e ni .
(4.52)

e

e

ing (22 + (1 +n)
—1 P— e
no 2T T, —w ni
Integrating the first term on the left-hand side by parts and substituting for h,; from
(3.11), it can be written as the divergence of the neoclassical ion heat flux
d mv* Iv
Ny — (@ LCi(hy) ) . 4.53
(Q > dx </ vV—/—— ) Q Cu( ll) ( )
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The second term is the ion azimuthal flux and the third is the ion classical heat flux:

d o 5 mv?
dr(Q,,-)—</dv

i il

This can be evaluated in a similar manner to the electron case, resulting in

mT; /|1Vx|? & 4
e’r; \ B? nO@Ti’ (45)

d o
(@) =~

where 7, = 3y/m/4)Aneim*T;* /npe* In A.
The calculation of the Pfirsch—Schliiter heat flux proceeds similarly to the electron
one and yields

d (0") 2m,»TiI2 1 1 d? 7 (4.56)
- ; = -5 P Ay n 7 A i’ .
dr =" et B/  (B)) dw
while the banana regime contribution is
d B m lefl 4 {szii}z d2 ~ m,‘Tilsz d2 ~
— (OB = Vi) — —T;,=-0.92 —T;. (4.57
(O ==y (v = = o S gl (45D

Finally, the azimuthal drift contribution is

/dgvmivzv Vi 5 ET 1 9 D upe+ B+ 1 2V WaB2
- i e i = ——{— —_— . —_—
g Vat o 2 B2 oy [P rRB2) X750

p T e(d—Ww Wie ey
x<”+ T T )VloTi-

Poi ? Tl w Te
(4.58)

4.3. Summary

Here we collect together the above results to obtain the final form of the equations
determining the electron density and temperature perturbations in terms of the
perturbed fields @ and W¥. The first, equation (4.2) can be written in the form

d ) )
a«ni) + (T2 + (T2 + ikyo (Do) + ko (I7)

. ~ *xe ed HopP Wye
—lw[n— wT0+<BZ>( 21 +n0) } (4.59)

where kjo=€Ig'x(1/R*B)/q, ky =£q(|V0|) and we have substituted (4.1) for §B). From

(4.13) we have:
d m, T, d /|Vx|? p 3T
—(rfy=—_¢c = . 4 : 4.13
ar el e2re,~dx2< B > pee 2T,) " (4.13a)
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from (4.19):
ii(pf’j) — _m"'Teﬂ i _L d E_ig
no dr ' ezfei B? < > dx2 Poe 2 Te
ireq'T, 1 1 1
eq R2B? (Bz) R?
d pe @ + ( ) i (4.19a)
X —|x|———= ; 19a
dx Poe Te e
from (4.23):
1d Pm,T, d? T, T
— By = 183 e S P 13920 7]
) dr < > Tei dx2 p()e Te e
I\ itqT, d Do -
_rerde (LNHaTd (P @ —¥)
( ) R2 eq dx Poe Te
)elI/+002Te (4.234)
Te . Te . . a

From (4.40), we have defined

1
<RZB>(17LJ
(NI P
=7 <<R232> (B2) <R2>>+ <(BY) <R2> [1 67 1.19 3.12-%
0]

Poe Te e
- Ip Oe

U\ (Pl e@\ 117 /AN ] 197nltgope [ 1\
—_— S — [R— _— _1— [R—
e R?B? Poe Te (BZ) R? Te

m.(B*)q R?
% [(1 —1.31f) ( _He-¥) _ w*e(1+ne)ew)
Poe Te w

1034 [ Lo wume et (1 - 0.69f)
' T, o T S

ﬂ
I—I

(4.40a)
while from (4.50) we have defined
ey — L Lo gy (] 2 volF
e T eqqvan \ \ B2ay Hore rEz) VX V9%
~e 4 *e 4
. (” _AP =) gy )© ) no. (4.500)
pOe Tg a) Te

Similarly, for (4.3) we obtain

Downloaded from https://www.cambridge.org/core. UKAEA, on 19 Sep 2019 at 10:10:57, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377817000757


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377817000757
https://www.cambridge.org/core

Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 23

d
a((Qﬂ) +(QF5) + (QP™) + ikyo( Q) + ko (O2F)

_ 3 . ~ a)*e(l + ne) 5 Hop Wye
= 5160 |:pe - T€¢0 + § <B2 (1 - ® 1+ 277e)) Poe| » (4.60)

where, from (4.15),

d . mT, [IVxI’\ & (P T,
a(Qr’J = - ezrd 32 @ ]T()e + 091F I’lng, (415(1)

e

from (4.20),

1 (st> . omTr ()1 1 & [ p +091Te
noT, dr =" ety B? dx? \ po. T,
1IZZqT 1
R2B2 R?
p.  e® ”e v e
[ (P L +L(1—“’ (1+2ne))>] (4.200)
Poe Tg w

1 d T, & | p T, T,
oty =170 f,L— P40t 117
nOTe dr e Bz)@z dxz Poe Te Te

P\ itgT, d e (@ —¥) . w
—2.97 f’2 —\ o |Pe _ 4@ =) ey 405,y ¢Y
(B*) \R eq dx Doe T, w T,

e

T,
+ o.st] ) : (4.25a)

while, from (4.48),

1 1 51T, 1 1 /1 P T
) 003 (G )~ () (7

Poe
RB) / 1\ IT, I T T/
+ﬁ( ) — 418——236——786
(B2 \R*/ e T

and from (4.25),

Poe Te

1 D; . ed’ 117 / 1\ T,
R232 Poe Te (BZ) R2 Te
_eogitldx /1 * Tt
T (BYg \R*/ m,

% [(1 —1.11f) (56 _e@—-v) a)*eelI/>

51817/ xT;
2 eq

Oe Te @ Te
Te eWsxe 4
+0.58(1 — 0.31f) ( _ @€ ) (4.48q)
T, o T,
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and, from (4.51),

5 T, 1 1\? oB?
y o 2 B Vy -Vo—
(02 2 eV <<828 (opo + )+< B> X 89>>
e Te b -y *e v
y (p J L d2-¥) o +2ne)eT) noT,. (4.51a)
w e

Summarising for the ions, we can rewrite (4.52) as:

d
5((Q,C,,»> +(07) +(05™) + ko (OF)

3. ~ w*e(l + 77!) T 5 MHop T Wye
= - T ledn ; 1+ — 1+2n; , (4.61
2“”[” PR °+3p0<32 T, 1 )| @6
where, from (4.55),
d C miTi |VX|2 d2 T
&<Qri> =-2 1, < B UOETi, (4.55a)
from (4.56)
d PS 2m,~T,~ > 1 1 dz ~
— (0P = — 1 — - — —T;, 4.56
' ="y, <<Bz> <Bz>> "ae (3560
from (4.57)
d mT,I*f, d* .
— (0B = —0. —T; 4.57
ar @ (BT, 2 (4.57a)

and, finally, from (4.58):

ory = > (] ( 1 )2V voll
(@) = “2eqvap \ \ B oy (,U~0P0+ )+ RE: XV

p. T d—v o 17
w (P D A=) 0y o Y T (4.58a)
Doi Tl Ti w Te

5. The field equations

The set of equations is completed by using the quasi-neutrality condition (to higher
order than introduced in the previous section) and the parallel Ampere’s law, as in
Connor et al. (2009). These will only be briefly discussed here, focussing on any
differences from the work of Connor et al. (2009) arising from the more complete
description of the electron and ion continuity equations in the previous sections and,
effectively, a novel calculation of the neoclassical angular toroidal viscosity.

A convenient approach to imposing quasi-neutrality in higher order is through the
vorticity equation, obtained by taking the charge density moment of the gyro-kinetic
equations for both species and adding them. Setting 7, = n; then provides one
relationship between @ and ¥. The parallel Ampere’s law provides a second and
hence these two equations lead to an eigenvalue condition on w, provided the
solutions of the various continuity equations for 7, 7, and 7} are expressed in terms
of @ and V.
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5.1. The parallel Ampere’s law
The parallel Ampere’s law states that

= WoJj- (5.1

We expand (5.1) in the localisation, x, expressing A; in terms of ¥ as defined above
(2.9), which we expand in the form ¥ =¥ © 4+ ¢ @ 4 ... In leading order we have

Vx> I & 9

w RBgacaet =0 = ¥U=v0m (5.2)
while in next order
Vx> I d&* [ d '
~ o RBgd w“>+1£qxw<°>(x) = J1j). (5.3)

leading to the solubility condition

gq/l 1 d2 ©) jHB
wq <R2> @(X‘I’ ) = — o IV 2 ) (5.4)
where, from (4.38),

(er) = ((wr) (o) )
v/~ P \\jvxp Vx2/ (BY)
iltqg'xpoe | B? 1 1
T <|VXI2> (B2) <Rz>
x [(1— 1.31f) (ﬁ—e@_"p)—w*g(l eu/)
) T,

10.34(1 — 0.69f) To _w.need
‘ TUUNT, e T,

I . BZ ~/ ~/ T/
_ Jidpo 161?119k o5k (5.5)
(BZ) |VX|2 pOe Te Te

5.2. The vorticity equation

The vorticity equation was obtained in the previous publication (Connor et al. 2009).
Here we list the key steps in its derivation and quote the result. The procedure was
to add the velocity moments of the gyro-kinetic equations for the electrons and ions,

take the long Wavelength limit: k5 p? < 1 and exploit the lowest-order quasi-neutrality
condition: 1, = #n;, to obtain

B-V [|Vy]* &
— B.-V¥

w? 032 dx?

ol\ | mv|Vx|* @ mjv3
= d e — 9 | e — @ + 1158,
Z / ”f‘)f{ ( > [ 2087 dx? T 2B

J
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Ve 1 -
+izej/ d3vM+4Zej/ L2 Ci(g;LD)
- w w -
i m; 3 B-V (mpp?|Vx|?
- — — [ d& , 5.6
a) Z]: e / veluil B ( 2B? dx2 & >-6)

where the divergence of the parallel current has been expressed in terms of parallel
gradients of A, ie. ¥, through Ampere’s law, equation (5.1). The distribution
functions g; in the velocity space integrations over the magnetic drift terms are
expressed in terms of the quantities #; and we note the final term vanishes
for up—down symmetric equilibria. The expansions ¥ = ¥© + ¢® 4 y@ .
hj = ho; + hy; + hyj . .. are introduced and the equation for ¥ solved order by order.
In leading order one finds ¥® is independent of A, while the equation for ¥@:

P [IVaP 9 (D P oy (P
— — 0g'xv© 5.7
R 90 LoRzB2 o2 (ae Fitgx )] =1 R 90 ( ) 7

can be integrated, introducing a constant of integration which can in turn be
determined through a periodicity condition in & on ¥, Applying the same periodicity
condition on ¥® in second order provides the required equation for ¥ @ (x):

5 [ () e 4 () (o) () (i)
o | \R) T ae g P \\Br/\Ivxr/ " \r/\IvaP
_ IV xI? B? Wy o
_m""°< B ><|Vx|2>[ o] G
(. B VP 8 B>\ Vyx.V0oB
2 ) g (m 5 )+ R 30)
T P L 9wy
' <|VX|2><Z/ B quae( )h">
(o) (o)~ (e
|V x|*B? Vx| Vx|
e o[/ ] 1 1 B
oG (o)~ () ()
1
+ - <|VX|2><Ze,/d3vL2C(go,L)> (5.8)

where we have substituted for 6B from (4.1) (which has the effect of replacing the
VB drift by the curvature drift) and substituted for ¥V from the solution of (5.7). The

term involving (3~ ¢; [ d*vL;Cj(gyL7)) represents the contribution from the classical
radial transport of toroidal momentum, calculated in (B 2) of appendix B.

It remains to evaluate the term involving the h;, which we do by repeated
application of the gyro-kinetic equations for hg;, hij, hy and hy with integration
by parts in 6 and noting momentum conservation in ion—ion collisions. The result
can be expressed as

op/ I .
®

Downloaded from https://www.cambridge.org/core. UKAEA, on 19 Sep 2019 at 10:10:57, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50022377817000757


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377817000757
https://www.cambridge.org/core

27
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gy L9 (Un) ,
il il .
: <Z / B Rqo6 \B) '
A 1 IUH 0 U”
=i d*v n';+ G
Sz () e

R’Bq 36
Y . &l ’
+iwh'; —ilq RZB (xh )}>
The first term can be recognised as involving the neoclassical radial transport of
(5.10)

Il’l’ljUH {
(5.9

toroidal angular momentum
HNC <Z/ d3 vvm, UHUdr/h >,
The right-hand side of

where the first non-vanishing contribution is from #h;

expression (5.9) thus reduces to
i Ui\ eqr/ 1 14 '

— Moy . Il 5y )

a)< ) mn0< B wq \R*B? T\ P

Further use of the gyro-kinetic equation and integrations by parts in 6 implies
(5.12)

<2/ o m,v” Ty [C(h/z/])Jr v Do cyan )]>

(5.11)

<HNC
w
Assembling all the contributions to (5.8) and substituting for Uj; from (3.22)
(0)>

2 1 d
£ w© D, + - p—(L+H)x— | ——p
el H( ’+4> ™ <£”6p
2 2 2
i B v
_ Moming q >> < > <| X >a)(a)—w*i(1 +77i))@

2

2 (M%URz VxI?/\ B
+ Hom;g q > 0T, B? d?
= <¢0/R%) e <|va><hﬁ
1 o oed 1 1.17 T
X{<W>Qm+n)+<<W>_w%“7m>n}
wpo (g >>2< B’ >dZ(HC+HNC).

e (M%URZ VP
Here we have introduced the quantity D; in the notation of Glasser et al. (1975)

where 5
7 (o)~ (75) ()

P r——

IV x|? q IVxl|?

(5.13)

D1:—4

+ (52) (e (o)
Iq IVxI?/ \IVx|?
1q>2<BzR2 ><3R2 Rq 3 <1>>
— —_——— , 5.14
4 <1q vxr/ \ax o149

I 0y
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and L, appearing in the work of Hahm (1988), where

_ HoPoq B?
= (q/(l/R2><BZ>> <|VXI2>' (5.15)

The quantity D; plays a role in the Mercier stability criterion: D; + 1/4 > 0 (Mercier
1960) while the combination L+ H in (5.13) is given by

_{ ropod 1
L= (q/(l/m) <|Vx|2>‘ 610

An expression for (ITVC) has been given by Wong & Chan (2005): (IT"¢) =
0.19(nem?T,f? Jt5¢*) d*T;/dx*, where 7, =1,/+/2, but we generalise this in appendix B
for arbitrary axisymmetric toroidal geometry, to obtain the total collisional toroidal
angular viscosity:

(IT) = (IT€) + (IT"°), (5.17)
where
noe (2mTi\> /IVxI*\ & [p ed T
ne=-— — 432 5.18
) 5n(e2><B4 dx? pOi+Ti+Ti’ (5.18)
and
Pm.T: 2 1 (G(S)_G(Z)) 42 13 ed
7€y = 0.807%¢ i AN O =6 d
o uo\ e B/ e \p T
e (PmTN o (L] VIV fosa(
7(B?) e? ) (B?) \ B2 B/ \ B3 : B
2 (T
X — f
npe PmT, 2 () [ @) 3) @
B2 5 037G — 0.62G" + 0.94G? — 0.2G?® — 0.74G™)
Ti e
& (T
de2<T->’ (5.19)
with
15842 /1 (VB (1 —AB)
GY = = / ), 5.20
4 B> Jo (VT—=12B) (5:20)

GO g /I/BM;H d/l,l<B\/1 —/lB> <\/1 —/lB>
! VT=w) \ B
_|_E(BZ) <1>/1/3Max A

16 B/ Jo (V1—2B)

15 5 1/Bwmax 1 1— 1B 1/BMax ax
- — T 21
S [ i _l—/1B><v =y iem O
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o 15(B%)? 1/1/BMM (BV1—2aB) | J/1— 2B
==\ 1da T=5) 3 , (5.22)

GO — 15(B*)? /I/BMin " 1 J1—2B <BJ1_7> J1=2B
=4, (Vi—iB)\ B ) B

and

15 BZ 2 1/BMax 1
GW = (B) / dAl————
4 o (VT—12B)

X <<«/11_ﬁ><\/1;ﬁ><1—3/13>_<l;2/13>>' (5.24)

Insertion of the results (5.18) and (5.19) completes the form of the vorticity equation
(5.13). Analytic evaluations of the coefficients in (5.19) in the large aspect ratio limit
are presented in appendix B and are consistent with those given by Wong & Chan
(2005).

6. Normalised equations

It is convenient to introduce a new radial coordinate normalised to the semi-
collisional width, §, (but now expressed in terms of flux coordinates) and a set of
normalised parameters

1/2

g T, 7 / 1 2P
s=e”‘/4i 1.97-= L xzi,
q m, w \R*/ (B?) 8.

N eny ed ' n T, T
a)ZET 5 Qo_T» w:Ta n=—, tezi’ [1273
eno e~ e~ noy e e (61)
D p q' no
)= —, = —, K:——,’
Doe Poe qny

c= L[ L2 potBy+ (= "y velE
_q 328 HoPo RB2 X Y )

where 4§, is the semi-collisional width in flux coordinates. Consequently, the
normalised electron continuity equation (4.59) becomes:

e 1 e e
n—?+<mm>p0— f”)—fc( —(p—v) - +”w>
w w

w

+77€

s [(1—1.31]3)( (=) — 1//>+0.34(1—0.69ﬁ) (ze—'zw)]

ks d I’ 1 I fi /I
5 ((em) w9 <Rz>>P+ i () 17011903120
I? 1.17 / PP .
B <RB> it o)+ gy <R> }
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s ((em) @ () & | (- 7]
+5 @ _ﬁ ﬁ & —(p— W)— v
1 /PP\ d 1+1.021,
+1.67f,%@ <R2> I [s <pe—(<p—1/f) — Jré)nwo.ozrg)]
KkN\2 1 I?

+1.97 (;) <BZ)<RZ>

d? IV x|? 1 I? 1 1 3:
dez[( B ><R2>+<,@>(<Bz>—wz>))(—26)

1.53f, B
+ ) < >(p+l39t 1.17@] =0, (6.2)
the electron thermal equation (4.60):
3 { 3 1+ne¢+§<uopoe> (1_ 1+2ne>]

2 P 3 B2 @
1 —|—277e >

30

_C( e+te_((p_v/)

+3.18s2[(1—1.llf,)( —(p—) — +"“¢)+0.58(1—o.31ﬁ)(te—’le¢)}
w

3 () () e

K fr < >s(4 18p — 2.361, — 7.86t;)
5/{ d 12 1.17
T25"% sz> L) <R2>t’]
5k I? 1 I d L+ 2.
+2 <<R232>_<32><Rz>> ds[ ( s @ ‘/f+te)]

k1 I’\ d 1+ 1.257,

k\2 1 I
+1.97 (5) <32><Rz>
& VxP2\ /1 P | 1
<o [((F0) () + () ((5) - ) wvosmo
4 L7k <12> (p—0.41, — 1 17t»)} =0 (6.3)
B) \R S '

the ion thermal equation (4.61):

3 14+n; T 5 M0P0€> T: 1+ 2n;
— P — — — — 1 —
( > Te¢+3< B %

2
P20k e (st oy — 2T w +394<")2m"’”‘T" L /P
2T, 6\ v o NG men T, (B \R?
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(T R (5 () ) - (2

(6.4)

Ampere’s law (5.4), with result (5.5) for j;:

_MOpOe
( V)= R«

Vx| (B%) \|Vx/? ds  (B%) \|Vxl?
x<167—119dt—195 >]
ds

AN 2 >
@\ MoPoe B 147,
_<K> 12<R2>2<|Vx|2>s[(1_1'31ﬁ)< BN w)

+0.34(1 — 0.66f) (;e — %w) } , 6.5)

and the vorticity equation (5.13):

d? 1\ [ T.n d (Teny .
s@(sw)+ (D1+4> ( ; ) (L+H)s— ( 0 a)p—w)
2
= T (ETHO ) <|Vx|2> <|VX| >‘” (H ;
HoPoe ml ET”() d2
L= < ><|Vx|2> “ a5
P 11712
Y o)+ ()22 0-0) ]

i popoe Ti (7, €Ten I B? d> .
—(1.97)°— - —— Y —11, 6.6
(975 o (BY) T, (t eng ) (mK> (B) \|Vx2/ ds 0
where

d . i 1\? d P\’
it = —0.80<| B{E' ><R2> 4(p,~+<p)+0.80<Rz>
1 (GG) G(Z))
X [<34>+ B } AR
1220371 ! ! ! 0.54(
+<R> [ (<B><B>‘<B><B>>+ <B>
IVxI*\] d*;
_2'4< B >] ds*

+(0.37G? — 0.62G"Y + 0.94G® — 0.2G® —0.74

dz
+ 77i)> @fﬂ

6.7)

with GO, GV, G?, G® and G® given in (5.20)-(5.24), respectively.
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Because the ion thermal conductivity exceeds that of the electrons by 0(y/m;/m,),
the ion temperature is flattened over the semi-collisional width and one can treat it
as constant. In particular, the terms involving the ion temperature gradients in the
classical and neoclassical toroidal viscosity (6.7) can be neglected, simplifying it
considerably. It is only in the region s~ (m;/m,)'/* that one needs to solve the ion
thermal differential equation. As we shall see the electron equations simplify in this
region of large s, thus simplifying the form of the ion thermal equation.

Equations (6.2)—(6.5) simplify if we ignore the classical and Pfirsch—Schliiter
transport relative to the larger banana contribution. Furthermore, recognising that the
azimuthal fluxes are small and that B, = 2uopo./B> < 1, we obtain the following
simpler set. The electron continuity equation (6.2) becomes:

+77e

n— 2 152 [(1 —1.31f) < —(p—) — w) +0.34(1 — 0.69f) (ze - Z)w)]

d[f’ <12>(167p—119t—312t) <12>(p<+<p)
O ds | (BY) R2B2/ !
1.17
+w><m>4

1

K P\ d 14 1.02n,
+ 167f;5@ <R2> & |:S (pe - (@ - 1//) - Tl[f +002te>:|

kN2 f PP\’ &
+3.01 (5) o () g+ 139 = 1170 =0, (6.8)

the electron thermal equation (6.3) becomes:

) P
+0.58(1 — 0.31f) (ze — %xp) ]

5¢ d [ f /I
_dx.d (4.18p — 2.361, — 7.861)

) [e—l—i_ne ]+318s [(l—l.llf,)( —(p—vY)— +mw>

2a)ds (B?) R?

I’ 1.17
—<mm>m+>+<><m>ﬁ

2
+2.97f,§)<312) <1> d [s <pe (=) — %yf +0.25ze)}

R?/ ds
kN2 f /PP\ &
+335 (%) o () g = 04— 1170) =0 (6.9)

the ion thermal equation (6.4) becomes:

3 1+nT; +181(K)2miTEiTi 1 2 Zdzt_o 6.10)
2 \PT o )T N\G) ma B \R/ a2 T '

e
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and Ampere’s law (6.5) becomes:

2
—(w) Hopoe & ﬁ>< B ><167d”—119dt—195dt>

(R2) k (B*) \IVx[? ds ds ds
>\ . | B 141,
REWISE SRR
+0.34(1 — 0.66f) (z,,, - @1//) } . 6.11)
w

These approximations do not affect the vorticity equation (6.6).

7. Boundary conditions and an intermediate region

The purpose in solving the above layer equations is to match solutions of a given
parity at s = 0 to the marginal ideal MHD solutions at large s, which involve the
tearing mode parameter, A’, to determine the eigenvalue @ in terms of A’. In this
limit, when &@ — 0, E; < (¢ —¥) — 0, p — (p;/@T.ny)y and we can ignore the
momentum flux, the solutions of (6.6) should behave as ¢ ~s", v=—(1/2) £/—D;
in the limit s — oco. However, as they stand, they do not lead to (¢ —¢¥) — 0. In
fact, it is necessary to consider an intermediate region consisting of two sub-layers:
(i) a transition layer around s=s; ~ f;"*(m:;/m,)"/*, where an ion contribution to the
electrical conductivity enters; and another (ii), around somewhat larger values of s,
s =53~ (Xp.e/ X1.)"? ~ (m;/m,)"/*, where parallel ion thermal transport forces #; —
(T;/T.)(niy /@) and ensures (¢ — ¢r) — 0. Clearly s; and s, are not very different and
we can treat them together.

Let us first consider the simplification of the governing equations when s> 1.

The electron continuity equation (6.2) becomes:

n_g+<uop0e> <1_1+ne>_Kc< - w)_1+new>
w w w

+77€

5 [(1—1.31]‘,)( (=) — 1//>+0.34(l—0.69f,) (te—zjwﬂ

ks d I 1 I? t I
-2 [<<R2B2> - <R2>>p+ <£2> <R2> (1.67p — 1.19¢, — 3.121))
I? 117 I?
_<R232><”’+¢’)+< B) _f’)<R2>”]
K (] I 1 /P\\ d 1+ 7,
v ()~ () s [ (om0 =250
el L <12>d [s <p (=) — 1+"€¢>} —0 (7.1)
& (B2) \R?/ ds ‘ @ ' '

However, this last equation is dominated by its second term, which requires:

1+ne

(1 - 1.31f) ( —(p—) — w) 10.34(1 — 0.69f) (ze - ”;w) ~0. (1.2)
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A similar balance, but with different coefficients, appears in the electron thermal
equation (6.3), so we can conclude that:

( —(p—) - +mw>za Qfl%@zo S nze—v+ Y a3
w w

so that (7.1) simplifies further:

1 1
n—?+<mm§p0— 20 4 fPh4&ﬁ< — (=) - +mw>
@ @ @

+0.34(1 — 0.69f) (re — Tw) }
1)
k d P 1 /P £ /P
; P [<<RZBZ> < <R >>p+(82) <R2>(1.67p—1.19te—3.121,<)
I? 1. 1
—<RZBZ>(P,+¢)+< <R>fi =0. (7.4)
With the results (7.3), the vorticity equation (6.6) reduces to

1 & T: niy
(:12(1#)+A(D+1) £+ +f (o —v)+ ti_id)
Sdsz s w 1 4 @ A +T,/T: +n.+nTi/T.)

. (1/|V 2 . d T, n;
_Mfowwsds< T>((p 11f)+< T”w‘”>_o (7.5)

where we have neglected the viscous term, which is valid for s> (m;/m.)¥8(8,/v..)"2,
with Se the semi-collisional width normalised to the plasma minor radius and v,, the
electron collisionality parameter. Ampere’s law (6.5) retains its form.

However, the simplified vorticity equation (7.5) does not reduce to the ideal form
and we must consider the intermediate layer: s ~ s;, s,. To address this we first
calculate the correction to the ion parallel velocity arising from the parallel ion
pressure gradient — this is achieved by modifying (3.7) to give an equation for the

correction to the ion distribution function Ay;

B A wlgx /1
ZCthi) ) = =22 { — Y . (7.6)
] g \R

Using the model ion—ion collision operator (3.13), we can calculate the resulting
modification to the ion velocity arising from #;;, obtaining

< fo Billgx [ 1\ T, T\ oo _u _Tim
V== f(32> q <R2>mi{vii}((l+Ti> =¥ 0.17(% T.& >>’

(7.7)

where we have used the results in (7.3), which are valid at large s.
We see that in the absence of the small ion—electron collision frequency, the friction
with trapped ions determines the bulk ion velocity. This velocity changes the parallel
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Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus 35

electron velocity term proportional to s> appearing in the electron continuity equation
(6.2). This additional contribution modifies the behaviour (7.3) at large s:

+m

(1—1.31f,)< —(p—) — w>—|—0.34(1—0.69f,) (tg—%Ip)

T, 1771
s, Kl+T) (0 —y)—0.17 (;i w)] (1.8)

where, using results for the collision integrals from appendix A,

_ N 5/2 1/2
3,:0.95(1ff’) (;) (Z) <1 (7.9)

In this limit, equation (6.5) reduces to

d2 (:(\) 2 HoPoe B2 T T Th‘/f

i =5 — 1+ —0.17 = .

o= (5) i (o) (07 oo w -0 (-2
(7.10)

We can also calculate the corresponding parallel ion heat flux, finding it is dominated

by the convective component due to the inverse dependence on the trapped particle
fraction of the parallel ion flow in (7.7):

<Wx >_5J’3<WX>21<1>2 T;
®8g2") =25\ "q ) B \E/) miv)

T, T; n; {Viiuz} 3
(7)) wmo (-7 v) (o =3))nr 0

This modifies (6.4):
263 sc\2mTy 1 P\ & IVx2\ /1 P | 1
5 (5) e (o) ae (50 () + () ((5) - )
0.46f;

M3 < H

+1, T’Z’l//——5<”"p°€>(1 "(1+2”)(1+T+ oAt >>w
T, w

3D B + T,
T; I'+mn) 5 T; K HoPoe T, (1+2n)
(0 S (T (£ gy (T Q42
DT, ( ® +3( +Te> <a) * B? Ti+ 1)

— 1.598,-s2> (o —v), (7.12)

where

5/ 1opoe T; (1+2n)
D=1 7< > p o LdA2m Tk o) g 07s6 7.13
3R [ A R 7 R (7.13)

and we have again used evaluations of collision integrals given in appendix A.
The new terms proportional to §; dominate (7.10) and (7.12) when s> sy, s, and
require
T: niy
o —v —0, ti—? — — 0. (7.14a,b)

e
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When all of conditions (7.3) and (7.14a,b) are satisfied we see that (7.5) does indeed
reduce to the marginal ideal MHD equation:

¢ D ! =0 7.15
Sdsz(sw)+< 1+4)1ﬁ— . (7.15)

To discuss the transition though the intermediate region we combine (7.5) and (6.5),

modifying the latter to take account of (7.8).
Using the expressions (7.3) for n and ¢, to express p and p; in terms of ¢, ¥ and

t;, we obtain

1.17 @ 32 MHoPoe dli
(B) « <|Vx|2> ey T

MOpOea) 1 Ti 1 1+r]e
Nz (1+n+20+m ) {5 )+ |[1-—
(/R & [w< +n +Te( +n)> <|VX|2>+[ o

(32/|VX|2>(1/R232)] sdj
(1/R?) ds

B (D; +1/4)é N <MOP0e> HoPoe(B*/|V x|?) <1 B 1+ne> @
I+n.+Ti/T.(1+n,)) B? I*(1/R?)? 12 K2
1opoe(B>/IV x 2 (&N .,
+017 12<1/R2>2 (K) (S,'S t;
B (D; +1/4) N <MOP0e> Hopoe(B*/1V x %) <1 3 1+ne> @
A+n.+T;/T.(1+n)) B? I*(1/R?)? ® K2
T;
X (1 +17€+T8> v
@ opoe(B*/IVxI*) T: D +1/HA+T,/T)&
HR R Ty R A R T e TR AL
1 /1oPoe\ Hopoe(B2/IV x %) 1+n.\ (&)
B [1_6)+< B > I(1/R?)? <1_ & >(K>
JABY/IVx?) (&N T,
_ “Op;((l/gz)zﬂ ) (‘:) <1+T) 6,-s2] (¢ — ) =0. (7.16)

Then (7.5) and (7.16), with f; given by (7.12), provide a fourth-order system of
equations for ¢ and ¥ to connect the semi-collisional electron layer solutions to the
ideal MHD region through the region s ~ sy, s,. The boundary condition at large s
is to match to the correct ratio of large and small solutions arising from the ideal
region and ensure ¢ — ¢ — 0. Thus, the jump in the ratio of large to small solutions
through this layer, and hence the layer A’, can be computed.

8. Conclusions

We have derived a set of equations to describe the linear stability of semi-collisional,
neoclassical toroidal plasma in general axisymmetric geometry, albeit provided that:
(i) the fraction of trapped particles is small to justify the use of a model, pitch-angle
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scattering, collision operator; and (ii) that the ions are magnetised. The assumption
that the ions are magnetised may require low magnetic shear or 7; <« T,, otherwise
a non-local model for the ion response will be needed (Fitzpatrick 1989). A related
constraint on the ion parameters follows from the ion drift orbit expansion of the
ion gyro-kinetic equation that we invoked in §3.1. This requires that k.p0;q/f; < 1,
compared to the somewhat lesser constraint, k,p0; < 1, from the condition on the ion
Larmor orbits and implies the following condition on the tokamak parameters:

1/2 1/2 3/4 3/4
; T; R L, e\

ot () (7)) Q) (5) ()7 e
m, T, a a a

The set of equations comprises a pair of second-order radial differential equations for
the electron density, 72 (or pressure, p,) and temperature, 7, perturbations (4.59) and
(4.60) and one for the ion temperature perturbation, 7;, equation (4.61), in terms of
the perturbed electrostatic potential, @, and parallel vector potential, A”, described by
the potential ¥, with these two quantities in turn being determined by Ampere’s law,
equation (5.4), with (5.5) for the parallel current, and the vorticity equation, equation
(5.13). The perturbed parallel magnetic field is given simply by (4.1).

The analysis of neoclassical electron physics utilised the Spitzer functions (Spitzer
& Harm 1953), where we remark that parallel gradients in perturbed electron
temperature that have no counterpart in standard neoclassical theory (Helander
& Sigmar 2002), necessitate the introduction of the second Spitzer function
corresponding to parallel electron thermal conduction. The vorticity equation requires
a calculation of radial collisional transport of toroidal angular momentum and we have
needed to generalise the treatment by Wong & Chan (2005) to arbitrary axisymmetric
geometry, as in appendix B, although still assuming a small number of trapped
particles. This calculation employed the model ion collision operator. Analytical
evaluations of the coefficients in the large aspect ratio limit are presented there; these
are consistent with the results of Wong & Chan (2005).

The introduction of general toroidal equilibria and the use of the Spitzer functions
extend the treatment of electron neoclassical physics given by Fitzpatrick (1989), as
well as providing a more consistent treatment of the neoclassical radial transport than
in the work of Connor et al. (2009). The general geometry aspect also means we have
needed to include classical collisional transport.

The resultant equations, summarised in normalised form in (6.2)-(6.7), are
equivalent to a twelfth-order system of radial differential equations if all effects
are retained — it reduces to tenth order if we neglect the radial angular momentum
transport. However, the relatively large ion thermal diffusivity means one can treat
the ion temperature as a constant over the semi-collisional layer. (This also greatly
simplifies the expression for the radial transport of toroidal angular momentum
given in (5.19).) The system of equations then reduces to tenth order and one only
needs to solve a simplified version of the ion thermal equation in the intermediate
region, s ~ (m;/m,)"*, where the system reduces further to a fourth-order set. A
simpler version of (6.2)—(6.5) in which we ignore the subdominant classical and
Pfirsch—Schliiter fluxes relative to the banana contributions, the smaller azimuthal
fluxes and effects proportional to B, = 2uopo./B* < 1, is presented in (6.8)—(6.11).
The vorticity equation (6.6) is unaffected by these approximations.

The solution of these equations in the narrow radial layer around a low-order
resonant surface needs to be matched to ‘external’ solutions of the marginal ideal
MHD equations. However, to achieve this matching, as pointed out by Fitzpatrick
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(1989), we need to consider the intermediate layer where small corrections arising
from the ion contribution to the electrical conductivity and the parallel ion thermal
diffusivity enter and ensure that the perturbed parallel electric field vanishes. Since
this correction is determined by the friction of the passing ion population with the
trapped ones, rather than the schematic ion sound model suggested by Fitzpatrick
(1989), we were able to provide an explicit form for it. This intermediate region is
described by a fourth-order set of (7.5) and (7.12) together with (7.16), that allow a
proper matching to the ideal MHD region. Continuing the set of equations through
this layer allows us to obtain a dispersion relation

Alw+iy)= A, (8.2)

where A’ is the toroidal tearing mode stability parameter (Glasser et al. 1975) and
Alw + iy) is obtained from the solution of the layer equations, allowing for the effect
of the intermediate layer.

Glasser, Wang & Park (2016) have pointed out that, in the case of the simple
resistive MHD layer model, the requirement that there be a sufficient overlap region
to allow the successful asymptotic matching of the solution of the inner layer
equations to the outer ideal MHD solution, imposes rather a stringent requirement on
the Lundquist number, S, namely S~ 10°. In the present case, one needs to ensure
that the width of the ‘ion layer’, §;, which exceeds the semi-collisional width §, by
a factor /m;/m,, is much less than the plasma minor radius, a. Using the definition
(6.1) for §,, this can be cast in the form:

& 1 (m VECT N ran s o\ 1/2 o 8.3
5 E mie f E fn v, L1, (8.3)

where v,, is the electron collisionality parameter and p, the electron Larmor radius.
Typical parameters for an ITER-like plasma, v,, ~ 1072, p,/a ~ 107*, yield §;/a ~
1073, which should provide sufficient overlap for the matching. However, this conflicts
with the requirements for magnetised ions regarding the scalings with magnetic shear,
ion—electron temperature ratio and collisionality: satisfying both requires sufficiently
small normalised electron Larmor radius.

Although our analysis is linear, the treatment of the semi-collisional, neoclassical
electron physics could be generalised to describe the evolution of nonlinear
neoclassical tearing mode islands, extending the analysis given by Wilson et al
(1996) for magnetised ions to this more collisional regime, or be used in conjunction
with a numerical treatment for ions when the width of the poloidal ion Larmor orbit
is comparable to the island width (Imada, Connor & Wilson 2016). Alternatively, it
could serve to incorporate neoclassical physics in the collisional model of Smolyakov
(1993).

Appendix A. Some collisional integrals

Here we list numerical evaluations of the various integrals, including those involving
the Spitzer functions D"’ and D® tabulated in Spitzer & Harm (1953) (to be precise,
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DY =—D/A and D® =2D/B as given in (Spitzer & Harm 1953, Tables I and II)):
(v.} =1.153v., {u?v.}=1.284v, {u*v,}=2.701vy,,

(1) 2)
{D (”)} — 2616, {D (@) } —_0.898, {uDV(u)} = —8.297,

u u

DY D®
{uD® ()} = —4.782, {ve @) } — —1.666v,, {ug @) } — —0.040vp,,

u u

{(v.uDV (1)} = =2.972vp,, {v.uD? (1)} = —0.738vy,,

DO 2 DD (D
{ve ( (“)> } —3.432u,, {UM} — 0.6051,
u u
D (u) 2
v, < ) = 0.566;,
u

{U,‘,‘} = 0.4011)0,', {le)ii} = 0.5321)0,‘, {l/l4l)ii} = 1.191)0,*,
(2 /vi) =20.62 /vy, (i Jvi} = 100.37 /v

(A

Appendix B. Radial toroidal angular momentum transport

There are two contributions from the radial transport of momentum appearing in
the vorticity equation (5.13): the classical one, (I7€), and the neoclassical one, (IT"C).
We evaluate these in this appendix.

B.1. Classical radial angular momentum transport

The expression for d*(I7€)/dx* involves (3 e [ d*vL}Ci(gyL})), where the sum is
dominated by the ions. Thus, substituting for gy from (2.8) and (3.8) and recalling

the definition of L; below (2.2), we obtain
bi N ed N mv? 5\ T, F
po T \2T, 2)T)"|[

; 4 \v4 4 d2
= (%) (%A >dx{/ Enic,
B1)

The collision integrals in (B1) can be evaluated using the entropy functional
S(]A‘(v/),gf(v)) (Helander & Sigmar 2002), with f = v|’|3 and g = vy(mv?/2T; —5/2).
The quantity S can be easily calculated using Cartesian coordinates in velocity space,
labelling the direction parallel to the magnetic field as the x-direction, and introducing
u=w —v)/2 and w=(v' 4 v)/2 to execute the velocity space integrations. The result

is
moe (2mT\* /IVxI*\ & [p;  ed T
ncy=—— =z 3— %, B2
) 5r,~<e2><34 dx? po,+T,~+T,- B2

B.2. Neoclassical radial angular momentum transport

Equation (5.10) requires the evaluation of

(V€)= <Z/ K vm;— vvd,]hzj> B3)
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representing the radial transport of the toroidal angular momentum arising from the
parallel flow: Rv, = Iv;/B. Noting that it is dominated by the ion contribution, we
express this quantity as

I o [ Im*v?
() =1 / Py O (DY) (B4)
R?Bq 36 \ 2eB?

To avoid the need to calculate 4y, we follow Wong & Chan (2005) in defining the

adjoint function, g:
Tvy dg Iy 9 (Im}v]
— +Ci(g)=— v i B5

RBga0 = "Ripga0 \ 2082 |V (B

so that, using the self-adjointness of the collision operator, integrations by parts and
the gyro-kinetic equation for h,;, we obtain

NC _% / 3. 8 (v 8 [ly
ey =" < aof (R23q39 (B)h>> B6)

We use the gyro-kinetic equation for hy; and (B5) for g, which we expand for weak
collisions, so that we can integrate it to give

2 2

I 1
g=—5 Bz”fol +G(, v), (B7)

where G is given by the collisional constraint that follows from (B 5):

Be, tmivi foi + G(A, v) (B8)
UH ii 2 32 0i -

_Imv? (A v (v/B)
&= 26 <B_/Q d <U||> )fOI

_ Imizvz 1 1 g <U||/B - U”(l/B))
= (e ()L e ) oo

where the final integral is small in the trapped particle fraction.
Performing further integrations by parts on (B 6), we finally obtain

Thus

(TN = (V) 4 (T, (B 10)
where
e =T ([att (<L (" e D) @1
and
<17NC>B=—% </d3 IB” ;"Cu( )> (B 12)

where, h); is given by (3.14).
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It is helpful to re-write (B 11) as

neya _ Imi s o (L mivN? 8 L
(== </de <36(3)+ﬁn>c,,<hu>>- (B 13)

The first term can be evaluated by using the model collision operator (3.13) acting
on hy; given in (4.7). Since the ion—ion collision operator vanishes when acting on
a displaced Maxwellian distribution, only the perturbed temperature gradient terms
in expressions (4.9) and (4.10) contribute. First, we consider the banana contribution
(4.10). Integrating by parts in A, using the results (3.16), (3.18) and the evaluations
in appendix A, we obtain

2 2 T
Ban\Al __ npe IzmiT‘i (0) 1 d 7—;

where
15(B? [/ 1 [YBwx (1 — AB)
GY = — / dAl——— ). B 15
1 B Jo (v/1—2B) B

For the Pfirsch—Schliiter contribution we apply the collision operator directly to (4.9).
The result is

PmT\ [/ 1 1 /1\] & [T,
sy —oe (CnEY [N L (LY & () 16

Thus, the total contribution to (ITV)4! is given by the sum of results (B 14) and
(B 16):

e A1_037noe (12m,-Ti>2{ GO <1>_2<1>} di z (B 17)
( ) =0. T 2 <Bz)2 + B (Bz> B2 dx2? T; :

Equation (B 13) also has a contribution from the function g, which is labelled
(ITN)42, The contribution to this from the banana term in hj;, equation (4.10), can
be evaluated using (B9) for g. We employ the model collision operator, recalling
the banana contribution to U}; =0, and integrate by parts in A twice. Since hP s
localised, we can approximate 3(/lvﬁ3g/8/l) /A= —Bv*1dg/dA. The integral term in
expression (B9) for g only contributes significantly as A enters the trapping region,
but remains small (i.e. 0(§1) compared to the first term, where 81 is the trapped width
in ) and can be ignored. Finally, inserting expression (4.10) for A5, performing the
velocity space integrals recalling the results in appendix A, and changing the order
of the A integration and the () averaging operation, we obtain

& (T

e <T,> , (B18)

1 1\* G»
4<Bz>—<3> )
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where
GV 15 /I/BMm d/M<B\/1—/lB> V1—2B
3B 4 o (V1—2B) B

15 , /1 VBvas 422
+—(B) (= ——
16 B/ Jo (vV1—2B)
15 /B 1 VI—=2aB\ [Py
—<BZ>/ daa < >/ <
0 a

3 (VI—1B) \ B JI=1B)’
B 19)

The calculation of the Pfirsch—Schliiter contribution from (4.9) is more straightforward.

We evaluate the collision operator acting on hf?, again neglect the small integral tern

in g and evaluate the velocity space integrals using the results in appendix A. The

result is:
2
(TP5Y2 = 0.3710¢ PmT, 1 _ /1
T e? B* (B?) \ B2
1 1 1 /1 @ (T (B20)
B B3 (B%) \B d2 \ 1, |-
Thus, the total contribution to (I7V¢)4? from results (B 18) and (B 20) is
noe (PmT\° [/ 1 3 /1
Ve = 0.37= i — V(=
< ) T e? B* + (B%) \ B?
1 1 GV 1 & (T B21)
B3 B (32)2 dx2 T :
Combining the results from (B 17) and (B21), we finally obtain

weys _ g€ (PmTN [/ T\ /1N /1N 1 /1
ey =03 (S50) ) () (5) i ()

) _ M 2 T.
+(G(;)]d (n>‘ (B22)

(B2 | de \ T,

Turning to the quantity (I7VC)%, we first observe that the periodicity constraint (B 8)
allows us to rewrite (B 12) as

(HNC>B:_I’:i </ d3v;})‘ <h,1évl _ <h’1]igv >> Cii(g)>. (B23)
0i

We introduce the three contributions to 4;, from (4.7), use the model ion—ion collision
operator (3.13), substitute

dg Imjv* (1 (v/B)
a1 2e (B_ () )f% B2
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as follows from (B9), and integrate by parts in A. The contribution from A is:

1 (PmT\' [/ 1 GP & [ pi  ed T,
HFlow B =0.80n087 ili I U e A 2 _ 11771 ’
T o B\ e B) ] ae\m T T,

(B 25)
where
o 3B /1 /I/BMaXﬂd/l(B\/l —AB) [ /1— B (B26)
4 \B (V1T—21B) B ’
that from A!S is:
PmT\’ [/ 1 1 /1 G®\ &
™y = 0.807%¢ i - (= <
{ ) T e2 B4 (B?) \ B? + (B2)2 ) dx?
pi | e®d T,
x (p+ ¢ —0.25) , (B27)
poi T T;
where
w3  15(B%)7 [P 1 J1— 2B (Bv/1—21B) 1—AB
G =" dad —
4 0 (V1T—2B) B (B?) B
(B 28)

and from AP is:

Ban\B __ noe  (P’miT; 2[<1>_ ! (G(l) (4))}‘12 E
(I1 )_0.74Ti<32>< 2 ) B B 3 +G @\ 7 , (B29)

where

15 BZ 2 1/BMax 1
GW = (B) / dl————
4 o (VT—=2B)

(i (T (5 (5. o

Consequently, combining results (B 25), (B27) and (B 29), we obtain the result

PmT N\ |/ 1 GO -G | & (p  ed
(V) = 0,807 < i > <>+< %) = <p+ : >
e (B?) de* \po: Ti

Ti

noe [ PmT,\° 1
_ 02( —
T; e? B*
. 0.74(GV /3 + GD) — 0.94G? + O.ZG@)} @ (T)

(B2) A \ T,

(B31)
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Finally, combining results (B22) and (B31), we obtain the expression for the
neoclassical toroidal angular viscosity:

e noe Pm,T, 2[<1> (G(3)—G(2))} d2 <l5i eq))
) = 0.80— ( = ) BT By po T,
noe [ IPmT,\’ 1
+r,~<32>( & ) {037<<BZ>< > < >< >)

+0.54 1 ¢ (1,
e \ T

PmT;\’
+f2113§>2< ¢ ) (037G — 0.62G" +0.94G® — 0.2G”
(C)) d* Tl
~0746%) = (= ] (B32)

Result (B 32) is the expression appearing in (5.19).
It is interesting to consider the large aspect ratio limit with B=By(1 — e cosf), ¢ =
r/Ry < 1. Analytical evaluation of the coefficients in (B 32) in this limit yields

PmT\’ @ @ @ (T
ey = 0 (DT g g2 & (P 6P g qqen L (T
T, \ e2B} d® \po: T; A2 \ T,

coen L (T (B33)
w\T )|

in agreement with Wong & Chan (2005).
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