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Starting from expressions in Connor et al. (Phys. Fluids, vol. 31, 1988, p. 577), we
derive a one-dimensional tearing equation similar to the approximate equation obtained
by Hegna & Callen (Phys. Plasmas, vol. 1, 1994, p. 2308) and Nishimura et al. (Phys.
Plasmas, vol. 5, 1998, p. 4292), but for more realistic toroidal equilibria. The intention
is to use this approximation to explore the role of steep profiles, bootstrap currents and
strong shaping in the vicinity of a separatrix, on the stability of tearing modes which
are resonant in the H-mode pedestal region of finite aspect ratio, shaped cross-section
tokamaks, e.g. the Joint European Torus (JET). We discuss how this one-dimensional
model for tearing modes, which assumes a single poloidal harmonic for the perturbed
poloidal flux, compares with a model that includes poloidal coupling Fitzpatrick et al.
(Nucl. Fusion, vol. 33, 1993, p. 1533).
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1. Introduction
Edge localised modes (ELMs) are a ubiquitous feature of H-mode tokamak plasmas

with important consequences for confinement and for transient heat loads on divertor
target plates. Most theoretical models appeal to ideal magnetohydrodynamic (MHD)
ballooning and peeling modes (Hegna et al. 1996; Connor et al. 1998; Wilson et al.
1999; Snyder et al. 2004) as the trigger for ELMs. While this may well be the
case for larger Type I ELMs, the smaller Type III may involve resistive ballooning
modes (Connor 1998). Furthermore it is unclear whether ideal peeling modes are
ever unstable due to the presence of a separatrix in divertor tokamaks (Huysmans
2005; Webster & Gimblett 2009) or can lead to the required destruction of magnetic
surfaces seen in resistive MHD simulations, e.g. ASDEX Team (1989). However,
concerning the need for resistivity, one should mention a model for ELMs in which
an unstable ideal peeling mode does play a part, triggering a Taylor relaxation in the
edge plasma, thus involving reconnection. The relaxation region grows in size until
the ideal mode becomes stable (Gimblett, Hastie & Helander 2006). An alternative
possible explanation is that ELMs might be triggered by tearing modes being driven
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unstable by the large bootstrap current density that results from the pressure gradients
in the H-mode pedestal.

The theory of tearing modes utilises asymptotic matching techniques (Furth,
Killeen & Rosenbluth 1963). Thus solutions of the resistive equations (or those
corresponding to more complex plasma models e.g. Antonsen & Coppi (1981), Drake
et al. (1983), Cowley, Kulsrud & Hahm (1986), Pegoraro & Schep (1986), Porcelli
(1987), Fitzpatrick (1989), Connor, Hastie & Zocco (2012)) that pertain near resonant
surfaces, m= nq(ρs), are matched to solutions of ideal MHD equations that describe
the regions away from the resonance to obtain a dispersion relation determining their
stability. Here m and n are poloidal and toroidal mode numbers of the perturbation,
q(ρ) is the safety factor, ρ is a flux surface label with dimensions of length and ρs
is the resonance position. This matching procedure involves obtaining the asymptotic
forms of the ideal MHD solutions as ρ → ρs from both left and right, and the
matching is characterised by a quantity ∆′. Stability of a mode is determined by
comparing ∆′ with ∆′crit, a parameter that is determined from the solution of the
equation describing the narrow layer around the resonance. The quantity ∆′crit is
usually a large positive number (Glasser, Greene & Johnson 1975; Drake et al. 1983;
Cowley et al. 1986), but physics close to the resonance can make ∆′crit negative:
e.g. when microtearing modes are unstable, as has been reported for the plasma
region around the H-mode pedestal in the Mega Ampère Spherical Tokamak (MAST)
(Dickinson et al. 2012) and in the Joint European Torus (JET) (Hatch et al. 2016).

The linear theory of tearing instability in toroidal geometry (Connor et al. 1988) is
a complex problem, raising issues associated with the coupling of different poloidal
harmonics and with the decoupling of resonances at different rational surfaces due to
differing diamagnetic frequencies at such surfaces. Hegna & Callen (1994) proposed a
simple approximation that the perturbed poloidal flux has a single poloidal harmonic,
of admittedly uncertain accuracy, to obtain a master equation for tearing instability,
with similar one-dimensional (1-D) character to that holding in a straight cylinder.
This equation was derived for equilibria with weakly shaped poloidal cross-section,
and under the additional assumptions of large aspect ratio, low β (where β is the
ratio of plasma pressure, p, to the magnetic field energy density, β = 2µ0p/B2) and
with the toroidal magnetic field greatly exceeding the poloidal field:

I
q

d
dψ

q
I
〈gψψ〉

dÃ
dψ
−

[
m2
〈gθθ 〉 +

m
m− nq

I〈σ 〉′ +
m2

(m− nq)2
µ0Ip′〈J〉′

]
Ã= 0, (1.1)

where Ã and ψ are respectively the perturbed and equilibrium poloidal flux, the
magnetic field is B= I∇φ +∇φ ×∇ψ , I is the toroidal field function I = RBφ , φ is
the toroidal coordinate, σ = µ0j‖/B, with the parallel current density j‖ = j · B/B, q
is the safety factor, ′ denotes the radial gradient with respect to ψ , 〈Y〉 is the flux
surface average of Y for any quantity Y(ψ, θ),

〈Y〉 =
1

2π

∮
Y dθ (1.2)

and the metric elements are gψψ = |∇ψ |2 and gθθ = |∇θ |2. The θ coordinate is a
straight field line poloidal angle and J = (∇ψ ×∇θ · ∇φ)−1

= R2q/I is the Jacobian.
Nishimura, Callen & Hegna (1998) presented numerical solutions of a similar
equation, for a family of equilibrium profiles resembling those studied previously
by Furth, Rutherford & Selberg (1973) in a cylindrical geometry.
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One-dimensional tearing 3

To assist the tearing mode stability analysis of the H-mode pedestal, in this paper
we develop a 1-D ideal MHD equation for application to realistic, fully toroidal
tokamak equilibria at high β, thus generalising the earlier seminal works by Hegna &
Callen (1994) and Nishimura et al. (1998). This contrasts with alternative approximate
treatments described in Fitzpatrick et al. (1993), where the effect of poloidal mode
coupling was calculated for toroidal equilibria of large aspect ratio, low β and weak
shaping, and approximate solutions with seven poloidal harmonics were used to
obtain ∆′.

2. A 1-D tearing mode equation
We start from equations (A5) and (A6) of Connor et al. (1988), which respectively

govern the radial component of the displacement (ξ ), and the perturbed toroidal
magnetic field: these quantities manifest themselves in Connor et al.’s variables
y= R0f ξ · ∇ρ and z= R2δB · ∇φ/B0. Here the equilibrium magnetic field is written
as B = R0B0[g∇φ + f∇φ × ∇ρ], where ρ is a flux surface label with dimension of
length, B0g(ρ)R0/R is the full toroidal magnetic field, B0 is the vacuum toroidal field
at the major radius, R0, of the magnetic axis and q = (ρ/R0)(g/f ). The variable y,
which is related to the perturbed poloidal flux, now denoted ψ , by y=ψ/(m− nq),1
is assumed to contain only a single poloidal harmonic, eimθ , where θ is the poloidal
angle in straight field line coordinates. These equations can be used to generate the
1-D ideal MHD equation for ψ .

Then equations (A5) and (A6) of Connor et al. (1988) take the form

i
dψ
dρ

eimθ
=−

∂

∂θ

[
ψeimθ

(
iT +

U
m− nq

)]
+

(
Sz+

∂

∂θ
Q
∂z
∂θ

)
(2.1)

(
∂

∂θ
− inq

)
∂z
∂ρ
= ψeimθ

[
iW +

X
m− nq

+ (m− nq)V
]
− iψeimθ ∂V

∂θ

+U
∂z
∂θ
−

(
∂

∂θ
− inq

) [
T∗
∂z
∂θ

]
, (2.2)

where the equilibrium quantities, Q, S, T,U, V,W, X are defined in equation (A7) of
Connor et al. (1988),

S= inρ/R0, (2.3)

Q=−i
R0

nρ
1
|∇ρ|2

, (2.4)

T =
∇θ · ∇ρ

|∇ρ|2
+ i

R0g′

nρf
1
|∇ρ|2

, (2.5)

U =
µ0p′

B2
0f 2

R2

R2
0|∇ρ|

2
, (2.6)

V = i
n
ρR0

R2
0

R2|∇ρ|2
− i

R0

ρn

(
g′

f

)2 1
|∇ρ|2

(2.7)

1The behaviour of ψ near the resonant surface at m= nq(ρ), is a combination of large and small solutions
(Glasser et al. 1975), and it is this combination that must be matched to the solution in the inner resonant
layer.
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W =
2µ0p′g′

B2
0f 3

R2

R2
0|∇ρ|

2
−

d
dρ

g′

f
(2.8)

X = i
nµ0p′ρ
B2

0f 2R0

[
∂

∂θ

(
T∗

R2

R2
0

)
+
∂

∂ρ

R2

R2
0
−

R2

R2
0

(
f ′

f
−

1
ρ

)
−
µ0p′

B2
0f 2

R4

R4
0|∇ρ|

2

]
, (2.9)

with ′ now representing the radial derivative with respect to ρ. We note here that the
above expressions were derived for equilibria of arbitrary aspect ratio, cross-sectional
shape and β. The method employed in the following analysis is rather general and
does not assume that the second dependent variable, z, is also of single poloidal
harmonic structure.

To simplify the analysis we neglect the term involving S, relative to m2Q in (2.1).
This is equivalent to reducing the field line bending energy in a circular cylinder from
the (m2

+ k2
z r2) of the Newcomb (1960) analysis of stability in a linear pinch, to m2. In

a torus this is equivalent to an assumption that (ε/qs)
2
�1, where ε is the local aspect

ratio and qs =m/n is the value of the safety factor at the resonance. Since our focus
will be on tearing modes which are resonant in the pedestal region of a tokamak of
aspect ratio around 1/3, qs may be of order 4 or greater, so this approximation would
appear to introduce errors of only approximately 1 %.

The required 1-D tearing equation is now obtained by solving (2.1) for ∂z/∂θ ,
inserting the result in (2.2) and taking the flux surface average. Thus:

∂z
∂θ
=

eimθ

Q

[
1
m

dψ
dρ
+ψ

(
iT +

U
m− nq

)]
−

K(ρ)
Q

, (2.10)

where K(ρ) is a flux surface dependent constant of integration to be determined by a
periodicity constraint on z(ρ, θ). Thus

K(ρ)=
1
m

dψ
dρ
αm +ψ

[
γm +

δm

m− nq

]
, (2.11)

with

αm =
〈eimθ
|∇ρ|2〉

〈|∇ρ|2〉
=
〈cos(mθ)|∇ρ|2〉
〈|∇ρ|2〉

(2.12)

γm = i
〈eimθT|∇ρ|2〉
〈|∇ρ|2〉

=−
〈sin(mθ)∇θ · ∇ρ〉
〈|∇ρ|2〉

(2.13)

δm =
〈eimθU|∇ρ|2〉
〈|∇ρ|2〉

=
〈cos(mθ)R2

〉

R2
0〈|∇ρ|

2〉

µ0p′

B2
0f 2
, (2.14)

where the second form in (2.12)–(2.14) applies for equilibria which are symmetric
above and below the median plane. Now, since the m number for tearing modes which
are resonant in the pedestal region of a tokamak is likely to be moderately large, the
coefficients defined by αm, γm and δm in (2.12)–(2.14) may be very small unless there
is strong shaping. Consequently, we can normally neglect the integration constant,
K(ρ) defined in (2.11). In § 2.1 we will investigate the consequences of retaining finite
K(ρ).

Inserting the expression for (∂z/∂θ) (in the K(ρ) = 0 limit) into (2.2) and
multiplying by the factor e−imθ , we take the flux surface average to obtain a 1-D
tearing mode equation. Expressed in terms of the equilibrium quantities, Q,T,U,V,W
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and X, this takes the form:

(m− nq)
m2

d
dρ

[〈
1
Q

〉
dψ
dρ

]
+ψ

(m− nq)
m

d
dρ

[
i
〈

T
Q

〉
+

1
(m− nq)

〈
U
Q

〉]
=ψ

[
(m− nq)〈V〉 + i〈W〉 +

〈X〉
(m− nq)

+ (m− nq)
〈

T T∗

Q

〉
+

1
(m− nq)

〈
U2

Q

〉
+ i
〈

U(T − T∗)
Q

〉]
. (2.15)

Now, writing 1/Q= λρ|∇ρ|2, where λ= in/R0 and dividing through by λ(m− nq)/m2,
equation (2.15) takes the form of the second order differential equation:

d
dρ

[
ρ〈|∇ρ|2〉

dψ
dρ

]
+mψ

d
dρ

[
iρ〈T|∇ρ|2〉 +

ρ

(m− nq)
〈U|∇ρ|2〉

]
=ψ

m2

λ

[
〈V〉 + i

〈W〉
(m− nq)

+
〈X〉

(m− nq)2

]
+ψm2ρ

[
〈TT∗|∇ρ|2〉 +

i〈U(T − T∗)|∇ρ|2〉
(m− nq)

+
〈U2
|∇ρ|2〉

(m− nq)2

]
, (2.16)

which is of the same structure as the equation derived by Hegna & Callen (1994),
namely

d
dρ

[
A(ρ)

dψ
dρ

]
−

[
B(ρ)+

mC(ρ)
(m− nq)

+
m2D(ρ)
(m− nq)2

]
ψ = 0, (2.17)

where, on inserting the definitions (2.4)–(2.9),

A= ρ〈|∇ρ|2〉 (2.18)

B=
m2

ρ

[〈
R2

0

R2

1
|∇ρ|2

〉
+ ρ2

〈
|∇θ · ∇ρ|2

|∇ρ|2

〉]
=m2ρ〈|∇θ |2〉 (2.19)

C=−q
d

dρ

[
R0g′

f
+

R0

fg
µ0p′

B2
0

〈
R2

R2
0

〉]
(2.20)

D=
µ0p′

B2
0f 2

[
ρ

d
dρ

〈
R2

R2
0

〉
−

〈
R2

R2
0

〉(
ρg′

g

)]
. (2.21)

Some details of the derivation of (2.18)–(2.21) are given in appendix A, and in
appendix B we express equation (2.17) in terms of the variables used in equation (26)
of Hegna & Callen (1994).

2.1. Consequences of finite K
We now return to (2.10) and (2.11) and construct the additional terms that will appear
in the tearing equation when we retain terms with finite K(ρ). After lengthy, but
straightforward, further analysis, we find that each of the coefficients A(ρ),B(ρ),C(ρ)
and D(ρ) is modified by an additional contribution, which we shall denote by a
circumflex. Thus

A→ A(ρ)− Â(ρ),
B→ B(ρ)− B̂(ρ),
C→C(ρ)− Ĉ(ρ),
D→D(ρ)− D̂(ρ),

 (2.22)
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with

Â(ρ)= A(ρ)|αm|
2, (2.23)

B̂(ρ)=m2A(ρ)γ 2
m −m

d
dρ
[A(ρ)γmαm], (2.24)

Ĉ(ρ)=−q
d

dρ

[
αmδmA(ρ)

q

]
, (2.25)

D̂(ρ)= A(ρ)δm

(
δm −

sαm

ρ

)
(2.26)

where s= ρq′/qs= ρq′/q is the magnetic shear. Â, B̂, Ĉ and D̂ are small in the large
m limit because the numerators in the definitions of αm, δm, γm (see (2.12)–(2.14))
must vanish both at high m, or with weak shaping. At a fixed finite m these terms
can, however, become more important with stronger shaping (e.g. as one approaches
the separatrix).

2.2. Comparison with earlier results
The Hegna–Callen equation represented a significant advance on earlier work by
making possible a simple 1-D tearing analysis of large aspect ratio toroidal equilibria
with weakly shaped poloidal cross-sections. Our derivation has not only extended the
validity of the 1-D equation to finite aspect ratio equilibria, subject to (ε/qs)

2
� 1,

with arbitrary poloidal shaping, but it has also revealed the presence of new terms
arising from finite values of the integration constant K(ρ). These additional terms
of (2.23)–(2.26) have no counterpart in Hegna & Callen (1994) or Nishimura et al.
(1998), but they are small unless there is strong shaping containing poloidal harmonics
that couple to the mode number, m.

We now compare our tearing equation (2.17) with Hegna & Callen (1994) and
Nishimura et al. (1998). We begin by transforming from the Hegna–Callen equilibrium
variables, I and ψ , to the g, f , ρ variables of the present work. Thus:

I→ R0B0g(ρ), (2.27)
d

dψ
→

1
ψ ′

d
dρ
, (2.28)

ψ ′(ρ)→ R0B0f (ρ). (2.29)

The coefficients A, B, C and D can then be identified in equation (26) of Hegna &
Callen (1994) and compared to (2.18)–(2.21). This shows agreement in the expressions
for A and B, close agreement on C, but not for D. Since

σ =
1
f

(
g′ +

gµ0p′

B2

)
, (2.30)

one can indeed write C∝ (∂〈σ 〉/∂ρ) if B'Bφ , as in Hegna & Callen (1994). There is
some similarity with the expression for D that appears in equation (19) of Nishimura
et al. (1998), where special equilibria with g=constant were studied so that the last
term in (2.21) is absent, but nevertheless their D ∝ n2q2 rather than m2, and so it
differs away from the resonance.
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One-dimensional tearing 7

As noted by Hegna, Callen and Nishimura, there is an important comparison for
the expression given in (2.21) for D(ρ). This is associated with the Mercier stability
criterion, DM < 0, for the ideal MHD stability of a mode localised around a rational
surface (Mercier 1960). Glasser et al. (1975) showed DM

2 plays an important role in
the theory of tearing mode stability in a torus. They found the asymptotic form of the
ideal MHD solutions as ρ→ ρs is

ψ ∼ c0 |x− 1|ν− + c1 |x− 1|ν+ , (2.31)

where x= ρ/ρs, constants c0 and c1 have different values to the left and right of the
resonance, and the Mercier indices ν± have values:

ν± =
1
2 ±
√
−DM. (2.32)

This serves to define a generalised ∆′

∆′ =
c1

c0

∣∣∣∣
R

+
c1

c0

∣∣∣∣
L

, (2.33)

where R and L denote locations immediately to the right and left of the resonance,
respectively. This expression, obtained from the ideal MHD solution, must be matched
to the analogous quantity arising from the inner resonant layer solution, to obtain the
tearing mode dispersion relation.

Using the results in Glasser et al. (1975) and Connor et al. (1988)3 we find that, at
the tearing mode resonance, D of (2.21) should be compared to −(As2/ρ2)((1/4) +
DM), where

DM = −
1
4
+ E+ F+H

= −
1
4
+

q
q′
µ0p′

B2
0f 2

〈
R2

R2
0

1
|∇ρ|2

〉
−

q2

q′2

(
µ0p′

B2
0f 2

)2 〈R2

R2
0

1
|∇ρ|2

〉2

−

(
µ0p′

B2
0f 2

)
1

q′2

(
ρ

R0f

)2

×

〈
∂

∂ρ

(
R2

R2
0

)
−

R2

R2
0

ρ

f
d

dρ

(
f
ρ

)〉〈
B2R2

B2
0R2

0|∇ρ|
2

〉
+

(
µ0p′

B2
0f 2q′

)2 (
ρ

R0f

)2 〈 R4

R4
0|∇ρ|

2

〉〈
B2R2

B2
0R2

0|∇ρ|
2

〉
, (2.34)

and the quantities E, F and H are defined in Glasser et al. (1975). (In a later paper,
Glasser, Greene & Johnson (1976) showed that for a large aspect ratio circular cross-
section plasma:

E+ F+H =
2ρµ0p′

B2
0

q2
− 1
s2

, (2.35)

where the important factor q2
− 1 removes, for q> 1, the possibility of the instability

predicted by Suydam (1958) in a straight cylinder.) Thus we can write:

1
4
+DM ∝

ρµ0p′

B2
0

κeff

s2
, (2.36)

2The quantity labelled DM here is precisely the object denoted by DI in Glasser et al. (1975).
3A factor 1/f 2 was missed from the final term of equation (B3) of Connor et al. (1988) due to a

typographical error, and this is correctly included here.
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8 J. W. Connor, R. J. Hastie, C. Marchetto and C. M. Roach

with the ‘effective’ curvature, κeff, deduced from (2.34). However, Hegna & Callen
(1994), perhaps seeking a D consistent with this argument, assumed κeff was the
surface-averaged normal curvature, κn, and, furthermore, that κn ∝ V ′′ = (d〈J〉/dρ),
where 〈J〉 = (〈R2

〉q/R0B0g), to obtain the following result for D:

DHC ∝
ρµ0p′

B2
0s2

d〈J〉
dρ
∝
ρµ0p′

B2
0s2

1
R0

q
g

(
d〈R2
〉

dρ
+ 〈R2

〉

(
q′

q
−

g′

g

))
. (2.37)

However, at low β and with Bφ ' B (e.g. at large aspect ratio),

κn ∝ V ′′ −
〈R2
〉

R0B0

q′

g
(2.38)

(Connor, Hastie & Helander 2009), so that their argument should have implied

DHC→D∝
ρµ0p′

B2
0s2

1
R0

q
g

(
d〈R2
〉

dρ
− 〈R2

〉
g′

g

)
. (2.39)

Equation (2.39) is indeed consistent with our expression for D in (2.21), and also with
the work of Nishimura et al. (1998) in the special case g′ = 0 that they considered.
Equations (2.21), (2.39) are not, however, consistent with D=−(As2/ρ2)((1/4)+DM),
since κeff 6= κn.4 We should not expect D to be exactly equal to −(As2/ρ2)((1/4) +
DM), because the ideal instability investigated by Mercier, and later by Greene &
Johnson (1962) using Hamada coordinates, is a mode with a range of coupled poloidal
harmonics, whereas ψ of the envisaged tearing mode, has an isolated single poloidal
harmonic.

It would be inconsistent with the ‘single poloidal harmonic’ assumption to simply
replace D(ρ) by the value corresponding to DM in (2.17); although the use of DM

would capture the poloidal mode coupling effects close to the singular surface that
can have a profound effect on the Mercier indices, which in turn influence the value
of the generalised ∆′ stability parameter (Glasser et al. 1975).

3. Conclusions

Within the foregoing sections we have assumed that the perturbed poloidal flux
function, ψ(ρ, θ), contained only one poloidal harmonic, eimθ . However our solution
for the variable z, equation (2.10), contains a full spectrum of poloidal harmonics.
Under these assumptions we have extended the validity of the tearing equation
proposed by Hegna & Callen (1994) to axisymmetric equilibria of arbitrary aspect
ratio and arbitrary β. In doing so we have only made use of the approximation,
ε2/q2

s � 1. This would certainly rule out the use of the resulting 1-D equation for
studying internal kink type disruptions in tokamaks (where the m = n = 1 harmonic
plays a crucial role), but should prove to be an accurate approximation for modes
which are resonant in the pedestal region of a tokamak in H-mode. An unexpected
result of this calculation has been the appearance of a new set of terms arising from
the effect of the integration constant K (denoted by Â, B̂, Ĉ and D̂). However, it
appears unlikely that such terms will play a significant role in determining tearing
stability since they are normally negligibly small, except perhaps in very strongly

4A more detailed discussion of the relation of DM to κn is given by Johnson & Greene (1967).
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shaped cross-sections or, e.g. in the vicinity of a separatrix boundary. For simplicity
we ignored these extra terms in (2.17).

It is also clear from the foregoing derivation of a 1-D equation that the pressure
gradient term, D(ρ) of (2.17), differs from the quantity −(As2/ρ2)((1/4) + DM)
that would be expected in general tearing mode theory, as the singular surface
is approached. The difference arises because the derivation of (2.17) is based on
a single poloidal harmonic assumption, whereas retention of the coupled poloidal
harmonics is required to capture the true value in the limit as ρ→ ρs. The approach
outlined in Fitzpatrick et al. (1993) retains seven coupled poloidal harmonics, but its
restrictions to weak shaping and low β severely impede its application to the pedestal.
The single poloidal harmonic approach outlined in this paper accommodates strong
shaping and β effects, but neglects poloidal mode coupling that is needed to describe
DM at the resonance and that may be important more globally. Nevertheless, for ∆′
calculations at the foot of the pedestal where s2 becomes large near a separatrix
boundary, both the exact Mercier indices and the approximate (1-D) ones return to
similar, low β, values (of 0 and 1), and the 1-D approximation may give a good
indication of tearing instability in a rather simple manner.

Numerical investigations of H-mode equilibria are presently underway.
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Appendix A
We can generate unique expressions for the coefficients B, C and D, by exploiting

the fact that all toroidal mode number dependencies in the 1-D tearing (2.17) can be
expressed as powers, up to quadratic, of m/(m− nq).

First, we collect all three terms in (2.16), that include parts proportional to (m/(m−
nq))2 and contribute to the coefficient D(ρ) in (2.17), namely;

1
λ
〈X〉 + ρ〈U2

|∇ρ|2〉 − ρ
n
m

q′〈U|∇ρ|2〉. (A 1)

Now replacing n by the identity (nq−m+m)/q and using s= ρq′/q, this expression
becomes

1
λ
〈X〉 + ρ〈U2

|∇ρ|2〉 − s〈U|∇ρ|2〉 +
(m− nq)

m
s〈U|∇ρ|2〉, (A 2)

where the first three terms yield (2.21) for D and the last term now contributes to the
expression for the coefficient C, rather than D. Three different terms from (2.16) and
the final term of equation (A 2), contribute the term in (2.17) that is proportional to
m/(m− nq), with the following factor in the coefficient:

im
λ
〈W〉 + imρ〈U(T − T∗)|∇ρ|2〉 −

d
dρ

(
ρ〈U|∇ρ|2〉

)
+ s〈U|∇ρ|2〉, (A 3)
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where the last term is the contribution from equation (A 2) above. Using (2.5), (2.6)
and (2.8) for T , U and W, the expression in (A 3) becomes:

−
m
n

d
dρ

[
R0g′

f

]
− q

d
dρ

[
R0

fg
µ0p′

B2
0

〈
R2

R2
0

〉]
. (A 4)

Now, on replacing m by the identity m− nq+ nq, we obtain the following expression:

C=−q
d

dρ

[
R0g′

f
+

R0

fg
µ0p′

B2
0

〈
R2

R2
0

〉]
−
(m− nq)

n
d

dρ

(
R0g′

f

)
, (A 5)

where the first two terms coincide with (2.20) for C(ρ), and the third term contributes
to the coefficient B(ρ) and exactly cancels the remaining n dependence in B, leading
to (2.19) for B(ρ).

To demonstrate the second equality in (2.19) we consider cylindrical toroidal
coordinates R, Z, φ. The Jacobian for the transformation (R, Z)→ (ρ, θ) is:

J =
ρR
R0
=
∂R
∂θ

∂Z
∂ρ
−
∂R
∂ρ

∂Z
∂θ
. (A 6)

We can obtain ∇ρ and ∇θ , using

∇R=
∂R
∂ρ
∇ρ +

∂R
∂θ
∇θ

∇Z =
∂Z
∂ρ
∇ρ +

∂Z
∂θ
∇θ

 (A 7)

and deduce:

J2
|∇ρ|2 =

(
∂R
∂θ

)2

+

(
∂Z
∂θ

)2

J2
|∇θ |2 =

(
∂R
∂ρ

)2

+

(
∂Z
∂ρ

)2

J2
∇ρ · ∇θ =−

[
∂R
∂θ

∂R
∂ρ
+
∂Z
∂θ

∂Z
∂ρ

]
.


(A 8)

Squaring and adding (A 6) and (A 7) using (A 8) one finds:

R2

R2
0|∇ρ

2|
+ ρ2∇θ · ∇ρ

|∇ρ2|
= ρ2
|∇θ |2. (A 9)

Appendix B
The 1-D tearing (2.17) is expressed in terms of equilibrium variables ρ, g and f .

More familiar variables are the equilibrium poloidal flux ψ and I(ψ) as used by
Hegna & Callen (1994). These are related by (2.27)–(2.29). In this appendix we give
the form that (2.17) takes when expressed in these Hegna–Callen variables. Of the
four terms in (2.17) we find:

Term 1→
Iρ
q

d
dψ

[
q
I
〈|∇ψ |2〉

dÃ
dψ

]
, (B 1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000557
Downloaded from https://www.cambridge.org/core. UKAEA, on 02 Jul 2019 at 10:12:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000557
https://www.cambridge.org/core


One-dimensional tearing 11

Term 2→−m2ρ〈|∇θ |2〉Ã, (B 2)

Term 3→
mρI

(m− nq)
d

dψ

[
I′(ψ)+

µ0p′(ψ)
I(ψ)

〈R2
〉

]
Ã, (B 3)

Term 4→−
ρIm2µ0p′

(m− nq)2

[
d

dψ

〈
R2

I

〉]
Ã, (B 4)

where, as in the work of Hegna and Callen, the dependent variable Ã is the, single
poloidal harmonic, tearing mode eigenfunction and ′ denotes the radial derivative with
respect to ψ . Finally, on multiplying through by the factor q/ρI we obtain the 1-D
tearing equation in a rather simple form:

d
dψ

[
q
I
〈|∇ψ |2〉

dÃ
dψ

]
−

{
m2q

I
〈|∇θ |2〉 −

mq
(m− nq)

d
dψ

[
I′ +

µ0p′

I
〈R2
〉

]
+

m2qµ0p′

(m− nq)2

[
d

dψ

〈
R2

I

〉]}
Ã= 0. (B 5)
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