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Atomic cluster expansion interatomic potentials for lithium:
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We develop an atomic cluster expansion (ACE) interatomic potential for lithium that accurately models both
the solid and liquid phase and the corresponding melting point. The training data is obtained from 0 K density
functional theory (DFT) and finite temperature ab initio molecular dynamics simulations of both solid and
liquid Li. The ACE predicted properties for both phases obtained from molecular dynamics simulations are
in close agreement with DFT and experimental data from the literature. The potential is able to capture the
energy differences of the different competing phases of the solid at 0 K and finite temperature properties of the
experimentally observed bcc phase. The potential also accurately predicts the temperature dependence of liquid
density, viscosity, and the diffusion coefficient. The melting point is calculated using the two-phase coexistence
method and is remarkably close to the experimental value. The potential is used to predict stress-induced phase
transformations in solid Li and pressure-volume isotherms in liquid Li. We underline the necessity for a complete
training set that includes both solid and liquid configurations in order to obtain a potential that precisely models
both phases. By using the ACE formalism, we also systematically investigate the contributions of interactions
involving N bodies and the number of radial parameters needed to separately represent both phases since they
have a direct consequence on the computational cost of the potential. We shed light on the complexity of the
ACE potential needed to model solid and liquid lithium efficiently.
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I. INTRODUCTION

Lithium is being considered for two roles in fusion power
plants: tritium breeding and cooling. Thus, to design and build
sustainable fusion reactors, it is important to understand the
behavior of Li and Li-based compounds. Liquid Li, liquid
lithium-lead alloy, solid Li ceramics, and Li-based molten
salts have been touted as prime candidates for tritium breeding
[1,2]. An additional advantage of liquid Li is the possibility to
use it as a coolant by absorbing the heat produced by the high
neutron flux [3]. Outside of operational phases, for example
during maintenance periods, the breeder material in a fusion
reactor is allowed to cool down to room temperature and
the liquid breeder materials then solidify. The liquid breeder
materials can also locally solidify along the edges of the
blanket at the interface with the surrounding structural ma-
terial. Hence it becomes crucial to understand the temperature
dependent behavior of both solid and liquid Li phases under a
range of external conditions.

Several questions remain unanswered regarding the use
of Li as a breeder, but of particular concern is how hydro-
gen isotopes can be stored and how they diffuse within the
breeder. Achieving understanding by experimental means is
possible, but the complexity of the system makes this very
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expensive and difficult. Computational techniques such as
atomistic simulations provide a safe, inexpensive, and flexible
way to analyze and hence understand such systems under
different conditions. However, the reliability of the results de-
pends on the accuracy of the interatomic potential that drives
the dynamics of the system. Further, the need for accuracy can
require large simulation cells; thus we need computationally
affordable potentials that can be scaled to bigger system sizes.

The phase diagram of solid Li across the temperature-
pressure range is quite complex [4–6]. First principles density
functional theory (DFT) predicts several energetically com-
peting phases at 0 K with the face-centered cubic (fcc) as
the lowest-energy structure [7] and body-centered cubic (bcc),
hexagonal close-packed (hcp), and rhombohedral h9R struc-
tures only marginally higher in energy compared to the fcc
phase [8]. However, the bcc phase becomes entropically sta-
bilized at 100–200 K, making it the experimentally observed
room temperature phase [8,9]. Under the application of exter-
nal pressure at room temperature even as low as 10 GPa, the
bcc phase transforms into the fcc phase [4–6].

Accurately capturing these tiny energy differences in an
interatomic potential is a very challenging task. Nichol et al.
[10] developed an EAM potential to study property trends in
simple metals, including Li. In order to include angular terms
in the formalism, Ko et al. [11] and Qin et al. [12] developed
second-nearest neighbor modified embedded atom method
(2NN-MEAM) potentials for predicting phase transitions in

2469-9950/2025/112(5)/054108(15) 054108-1 ©2025 American Physical Society

https://orcid.org/0000-0002-9199-4340
https://orcid.org/0009-0003-5125-1125
https://orcid.org/0009-0004-5429-3221
https://orcid.org/0000-0003-4533-666X
https://orcid.org/0000-0001-8935-1744
https://orcid.org/0000-0001-6061-9946
https://ror.org/0361bwx64
https://ror.org/041kmwe10
https://ror.org/052gg0110
https://crossmark.crossref.org/dialog/?doi=10.1103/q4nm-qyk4&domain=pdf&date_stamp=2025-08-27
https://doi.org/10.1103/q4nm-qyk4


PRASHANTH SRINIVASAN et al. PHYSICAL REVIEW B 112, 054108 (2025)

solid Li. Besides empirical potentials, Phuthi et al. [13], Zuo
et al. [14], and Wang et al. [15] trained machine-learning
based interatomic potentials (MLIPs) to study bulk and sur-
face properties of solid Li and high-pressure structures of solid
Li, respectively. While all the above potentials predict the
overall behavior of solid Li quite accurately, there are always
certain properties that are more challenging to capture. For
instance, some of the potentials fail to capture the bcc-fcc-h9R
energy difference or accurate elastic constants of bcc and
fcc phases. Nevertheless, none of the above potentials have
explicitly been developed or trained to model liquid Li.

There have been relatively fewer attempts to develop in-
teratomic potentials to model Li’s liquid phase. In 2009,
Belashchenko et al. [16] developed an embedded atom
method (EAM) interatomic potential by fitting to experimen-
tal data above the melting point. Cui et al. [17] developed
an improved second nearest neighbor modified embedded
atom method (2NN-MEAM) potential which outperformed
the EAM potential in accuracy. However, neither potential was
able to predict accurate values for the temperature-dependent
viscosity or the self-diffusion coefficient. More recently, Al-
Awad et al. [18] developed an EAM potential that rectified
these drawbacks. By introducing a long-range oscillatory
form of the pair potential they were able to tune the potential
to reproduce the experimental melting point and experimental
densities and predicted other properties more accurately.

To realistically simulate different scenarios of a lithium
breeder blanket, the interatomic model should be able to
accurately predict both solid and liquid phases and the trans-
formation. In order to do so, we require a functional form
for the potential that can accommodate a more complete de-
scription of the local atomic environment than is possible with
empirical potentials such as the EAM and the 2NN-MEAM.
MLIPs provide us with the flexibility needed to model more
complex atomic systems since they are derived from local
atomic environment descriptors that span a larger parame-
ter space. Several classes of MLIPs have garnered attention
over the past two decades, each with their own sets of de-
scriptors [19–29]. One such machine-learning based model
is the atomic cluster expansion (ACE) interatomic potential
[30]. The ACE potential provides a formally complete and
efficient representation of properties as a function of local
atomic environment using many-body functions. A general
description and understanding of the ACE formalism has been
presented in the Supplemental Material A [31] of this paper.
The basis set used to represent atomic structures in the ACE
formalism has been proven to be complete in several works
in the literature [30,32,33]. The ACE formalism also allows
one to systematically study the contribution of different many-
body interactions in a given system. Hence, in this work, we
develop an ACE MLIP to model the lithium system. We also
analyze the effect of many-body contributions on solid and
liquid lithium properties by training and comparing a set of
ACE potentials that include different orders of many-body
terms. MLIPs though, suffer from poor extrapolation of prop-
erties, for instance to temperatures or phases not included
in the training, as discussed in the Supplemental Material B
[31] for the case of Cu using a previously developed ACE
potential [34]. Therefore, in the current work, we train the
ACE potential for Li on 0 K DFT and finite temperature

ab initio molecular dynamics (AIMD) configurations that
span both the solid and liquid phases.

The remainder of this manuscript is arranged as follows.
The computational details for building the DFT training set,
training the ACE potential, and performing molecular dynam-
ics (MD) simulations are provided in Sec. II. In Sec. III we
report the results for the final fitted potential when applied
to both phases and compare them to DFT and experimental
data. In Sec. IV, we discuss the contribution of many-body
terms and perform a cost versus accuracy analysis of a set of
potentials trained with different numbers of radial and angular
parameters. The conclusions and outlook of this work are
summarized in Sec. V.

II. COMPUTATIONAL METHODS

A. DFT training data

The ACE potential is trained on first principles calculations
that use density functional theory (DFT). All DFT calcu-
lations are performed using the VASP code [35] within the
projected augmented-wave (PAW) method [36,37]. For the
results shown in the main text, the ACE is trained on DFT
data that uses the generalized gradient approximation (GGA)
exchange correlation (XC) functional by Perdew, Burke, and
Ernzerhof (PBE) [38]. The effect of the XC functional is
discussed in the Supplemental Material C [31], where re-
sults using the local density approximation (LDA) [39] XC
functional are compared to those using GGA. Note that all
the DFT calculations include only one valence electron for
Li. Including additional valence electrons has a negligibly
small effect on the properties, which is also outlined in the
Supplemental Material C [31]. The Methfessel-Paxton smear-
ing method [40] with a smearing width of 0.1 eV is used to
approximate the orbital occupation function. The calculations
for the training set are performed on 128-atom supercells
(modified accordingly for vacancy, interstitial, and non-bcc
structures) with a plane wave energy cutoff of 450 eV and
a 4×4×4 k-point grid.

The training set used to fit the ACE potential contains both
solid and liquid configurations obtained from 0 K static DFT
and finite temperature ab initio molecular dynamics (AIMD)
simulations. The complete set of calculations is summarized
in Table I. To sample the solid phase, we explicitly include
100 structures at 0 K spanning a volume range for each of
the four energetically competing phases in the training set as
given in Table I. We perform AIMD simulations of the bcc,
fcc, and hcp phases at 400 K. For the bulk bcc phase, we
perform these AIMD simulations for a set of six volumes
and five each for the bulk fcc and hcp phases. We choose
an additional smaller volume for the bcc phase to accurately
capture high pressure configurations and the corresponding
melting point. Additionally, we perform AIMD runs at 400 K
and a set of volumes starting from the following modified bcc
structures after relaxation: structures with different numbers
of vacancies (one to four); a structure with a 〈111〉 self-
interstitial, which is the most stable self-interstitial atom (SIA)
defective structure; a [100] and a [110] free surface. To sample
the liquid phase, AIMD simulations are performed at five
different temperatures and five volumes at each temperature.
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TABLE I. Summary of the VASP calculations performed for the solid and liquid Li phases to generate configurations for the training data
set. The first four rows correspond to 0 K DFT calculations. The remaining rows correspond to AIMD runs which are performed for 2000 steps
in an NVT ensemble at the corresponding volume and temperature. The first 1000 steps are used for training and the last 1000 are used for
validating the potential. One configuration in every 10 from the AIMD snapshots is chosen for the final training set, except for the fcc phase
where one in every 5 is chosen. The supercell size is 128 atoms unless otherwise mentioned.

Solid configurations Temperature (K) Volume per ion (Å3)

bcc 0 16.54, 16.60, . . ., 23.53 (100 volumes)
fcc (108 atoms) 0 17.61, 17.66, . . ., 23.24 (100 volumes)
h9R (108 atoms) 0 14.80, 14.90, . . ., 27.02 (100 volumes)
hcp (96 atoms) 0 14.66, 14.75, . . ., 26.76 (100 volumes)
bcc bulk 400 16.90, 18.01, 19.16, 20.35, 21.60, 22.90
bcc with divacancy 400 18.01, 19.16, 20.35, 21.60, 22.90
bcc with trivacancy 400 18.01, 19.16, 20.35, 21.60, 22.90
bcc with quad vacancy 400 18.01, 19.16, 20.35, 21.60, 22.90
bcc with 〈111〉 SIA 400 16.95, 18.62, 20.40, 22.29
bcc with [100] surface 400 3 volumes (a = 2.82 Å, 2.97 Å, 3.12 Å)
bcc with [110] surface (144 atoms) 400 3 volumes (a = 2.82 Å, 2.97 Å, 3.12 Å)
fcc bulk (108 atoms) 400 16.88, 18.55, 20.33, 22.21
hcp bulk (144 atoms) 400 16.70, 18.35, 20.10, 21.97

Temperature (K) Volume per ion (Å3)

600 19.62, 20.90, 22.24, 23.62, 25.07
800 20.90, 22.24, 23.62, 25.07, 26.57

Liquid configurations 1000 20.90, 22.24, 23.62, 25.07, 26.57
1200 22.24, 23.62, 25.07, 26.57, 28.14
1400 22.24, 23.62, 25.07, 26.57, 28.14

All AIMD simulations are run in the NVT ensemble for 2000
steps with a time step of 0.5 fs. Only the first 1000 steps are
used for training. The last 1000 steps are used for validating
the potential. In order to obtain uncorrelated snapshots, we
pick one in every ten AIMD configurations for training the
potential. However, for the bulk fcc phase, we choose one
in every five configurations to indirectly increase the weight
given to fcc structures. This improves the accuracy of the fitted
potential when predicting the bcc-fcc-liquid phase transfor-
mations. Overall, the training data set contains 2500 liquid
snapshots and 4700 solid snapshots.

B. Atomic cluster expansion interatomic potential: Formalism

An overview of the formalism of the ACE interatomic
potential is provided in this subsection. For a more detailed
and general understanding of the ACE formalism, the reader is
advised to refer to Supplemental Material A [31]. For a system
with N atoms, the energy of the system can be represented as
a sum of individual atomic energies, given by

Etot =
N∑

i=1

Ei. (1)

Each atomic energy is evaluated allowing interactions only
with atoms within a certain cutoff range of the central atom.
This locality of interactions provides a linear scaling with
system size. The atomic energies Ei can be obtained from a
combination of different atomic properties ϕ

(p)
i , which could,

in principle, represent bonding, repulsion, etc. Hence Ei can
generically be expressed as a nonlinear function given as

Ei = F
(
ϕ

(1)
i , ϕ

(2)
i , . . . , ϕ

(p)
i

)
. (2)

A simple linear representation of the atomic energy means
that Ei can be expressed as

Ei = ϕi. (3)

However, for metallic systems, a faster convergence of the
atomic energy with many-body interactions can sometimes be
achieved by employing a nonlinear form representative of the
Finnis-Sinclair potential [41], as given by

Ei = ϕ
(1)
i +

√
ϕ

(2)
i , (4)

where ϕ
(1)
i and ϕ

(2)
i are representative of the pairwise repul-

sion and the embedding function. Within the ACE formalism,
each ϕ

(p)
i can be expanded using a set of atomic descriptors

given by

ϕ
(p)
i =

∑
v

c(p)
v Bv, (5)

where c(p)
v is an expansion coefficient and Biv a basis function

with multi-indices v: see below for the component indices.
The building blocks for the ACE atomic descriptors are a

set of orthogonal and complete single-bond basis functions
φυ (ri j ), expressed as

φυ (ri j ) = Rnl (r ji)Ylm(r̂ ji ), (6)

where Rnl are radial functions that depend on the distance
from atom i to atom j, Ylm are spherical harmonic functions
depending on the direction r̂, and υ = (nlm) is a cumulative
index. The complexity of the descriptor can be altered by
choosing different values of n and l prior to training the
potential. Choosing larger values provides more flexibility
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enabling accurate training on larger data sets, but significantly
increases the computational cost of using the potential to do
MD simulations. The atomic base A, obtained by summing
over all neighbors of the central atom, is expressed as

Aiυ =
∑

j

φυ (r ji ), (7)

following which basis functions A of different body orders T
are constructed as

Aiυ =
T∏

t=1

Aiυt . (8)

In Eq. (8), with every additional product, an additional term
in the N-body decomposition of the atomic property can be
parametrized and υ is a cumulative index (nlm) in the product
space of multiple spherical harmonics for different values of
T . More specifically, only up to two-body interactions can be
parametrized using t = 1. To account for three-body interac-
tions, one needs to consider basis functions up to t = 2, and up
to t = 3 for four-body interactions, and so on. The basis func-
tions in Eq. (8) need to be invariant under translation, rotation,
inversion, and permutation. This can be achieved by creating
invariant combinations Biv from the original functions Aiυ′

Biv =
∑
υ′

Cvυ′ Aiυ′ , (9)

where the generalized Clebsch-Gordan coefficients C remove
functions that are not rotationally invariant and v corresponds
to the index (T nl). We now have the final set of basis functions
Biv required for the expansion of an atomic property ϕ

(p)
i as

given in Eq. (5).
For all figures and data discussed in the Results section of

this manuscript, the interatomic potential that has been de-
veloped considers a Finnis-Sinclair type of energy expansion
[Eq. (4)], where ϕ

(1)
i and ϕ

(2)
i are expanded within the ACE

formalism. In the Discussion section, we compare and show
the faster convergence of this potential to one that consid-
ers only a linear expansion of the atomic energy [Eq. (3)].
Additionally, we examine the effect of different many-body
interactions [different values of T in Eq. (8)], the radial cutoff,
and the effect of the index n in Eq. (6) on cost and accuracy of
the results in the Discussion section.

C. Atomic cluster expansion: Parametrization

The parameters of the ACE potential are fitted using the
Pacemaker package [34,42,43]. A cutoff of 5.5 Å is chosen for
all interactions, based on the range of DFT interactions. For
the basis functions, up to four-body interactions [up to T = 3
in Eq. (8)] are considered. The maximum value of the indices
n and l for each order are summarized in Table II. Spherical
Bessel-type functions are chosen to expand the radial part
of the ACE formalism [Rnl (r ji ) in Eq. (6)], which lead to
360 expansion coefficients. With the above chosen values for
n, l , and T , we end up with 403 basis functions for each
cluster expansion ϕ

(1)
i and ϕ

(2)
i [Eq. (5)]. In total, we train

1166 parameters (360 coefficients for the radial functions and
403 coefficients each for ϕ

(1)
i and ϕ

(2)
i ). A single-shot fitting

TABLE II. Summary of the parametrization details used for the
primary ACE potential developed in this work.

ACE details Value

Energy expansion FS type [Eq. (4)]
Cutoff 5.5 Å
Radial basis function Spherical Bessel
T order 1/2/3
nmax 15/6/4
lmax 0/3/3
Number of parameters (radial part) 360
Number of parameters c(1)

v 403
Number of parameters c(2)

v 403
Total number of parameters 1166

to the training data is performed using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm to obtain the parameters.

For the Discussion section, we also train a set of ACE po-
tentials with different cutoffs, body order T , and nmax values
to study their impact on the solid and liquid properties. Such
an analysis is performed to understand the computational cost
that comes with choosing a stricter set of initial conditions
for training the ACE potential. The details of these additional
potentials are specified in Table VI in the Discussion section.

D. Molecular dynamics simulations

All MD calculations in this work are performed using
the LAMMPS code [44] with the Performant implementation
of the atomic cluster expansion (PACE) library [34,42,43].
The simulations are done on single-crystal bulk supercells,
periodic in all directions, unless otherwise specified. Time in-
tegration is performed using the velocity Verlet algorithm [45]
with a time step of 0.5 fs. Temperature and pressure control
is done using a Nose-Hoover thermostat [46] and using the
Parrinello-Rahman method [47], respectively. Structures are
visualized using the OVITO software package [48]. Specific de-
tails regarding the MD runs are provided in the corresponding
subsections in the Results section.

III. RESULTS

A. Fitting results

The root mean square errors (RMSE) and the mean abso-
lute errors (MAE) of the fitted ACE on both the training set
and the validation set are provided in Table III. As mentioned
earlier, the validation set contains snapshots from the final
1000 steps of each AIMD calculation. The ACE potential

TABLE III. Summary of the fitting results. The chosen cut-
off is 5.5 Å, with up to four-body interactions and nmax = 15 for
T order = 1 as the initial specifications of the ACE potential. The
validation set includes the final 1000 steps of each AIMD run.

Energy (meV/atom) Force (meV/Å)

Training Validation Training Validation

RMSE 1.81 1.64 11.8 13.17
MAE 0.79 0.82 6.38 6.17
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TABLE IV. Properties of Li at 0 K in the different energetically competing phases. Current DFT results and ACE predictions are compared
to results from the literature. The table compares lattice constants a and c (in Å), equilibrium volume (in Å3/atom), cohesive energy Ecoh, the
energy difference with the fcc phase E − Efcc (in eV/atom), and the elastic constants Ci j (in GPa).

Structure Property DFT (This work) DFT/Expt. (Literature) ACE (This work) MEAM (Literature)b,d

a 4.331 4.324a, 4.33b 4.33 4.347, 4.298
Volume 20.3097 20.211a, 20.295b 20.295 20.536, 19.849

fcc Ecoh −1.61 −1.611b −1.614 −1.63, −1.64
C11 16.4 16.2c 17.1 16.02, 13.45
C12 12.5 12.5c 13.1 12.13, 15.09
C44 10.1 10.4c 12.1 10.92, 10.61

a 3.439 3.438d, 3.51e 3.438 3.451, 3.419
Volume 20.336 20.318d, 21.62e 20.318 20.55, 19.983

bcc E − Efcc 0.0016 0.0015b 0.0036 0.00054, 0.0015
C11 14.6 15.0f 15.0 16.7, 16.2
C12 13.7 13.2f 13.4 12.6, 13.5
C44 11.5 11.1f 10.9 11.2, 8.6

a 3.061 3.058a 3.06 3.075, 3.033
c 5.009 5.013a 5.00 5.01, 5.015

Volume 20.3225 20.298a 20.3 20.512, 19.976
E − Efcc 0.00019 0.0001d 0.0003 0.0005, 0.00074

hcp C11 26.6 22f 24.1 21.1, 14.1
C12 10.9 11f 10.9 12.8, 22.2
C13 5.2 8f 5.1 6.3, 6.4
C33 32.1 26f 31.3 27.6
C44 7.9 6f 7.7 4.4, 2.8
C66 4.9 6f 5.0

a 3.06 3.08g 3.04
c 22.53 22.37g 22.3

Volume 20.313 20.42g 20.1
E − Efcc 0.00014 0.000 −0.0001

C11 19.1 19g 20.24
h9R C12 13.6 14g 14.4

C13 7.5 8g 6.9
C33 27.1 27g 24.3
C44 6.3 5g 7.4
C66 1.8 2g 2.1
C14 1.1 1g 1.6

aReference [51]; bReference [12]; cReference [7]; dReference [11]; eReference [52]; fReference [53]; gReference [54].

predicts extremely accurate values of the energies and forces
of configurations from both the training and validation sets:
errors below 2 meV/atom for energies and 14 meV/Å for
forces. Below, we further use the ACE potential to predict 0 K
and high-temperature properties of solid and liquid Li.

B. Solid lithium

1. 0 K phases

The 0 K properties predicted by the ACE potential are
compared to corresponding DFT or experimental data and
results from the literature obtained using previously existing
2NN-MEAM interatomic potentials for solid Li [11,12]. In
Table IV we provide an extensive set of such properties for the
fcc, bcc, hcp, and h9R phases. Here, we have also compared
the DFT results obtained in this work which are calculated as
a part of the training set generation. The properties of the h9R
phase were not calculated in the literature of the previously
existing potentials and are hence left blank.

From the DFT results in Table IV it is seen that the fcc
phase is the lowest-energy ground state structure at 0 K,
which has been previously established in the literature [7].
The bcc, hcp, and h9R are metastable phases, but energet-
ically very close to the fcc phase as noticeable from the
energy differences. The ACE potential also predicts the fcc
phase to have a lower energy than the bcc and hcp phases,
though the energy difference between the bcc and fcc phases
is marginally higher (by 0.002 eV/atom) than for DFT. How-
ever, the ACE potential predicts the h9R phase to be lower
in energy than the fcc phase by 0.0001 eV/atom. In addition
to the energy differences, the elastic constants predicted by
the ACE potential are also in good agreement with DFT for
all phases and each of them satisfies the Born criteria [49].
The positive values of C′ = C11 − C12 also indicate that there
is no spontaneous fcc-bcc Bain transformation. Rather, the
transformation happens through an intermediate high-energy
mean-centered cubic phase as discussed in Ref. [50]. Overall,
the ACE property predictions of the different phases are very
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FIG. 1. Energy-volume curves of the four phases with respect
to the equilibrium 0 K fcc energy predicted by the ACE potential
compared to DFT.

satisfying, considering the extremely small energy differences
between the different phases. Nonetheless, the bcc phase is
known to become entropically stabilized above ≈100 K.

The 0 K energy-volume curve predicted by the ACE poten-
tial is compared to the DFT results for four phases in Fig. 1.
Here, the energies are with respect to the equilibrium fcc en-
ergy. The hcp and h9R energies are almost exactly reproduced,
while our ACE potential predicts a marginally higher energy
for the bcc phase by less than 0.002 eV/atom. The ACE also
predicts the bcc phase to be slightly softer which is noticeable
from the small difference in curvature of the energy-volume
plot. This difference might arise from the fact that there are
several high-temperature bcc configurations in the training set.
The elastic constants and bulk modulus are lower at a higher
temperature, driving the ACE potential towards predicting a
slightly softer bcc phase even at 0 K.

2. Vacancies and self-interstitial defects

In addition to the 0 K energies and phase stabilities
discussed above, we also validate the 0 K defect and sur-
face energies predicted by the ACE potential. We restrict
these comparisons only to the experimentally observed bcc
phase. Table V shows the formation energies of a mono-,
di-, and trivacancy, five self-interstitial defects, and three dif-
ferent surface energies. The formation energies of vacancies
and SIA defects are calculated as E formation = [Ewith defect −
(Nwith defect/N )×Ebulk]. The table also compares the total bind-
ing energies of the di- and trivacancy, which are calculated as

TABLE V. Comparison of certain vacancy formation, vacancy
binding, self-interstitial formation, and surface energies of bcc Li
predicted by the ACE potential to DFT.

DFT ACE
Property Type (This work) (This work)

Vacancy Monovac 0.457 0.437
formation energy Divac 0.952 0.92
(eV/atom) Trivac 1.397 1.41

Binding energy Divac −0.038 −0.04
(eV/atom) Trivac −0.026 −0.014

〈111〉 0.527 0.511
Self-interstitial 〈110〉 0.617 0.58
formation energy 〈100〉 0.757 0.689
(eV/atom) Octahedral 0.81 0.77

Tetrahedral 0.834 0.813

{110} 0.029 0.022
Surface energy {100} 0.027 0.023
(eV/Å2) {111} 0.041 0.046

Ebinding = (n × E formation
monovac − E formation

di/trivac ) with n equal to 2 or 3
for the di- and trivacancy. The surface energy is calculated as
E surface = (Ewith surface − Ebulk )/(2 × Area) using a large sim-
ulation box with a free surface on either side of the axis and
periodic along other dimensions. The ACE potential predicts
defect energies in very good agreement with DFT. In solid
bcc Li, the binding energy of di- and trivacancies is negative,
suggesting that there is no inclination towards the formation
of vacancy clusters, as predicted both by DFT and the ACE
potential. The ACE potential and DFT both predict the 〈111〉
self-interstitial to be the lowest-energy interstitial defect in
bcc Li. Similarly, both the ACE potential and DFT predict
the {100} and {110} surfaces to be the lowest-energy surfaces,
though the ACE potential predicts the {110} to be lower in
energy than the {100} surface by only 0.001 eV/atom.

3. Temperature dependent properties

Next, we also use the ACE potential to calculate temper-
ature dependent properties of solid bcc Li. Figure 2 shows
the change in lattice constant with temperature predicted by
the ACE potential, in comparison to experiments reported in
the literature. The slope of the curve (related to the coeffi-
cient of thermal expansion) agrees with the experimental data,
although the absolute values are slightly smaller (by around
0.02–0.04 Å). The smaller lattice constant predicted by the
ACE potential in comparison to the experiment value is also
observed at 0 K (3.438 Å versus 3.51 Å; refer to Table IV).
The smaller lattice constant predicted by the ACE potential
is a consequence of training it on energies and forces cal-
culated using the GGA exchange-correlation functional. The
GGA functional already predicts an overbinding solid with
a smaller lattice constant than experiments (3.439 Å versus
3.51 Å at 0 K; refer to Table IV). The overbinding nature of
the GGA functional has been observed in the literature for
many transition metals [55]. Hence, since the ACE potential is
trained on overbinding GGA functional values, it also predicts
overbinding of solid Li, leading to slightly smaller values of
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FIG. 2. Lattice constant as a function of temperature for the bcc
phase predicted by the ACE potential compared to experimental
values [56,57].

lattice constant compared to experimentally measured values,
both at 0 K and finite temperature.

In Fig. 3, we plot the change in elastic constants (C11,
C12, and C14) of the bcc phase predicted by the ACE po-
tential compared to experimental data from the literature. The
slope of the curves are consistent and the absolute values are
accurately predicted by the ACE potential. All three elastic
constants decrease by 3–4 GPa from 0 K to 400 K, making the
bcc solid softer with increasing temperature. The C′ values are
positive at all temperatures for bcc Li.

4. Effect of stress on bcc Li

To study the effect of stress on bcc Li at room tempera-
ture using the ACE potential, we perform MD simulations of
strain-controlled tensile and compressive loading. Following

thermal equilibration at 300 K for 20 ps, the loading is per-
formed at a rate of 0.3 fs−1 up to 10% strain. Zero stress is
applied in the directions perpendicular to the direction of the
applied strain, allowing the sample to change shape in those
directions.

Figure 4(a) shows the stress-strain behavior during two
such loading scenarios—compressive loading along the
〈100〉 direction and tensile loading along the 〈110〉 di-
rection. Initially, the bcc phase strains elastically with an
orientation-dependent Young’s modulus. Based on the Bain
transformation, one would expect the bcc phase to transform
into the fcc phase at higher strains. However, there is a large
strain mismatch between the fcc and bcc phases that is depen-
dent on the loading direction. The MD simulations reveal that
bcc Li instead transforms into a disordered stack of fcc-type
and hcp-type sequences as shown in Figs. 4(b) and 4(c), for
the case of compressive strain along 〈100〉 and tensile strain
along 〈110〉, respectively. The transformation begins at strains
corresponding to points A and B in Fig. 4(a) and continues up
to points C and D, after which the stacked structure starts elas-
tic deformation. The fcc-hcp stacks created during the phase
transformation are formed on [110] planes. Given that the fcc
and hcp phases are energetically very close (refer to Table IV),
and to avoid high stresses at larger strains, the bcc struc-
ture transforms into a stacked fcc-hcp structure rather than
a perfect fcc one along these orientations. The thickness of
the fcc and hcp layers that are formed under strain-controlled
loading is dependent on the loading direction and we restrict
the results to the above-discussed two conditions. The ob-
servation of such close-packed fcc-hcp stacking structures in
both experiments and MD simulations is discussed further in
the Discussion section.

C. Liquid lithium

1. Melting point prediction

The ACE potential, which is trained on solid and liq-
uid configurations, is also used to predict the melting point
of Li. In this work, we use the solid-liquid coexistence
method [61] to compute the melting point. The MD cal-
culation is performed in a 55 296-atom simulation cell

FIG. 3. Elastic constants as a function of temperature for the bcc phase predicted by the ACE potential compared to experimental values
[58–60].
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FIG. 4. (a) Stress-strain behavior of bcc Li at 300 K when loaded
in compression along the 〈100〉 direction (green) and in tension along
the 〈110〉 direction (red). The bcc phase starts phase transforming at
points A and B, respectively. Atoms are visualized at the end of the
transformation (corresponding to points C and D) in figures (b) and
(c), respectively. The atoms are colored according to the common
neighbor analysis: green is fcc, pink is hcp, blue is bcc, and white is
other structure types.

(8.3 nm×8.3 nm×16.5 nm), divided equally into two parts.
Initially we fill the cell with perfect bcc Li and perform an
energy minimization of the entire cell. We then thermally
equilibrate the whole system at the speculated melting point
(Tguess) for 50 ps: conventionally, we can use the experimental
melting point of Li as the initial guess. Next the bottom half
of the simulation cell is kept frozen and the top half is heated
from Tguess to 2×Tguess in an NPT ensemble over 60 ps, with
the cell allowed to relax perpendicular to the plane of sepa-
ration of the frozen and unfrozen atoms (z axis). The above
step melts the top half of the cell. We proceed to cool the top
half, again in a similar NPT ensemble, from 2 × Tguess back to
Tguess in 60 ps, which still keeps the top half of the cell melted.
As the final step, we release all atoms by relaxing the entire
system in an NPH ensemble for 0.5 ns. If the initial guess is
close to the predicted melting point, then the system reaches
a steady temperature while still maintaining an approximately
50-50 ratio of the solid and liquid phases in coexistence. That
temperature is the melting point of the system as predicted by

FIG. 5. Change in the melting point predicted by the ACE poten-
tial as a function of pressure compared to experimental values [62].

the ACE potential. If the initial guess is too high, the entire
system melts in the final step; if it is too low the whole system
freezes. Accordingly, Tguess is altered for the next simulation
trial and the process continues until the melting point is esti-
mated. The melting point can be calculated as a function of
pressure by following the above procedure, but maintaining
the corresponding pressure in the NPT and NPH ensembles.

Figure 5 shows the estimated melting point as a function
of pressure predicted by the ACE potential compared with
experimental data from the literature [62]. The zero-pressure
melting point is predicted to be 451 K, very close to the ex-
perimental value of 454 K. The ACE potential also replicates
the increase and eventual levelling off of the melting point as
a function of pressure. The estimated values are higher than
experiment by less than 10 K at a pressure of around 8 GPa.
We expect this discrepancy to arise for one of two reasons.
The bcc phase transforms into the fcc phase around 8–10 GPa
[4], further complicating the solid-liquid phase diagram at
those pressures: this might be a source of the error in the ACE
prediction. We also noticed a significant improvement in the
predicted melting point at high pressures when corresponding
high-pressure bcc DFT structures were added to the training
data (notice the additional volume for bcc AIMD in Table I).
Hence another source of this error might be that there is still
insufficient training data corresponding to the bcc-fcc-liquid
triple point.

2. Liquid properties

The results shown for liquid Li have been averaged over
MD simulations performed with five different initial liquid
structures with different initial random velocity seeds. Each
MD run is performed on a 27 648-atom (8.3 nm × 8.3 nm ×
8.3 nm) simulation cell. The liquid structures are created
by performing a thermal equilibration at the corresponding
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FIG. 6. Radial distribution function for liquid Li at 868 K com-
pared to experimental values from the literature [63].

temperature for 50 ps. Figure 6 shows the radial distribution
function (RDF) of liquid Li at 868 K predicted by the ACE
potential. The ACE potential results agree very well with the
experimental data from the literature [63]. As expected for a
liquid structure, the RDF is broadened relative to the solid,
with two broad peaks with maxima close to 3 Å and 5.8 Å.

Figure 7 shows the shear viscosity of liquid Li calculated at
different temperatures using the ACE potential and compared

FIG. 7. Shear viscosity of liquid Li predicted by the ACE poten-
tial at volumes corresponding to that temperature in comparison to
EAM and experimental data from literature [18,64,65].

FIG. 8. Self-diffusion coefficient of liquid Li predicted by the
ACE potential at volumes corresponding to that temperature in com-
parison to EAM and experimental data from literature [18,66,67].

to experimental values. The shear viscosity η is calculated
using the Green-Kubo formalism and is given by

η = V

kBT

∫ ∞

0
dt〈ταβ (t )ταβ (0)〉t0 , (10)

where V is the system volume, kB is the Boltzmann constant,
T is the temperature, ταβ are off-diagonal components of the
stress tensor, t is the time, and 〈. . .〉t0 is the average over
time origins. Following the aforementioned 50 ps thermal
equilibration, time window averages are taken every 1 ps, by
considering input values every 2.5 fs and accumulating 400
correlation time windows. The predictions [18] of a previ-
ously developed EAM for liquid Li are also plotted in Fig. 7
for comparison. The ACE potential predicts a considerable
drop in the shear viscosity of liquid Li with increasing tem-
perature, which is also observed experimentally. The absolute
values of the viscosity from the ACE potential are closer to
experiment than the predictions of the EAM potential.

The next liquid Li property that we predict and compare is
the self-diffusion coefficient D, which is calculated from the
mean-squared displacement (MSD) and is given by

D = 1

6t
〈[r(t ) − r(0)]2〉, (11)

where r(t ) is the position of an atom at time t . To obtain the
MSD we first performed a thermal equilibration for 1 ns at the
corresponding temperature in an NPT ensemble. A straight
line is then fitted to the MSD as a function of time for the final
0.8 ns of the simulation in order to obtain the self-diffusion co-
efficient. The self-diffusion coefficients calculated at different
temperatures using the ACE potential are plotted in Fig. 8. The
values and the trend of the self-diffusion coefficient obtained
from the ACE potential are close to experimental values. For
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FIG. 9. Density of liquid Li at 1 atmospheric pressure as a func-
tion of temperature predicted by the ACE potential in comparison to
EAM and experimental data from literature [18,68].

comparison, the EAM-predicted values are also plotted in the
same figure.

In Fig. 9 we plot the liquid density as a function of tem-
perature as predicted by the ACE potential. The densities are
also obtained from the MD runs mentioned in the earlier para-
graph. We average the volumes during the last 0.8 ns of the run
to obtain the density at the corresponding temperature. The
ACE-predicted density is compared to experimental values
[68] and values predicted using an EAM potential [18]. The
densities predicted by the ACE potential are marginally higher
than the experimental values by around 5–15 kg/m3. This can
again be attributed to the effect of the overbinding from the
GGA exchange and correlation functional to which the ACE
potential is trained. On the other hand, the EAM potential was
trained on experimental values of the density, which is why
the EAM prediction falls exactly on top of the experimental
curve. Nonetheless, this does not get translated to other liquid
properties that were discussed earlier, where the predictions of
the ACE potential were closer to experimental values. Overall,
while the EAM potential shows a decent performance when
predicting liquid properties, the ACE potential performs bet-
ter. The ACE potential also simultaneously predicts solid Li
and the melting points accurately and provides a platform for
studying more complex systems containing liquid lithium.

Since we have established the accuracy and predictive
capability of the ACE potential, we use it to calculate the
pressure-volume (PV) isotherms for liquid Li as shown in
Fig. 10. The liquid Li structure is thermally equilibrated at the
corresponding temperature and pressure in an NPT ensemble
for 100 ps. The volume is calculated as an average during
the second half (final 50 ps) of the simulation. Li stays in
the liquid phase even up to higher pressures of 12 GPa. The
thermal expansion coefficient of liquid Li, reflected in the

FIG. 10. Pressure-volume isotherms for liquid Li calculated us-
ing the ACE potential.

change in volume with temperature, decreases with increasing
pressure. The isotherms provide an accurate estimate of the
volume of liquid Li for high-pressure applications.

IV. DISCUSSION

So far, in this work, we developed an ACE interatomic
potential to predict both solid and liquid Li properties. We
performed MD simulations using the ACE potential to pre-
dict finite-temperature properties of both phases. At room
temperature, solid bcc Li underwent a martensitic phase
transformation under the application of a uniaxial strain. A
compressive strain along 〈100〉 or a tensile strain along 〈110〉
formed fcc-hcp stacking sequences due to the large strain
mismatch between the bcc and fcc phase. The thickness of
the stacks varied with different loading directions. Similar
disordered polytype structures have been reported experi-
mentally under different external conditions [69–72] and in
MD simulations during cooling of the bcc phase using the
MEAM potential [11]. The ACE potential lets us predict the
orientation-dependent onset of such structures also under dif-
ferent loading scenarios. Understanding such behavior under
the application of an external load will be crucial in the design
and manufacture of solid Li-based materials.

MD simulations using the potential were also performed
to obtain several crucial properties of liquid Li at different
temperatures. Specifically, we obtained accurate predictions
of the temperature-dependent viscosity and self-diffusion, and
the pressure-volume isotherms, which will in turn feed into
larger-scale modeling of liquid flow in Li. With Li being
considered as a potential candidate for cooling channels in
breeder blankets, accurate modeling of the liquid flow is es-
sential in optimizing the design of such coolants.

The ACE potential that we developed so far included up
to four-body interactions with nmax = 15 in the expansion

054108-10



ATOMIC CLUSTER EXPANSION INTERATOMIC … PHYSICAL REVIEW B 112, 054108 (2025)

FIG. 11. Root mean squared errors (RMSE) in the energy and
atomic forces as a function of the N-body interactions considered in
the ACE model. Linear and Finnis-Sinclair type of energy expansion
of the ACE formalism are compared.

of the radial basis and we imposed a 5.5 Å cutoff on the
interatomic interactions in the training set. The performance
of the potential was exceptional in predicting both the solid
and liquid phase properties and the melting point in compar-
ison to ab initio values. Indeed, some of the observed errors
are from the underlying DFT data rather than the model itself.
However, owing to the large parameter space, the developed
potential is roughly two orders of magnitude slower than
classical interatomic potentials. Nonetheless, one of the ad-
vantages of the ACE formalism is to systematically investigate
the effect of higher-body interactions in a model system—in
our case, lithium. Since the number of basis functions, and
consequently the cost of performing MD simulations, become
higher with the inclusion of higher body interactions, it is
crucial to find an optimally performing ACE potential for
lithium in terms of both computational cost and accuracy.

Figure 11 shows the RMSE in energies and forces dur-
ing training of various lithium ACE potentials that included
increasing orders for the N-body interactions in the ACE
basis [Eq. (8)]. The change in the RMSE is shown for ACE
potentials of both the linear type [Eq. (3)] and the nonlinear
Finnis-Sinclair type [Eq. (4)]. It is observed that the FS-type
ACE potential (shown as solid lines in Fig. 11) converges
faster in terms of the RMSE than the linear type. Indeed,
the FS-type ACE potential is already well converged after
including only up to three-body interactions. This implies
that almost all interactions in lithium can be represented by
considering only the two-body and three-body interactions to
the atomic energy, provided we expand the energy as a sum
of a linear term that signifies pairwise forces and a square root
term that signifies the embedding function. This might explain
the success of the MEAM potential. However, if the formal-
ism does not include an explicit embedding-type term, one
also needs to consider four-body interactions before reaching
a converged error in the trained energies and forces. The
faster convergence of the FS-type formalism can be partially
explained by its larger parameter space in comparison to the

max

FIG. 12. Root mean squared errors (RMSE) in the energy and
forces as a function of nmax that is used in the expansion of the radial
basis for the three-body and four-body interaction ACE models, FS-
type formalism only.

linear-type for the same N-body contributions and training
data, as two functions need to be learned rather than just one.

In Fig. 12, we show the RMSE in energies and forces of
various ACE potentials as a function of nmax in the expansion
of the radial function [Eq. (6)]. The value of nmax corresponds
to the value of n for the two-body interaction term. The other
values of n and l are those given in Table II. The RMSEs are
shown only for the FS-type formalism while including up to
three-body and four-body interaction terms in the expansion.
The RMSE values converge after a value of nmax = 15. How-
ever, the errors are already very small with just six terms in the
expansion of the radial function. The gain in accuracy is not
very significant when going from n = 6 to n = 15 and there is
a considerable rise in the computational cost (check Table VI)
as will be discussed later.

The other parameter in the ACE formalism that affects the
performance and computational cost is the cutoff chosen for
the interatomic interactions. While a larger cutoff implies a
greater accuracy in the atomic energy in the training data, it
also implies a larger number of energy and force calculations
per atom per MD step with the trained potential, which in-
creases the computational cost. Figure 13 shows the RMSE
in energies and forces of ACE potentials fitted with different
cutoffs. In the figure, we only show the case for FS-type
ACE potentials including up to four-body interactions with
nmax = 15. The errors are extremely small (less than 2 meV
in energy and 13 meV Å in atomic forces) for a 5.5 Å cutoff
and become even smaller and converge to below 0.1 meV in
energy at a 7 Å cutoff, albeit at a higher computational cost
(see below and Fig. 14).

The above analysis reveals that the RMSE in energy and
atomic forces of a trained ACE potential converge to within
2 meV/atom and 15 meV/Å compared with ab initio values as
long as we choose a nonlinear formalism of the ACE potential
that includes up to four-body interactions, with an nmax value
of 15 to expand the radial basis and a cutoff of 5.5 Å. In fact,
to obtain an ACE potential to predict properties of only the
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TABLE VI. Comparison of the energy differences of different competing phases in solid Li (in eV) and the 0 K bcc and fcc elastic constants
(in GPa) as predicted by ACE potentials fitted with different initial conditions to DFT (last line). In the last two columns, the fitting time and
usage time of the potentials are compared. The time to fit is measured after 1000 iterations on a single node with 48 CPUs. The usage time is
measured as the number of LAMMPS MD steps per second on a 16 384 atom system on a single node with 48 CPUs.

Elastic constants bcc Elastic constants fcc Time to fit Usage

ACE parameters 	Ebcc-fcc 	Ehcp-fcc 	Eh9R-fcc C11 C12 C44 C11 C12 C44 (s) (steps/s)

Two-body, 5.5 Å, n = 15 0.007 0.0064 0.0015 11.1 12.8 9.9 19.4 13.3 12.1 4180 247
Three-body, 5.5 Å, n = 15 0.0045 0.0032 0.0029 11.9 12.1 10.9 18.8 13.5 10.9 6558 58
Four-body, 5.5 Å, n = 6 0.0053 0.0029 0.0022 12.0 12.2 9.7 17.9 11.1 10.1 5099 81
Four-body, 5.5 Å, n = 10 0.005 0.0033 0.002 12.8 13.1 11.0 17.1 13.4 12.2 6180 69
Four-body, 5.5 Å, n = 15 0.0036 0.0003 −0.0001 15 13.4 10.9 17.1 13.1 12.1 7019 33
Four-body, 7 Å, n = 15 0.0026 0.00013 0.0009 15.1 13.9 10.9 16.9 13.1 10.2 8800 21
Five-body, 5.5 Å, n = 15 0.0034 0.0018 0.0009 13.8 13.1 10.2 16.4 14.7 10.8 7937 27
Six-body, 5.5 Å, n = 15 0.0035 0.0018 0.0008 13.9 13.2 10.3 16.3 14.5 10.8 10898 22
DFT 0.0016 0.00019 0.00014 14.6 13.7 11.5 16.4 12.5 10.1

liquid phase by training on ab initio MD data of liquid Li (last
row in Table I), expanding the energy to include as much as
up to three-body interactions is sufficient to obtain converged
properties of the liquid phase. This has been further discussed
in the Supplemental Material D [31].

Including higher body terms is crucial primarily in ob-
taining the correct 0 K energy differences of the different
competing solid phases and the elastic constants of the bcc and
the fcc solid. This is evident from Table VI, which compares
these properties for ACE potentials that were trained with dif-
ferent sets of input conditions to the same DFT training data.
Including four-body interaction terms and choosing a larger
nmax brings the energy difference between the bcc, hcp, and
the h9r phases and the fcc phase much closer to the DFT val-
ues. A stricter set of parameters is also necessary for obtaining
accurate values of the 0 K elastic constants and especially
the correct order of elastic constants (with C11 > C12) for the
bcc phase that satisfies the Born criterion. A significant gain
in accuracy is not observed by increasing the cutoff to 7 Å.

FIG. 13. Root mean squared errors (RMSE) in the energy and
forces as a function of the radial cutoff for FS-type ACE potentials
with nmax = 15 and up to four-body interactions.

Similarly, adding higher body-order interaction terms above 4
does not further improve the predictions of the ACE potential.

Although considering a higher set of input parameters
(body order, nmax, and cutoff) brings the ACE predictions
much closer to DFT, this also significantly increases the com-
putational cost, both for fitting and, more importantly, for
running MD simulations with the fitted potential. The increase
in computational cost for different initial conditions is com-
pared in the last two columns in Table VI. The values are
also plotted in Fig. 14 for two specific cases that compare the
fitting time and the utility (number of MD steps that can be run
per second) as a function of the body order for ACE potentials
trained with 5.5 Å and 7 Å cutoffs. Both the fitting time and
the usage time are a function of the total number of parame-
ters in the ACE potential. The fitting time steadily increases
with increase in the body order. By considering an expansion
with more than three-body interaction terms, there is a steady

FIG. 14. Time required to fit and the computational cost of doing
MD using the ACE as a function of N-body interactions used in the
ACE model. The fitting time is measured after 1000 iterations on a
single node with 48 CPUs. The usage time is measured as the number
of MD steps per second on a 16 384-atom system on a single node
with 48 CPUs.
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increase in the computational cost of the ACE potential. The
ACE potentials trained with a 7 Å cutoff are roughly twice as
expensive as the one with 5 Å. Overall, by performing such an
analysis, we are able to make an informed decision about the
level of the ACE potential that is needed to efficiently model
a given system. It is left up to the discretion of the MD user to
choose a corresponding ACE potential based on the accuracy
and the computational cost that can be afforded. For the case
of lithium, an ACE potential that predicts both the solid and
liquid phases and melting properties accurately requires initial
training specifications as mentioned in Table I, which have
been shown to perform exceptionally in the Results section of
this manuscript.

V. CONCLUSIONS

In this work, we have developed an atomic cluster expan-
sion interatomic potential for lithium. The potential predicts
accurate properties of both the solid and liquid phases and
an accurate melting point in comparison to 0 K DFT, finite-
temperature ab initio data and experiments. Solid properties
studied include lattice parameters, cohesive energies, elastic
constants, and point defect formation energies. The effect of
uniaxial strain and martensitic transformation in solid bcc Li
is also modeled using MD simulations with the ACE poten-
tial. Liquid properties studied include melting point, radial
distribution function, shear viscosity, and pressure-volume
isotherms. We have performed an extensive cost-accuracy
analysis by training several potentials using the ACE for-
malism. Most of the interactions in lithium can be captured
by expanding the energy using three-body terms. Hence
a relatively computationally cheaper three-body expanded
ACE potential is sufficient to model liquid lithium. However,
including four-body interactions in the ACE expansion is
absolutely crucial in capturing the correct 0 K energies and
elastic constants of different competing phases in solid Li.
We note that the potential is able to reproduce the DFT data

sufficiently accurately that in some cases the underlying errors
from the DFT exchange and correlation functional can be the
largest source of error.

The ACE potential developed in this work can be used to
study the effect of stress and temperature in polycrystalline
solid Li to parametrize higher scale models. The potential
will also be extended to include hydrogen interactions in the
future to model lithium breeder blanket systems. Liquid Li
has also been suggested as a candidate material for first walls
and divertors [73] in nuclear fusion reactors. The potential
will thus be fine-tuned and used to perform MD simulations
of radiation damage and model sputtering from the surface
of liquid Li. The results discussed in this work will also be
useful to benchmark and analyze the performance of emerging
universal MLIPs [74–77] for studying hydrogen diffusion in
lithium and lithium-based compounds in the future.
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