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Electromagnetic instabilities and turbulence driven by the electron-temperature

gradient are considered in a local slab model of a tokamak-like plasma. Derived in a

low-beta asymptotic limit of gyrokinetics, the model describes perturbations at scales

both larger and smaller than the electron inertial length de, but below the ion Lar-

mor scale ρi, capturing both electrostatic and electromagnetic regimes of turbulence.

The well-known electrostatic instabilities — slab and curvature-mediated ETG — are

recovered, and a new instability is found in the electromagnetic regime, called the

Thermo-Alfvénic instability (TAI). It exists in both a slab version (sTAI, destabilising

kinetic Alfvén waves) and a curvature-mediated version (cTAI), which is a cousin of

the (electron-scale) kinetic ballooning mode (KBM). The cTAI turns out to be domi-

nant at the largest scales covered by the model (greater than de but smaller than ρi),

its physical mechanism hinging on the fast equalisation of the total temperature along

perturbed magnetic field lines (in contrast to KBM, which is pressure balanced). A tur-

bulent cascade theory is then constructed, with two energy-injection scales: de, where

the drivers are slab ETG and sTAI, and a larger (parallel-system-size-dependent) scale,

where the driver is cTAI. The latter dominates the turbulent transport if the temper-

ature gradient is greater than a certain critical value, which scales inversely with the

electron beta. The resulting heat flux scales more steeply with the temperature gra-

dient than that due to electrostatic ETG turbulence, giving rise to stiffer transport.

This can be viewed as a physical argument in favour of near-marginal steady-state in

electron-transport-controlled plasmas (e.g., the pedestal) at sufficiently high values of

the electron beta. Numerical simulations are then used to demonstrate that electro-

static turbulence driven by the slab ETG does indeed saturate via a critically-balanced,

constant-flux cascade of free-energy, which is shown to be the dynamical manifestation

of the scale-invariance of electrostatic drift kinetics. Data from simulations shows ex-

cellent agreement with the theoretically predicated one- and two-dimensional spectra



of the perturbations. Failure of saturation in electromagnetic turbulence driven by

the sTAI is then identified, characterised and discussed. While the model in which

these results are derived is simplistic, the new physics that is revealed by it should

be of interest to those attempting to model the effect of gradient-driven turbulence in

tokamak-relevant configurations, particularly those with high beta and large electron-

temperature gradients, in which electromagnetic effects play a significant role.
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Chapter 1

Introduction

An understanding of the heat transport properties of a magnetically confined plasma

is crucial to the design of successful tokamak experiments. Since the characteristic

correlation length scales associated with the turbulence are small in comparison to

the scale of the device, one can usually assume that the turbulence depends only on

local equilibrium quantities — such as density, velocity, temperature, electromagnetic

fields — and their gradients (though there are cases where the global features of the

equilibrium can become important: see, e.g., [2], in the context of the pedestal). Much

of the focus of current research is on the turbulence consisting of unstable microscale

perturbations. Though there are exceptions (e.g., the trapped-electron mode [3, 4] or

the universal instability [5, 6]), the most important of these are often driven either by

the ion-temperature gradient (ITG) (see, e.g., [7–9]) or the electron-temperature gra-

dient (ETG) (see, e.g., [10, 11]). These perturbations typically live on ion and electron

scales, respectively, although one of the conclusions of this thesis will be to question

this expectation with regard to ETG. Strongly driven plasma turbulence — i.e., plasma

turbulence with temperature gradients far above the linear-instability thresholds — is

believed to saturate by reaching a ‘critically balanced’ state [12], in which, by analogy

with the Kolmogorov theory of hydrodynamic turbulence [13], free energy injected by

linear instabilities is nonlinearly transferred (cascaded) to smaller scales, where it is

thermalised by collisions. If one can determine the turbulent state of the plasma at

saturation, then it is, in principle, possible to determine how the turbulent heat fluxes

carried by these perturbations depend on the temperature gradients. Knowing this

relationship, one can invert it to find the heating power that needs to be provided to

support a particular temperature gradient. In many cases, the heat transport found
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in this context is described as ‘stiff’ [14]: the heat flux scales steeply with the tem-

perature gradient, so a large increase in heating power does very little to increase the

temperature gradient, making achieving temperature gradients far above marginal a

difficult task.

Though it has long been understood that ion-scale physics can play a significant

role in plasma transport (see references above), there is evidence to suggest that ion-

scale instabilities driven by the ion-temperature gradient can be suppressed by strong

E×B shear in steep-gradient regions of a tokamak (e.g., the pedestal), particularly in

spherical or low-aspect-ratio configurations (see [15–19], and references therein). This

has the effect of reducing the ion contribution to the turbulent heat transport, which

instead becomes dominated by the electron channel1. This seems to run contrary to

the typical ‘gyro-Bohm’ transport estimates, which suggest that the heat flux carried

by the electrons will be smaller than that of the ions by a square-root of their mass

ratio
√
me/mi ≪ 1 — this is based on the (perhaps naive) assumption that the sizes

of the turbulent eddies generated on ion and electron scales will be comparable to

their Larmor radii ρi and ρe, respectively. However, it will be one of the important

conclusions of this thesis that the relevant scales which determine the electron heat

transport are those of the plasma equilibrium, rather than those associated with the

small perpendicular scales ρe, allowing the electron transport to be dominant despite

the potentially small size of their associated turbulent structures. This means that the

characterisation of electron-scale instabilities is not only desirable, but indeed necessary

for a complete understanding of the heat transport in such systems.

Furthermore, a comprehensive understanding of electromagnetic effects on the mi-

croinstability properties of the plasma, and the resultant turbulence, is becoming in-

creasingly important as experimental values of the plasma beta (the ratio of the thermal

and magnetic pressures) and, therefore, electromagnetic fluctuations, will be higher in

reactor-relevant tokamak scenarios; e.g., ITER is projected to have a plasma beta of

up to 2.5% [20, 21], and beta could exceed 15% in a recently proposed STEP equilib-

rium [22]. Though the investigation of electromagnetic instabilities and turbulence is of

general importance within many different types of plasma systems (e.g., astrophysical

plasmas, laser plasmas), much of the research in fusion has focused on two particular

1Note that such a state is consistent with the power-balance constraints required for steady-state
tokamak operation as the energy injected into ions can be collisionally transferred into the thermal
motion of the electrons.
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microinstability classes: micro-tearing modes (MTM) — initially, in simplified models

[23–30], later in tokamak geometry [31–36] — and kinetic ballooning modes (KBM)

[18, 37–50]. Both of these are intrinsically electromagnetic, requiring the perturbation

of the magnetic field’s direction and (sometimes) magnitude. Despite significant nu-

merical progress in understanding the behaviour of such modes, however, there is still

a certain lack of clarity about the fundamental physical processes that are responsible

for them, owing to the complexity of these modes in the general tokamak geometry.

Progress in distilling the essential physical ingredients behind electromagnetic desta-

bilisation can be made by means of constructing minimal models.

To this end, in this thesis, we consider electromagnetic instabilities and turbulence

driven by the electron-temperature gradient in a local slab model of a tokamak-like

plasma, with constant equilibrium gradients, including magnetic drifts but not mag-

netic shear. The inclusion of the finite gradient and curvature of the magnetic field

— in addition to the conventional slab geometry (see, e.g., [51]) — is motivated by

recent evidence [52–54] that the modes mediated by these equilibrium quantities can

often be the fastest-growing ones in steep-gradient regions of the plasma (e.g., the

pedestal), and thus significant in determining its nonlinear saturated state. The gov-

erning equations are derived in the low-beta asymptotic limit of gyrokinetics (see,

e.g., [55]). The electron plasma beta βe = 8πn0eT0e/B
2
0 (n0e and T0e are the density

and temperature associated with the equilibrium distribution of the electrons and B0

the equilibrium magnetic field strength) is ordered as me/mi ≪ βe ≪ 1, allowing us

to order out compressive magnetic field perturbations while retaining Alfvénic ones.

The normalised collisionality ν∗ = L/λei (λei is the electron-ion collisional mean-free

path and L some lengthscale associated with the plasma equilibrium) is assumed to

be order-unity to capture both collisionless (ν∗ → 0) and collisional (ν∗ ≫ 1) regimes

of turbulence. Our equations also describe perturbations on scales both larger and

smaller than the electron inertial scale de = ρe/
√
βe, at which magnetic flux unfreezes,

capturing both electrostatic and electromagnetic regimes of turbulence. Formally, per-

pendicular wavenumbers are ordered as ρ−1
i ≪ k⊥ ∼ d−1

e ≪ ρ−1
e (sub-ion-Larmor

scales).

At appropriately short perpendicular wavelengths (below the de scale), we recover

the well-known, electrostatic slab ETG (sETG, [56, 57]) and curvature-mediated ETG

(cETG, [58]) instabilities. Turning our attention to longer perpendicular wavelengths

12



(above the de scale, but still smaller than the ion gyroradius), we demonstrate the exis-

tence of the novel Thermo-Alfvénic instability (TAI) that arises in the electromagnetic

regime. We show that it exists in both a slab version (sTAI, destabilising kinetic Alfvén

waves) and a curvature-mediated version (cTAI), the latter of which is related to the

(electron-scale version of) the KBM. In particular, we find that cTAI is the dominant

instability on the largest scales covered by the model, with a maximum growth rate that

is greater than that of the cETG. This maximum growth rate occurs at a specific, finite

parallel wavenumber, unlike cETG, which is two-dimensional. Its physical mechanism

hinges on the fast equalisation of the total temperature along perturbed magnetic field

lines (in contrast to the KBM, which is approximately pressure balanced; see, e.g.,

[39, 59]) due to the dominance of either parallel streaming (in the collisionless limit) or

thermal conduction (in the collisional one). We also show that the sTAI is stabilised

at large parallel wavenumbers by compressional heating, and at large perpendicular

wavenumbers by the effects of finite electron inertia (in the collisionless limit) or finite

resistivity (in the collisional one). We then map out all of these instabilities in parallel

and perpendicular wavenumber space.

Using a critical-balance phenomenology analogous to [12], we then construct a

turbulent-cascade theory for the free energy injected by these instabilities. Assuming

the cascade to be local, the theory is shown to allow two injection scales: de, where

the drivers are sETG and sTAI, and a larger scale dependent on the parallel size

of the system (the connection length, in the case of a tokamak), where the principal

driver is cTAI. We find (within this theoretical approach) that the latter dominates the

turbulent transport if the temperature gradient is greater than a certain critical value,

which scales inversely with the electron beta. Using constant-flux arguments, we then

derive scaling estimates for the turbulent electron heat flux carried by fluctuations at

these injection scales, finding that the heat flux due to electromagnetic cTAI turbulence

scales more steeply with the temperature gradient than the heat flux due to electrostatic

sETG turbulence in this regime, and thus gives rise to stiffer transport. Note that we

do not engage with ion physics here, formally assuming that the scale of dominant

energy injection for the turbulent cascade lies on sub-Larmor scales.

The electrostatic heat-flux scalings predicted by this turbulent-cascade theory are

then shown to arise also as a direct consequence of the scale invariance of drift ki-

netics in the electrostatic limit — under the assumption that the (local) transport
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does not depend on the perpendicular size of the system — for which the critically

balanced, constant-flux cascade provides a dynamical explanation. This is then con-

firmed through direct numerical simulations of electrostatic turbulence driven by the

(collisional) sETG. These simulations also demonstrate that a constant-flux cascade

is compatible with plasma systems where there is not a well-defined scale separation

in (perpendicular) wavenumber space between injection (due to equilibrium gradients)

and dissipation (due to Landau damping, thermal conduction, finite-Larmor-radius ef-

fects, etc.), which is a departure from the usual Kolmogorov picture of hydrodynamic

turbulence with a dissipation-free inertial range. Lastly, we perform simulations of

electromagnetic turbulence driven by the sTAI, finding that they fail to saturate, a

behaviour also observed in more complex electromagnetic gyrokinetic simulations (see,

e.g., [60–63] and references therein). Some possible explanations for this behaviour are

then examined.

The remainder of this thesis is organised as follows. In Chapter 2, we describe and

physically motivate our low-beta model equations, in both the collisionless and colli-

sional limits. Chapter 3 recovers the well-known electrostatic instabilities — sETG and

cETG — while Chapter 4 is devoted to the characterisation of the TAI, including a

detailed treatment of both sTAI and cTAI. Chapter 5 is a summary of the asymptotic

behaviour of these instabilities in wavenumber space, providing a pictorial representa-

tion of the linear results of this thesis. In Chapter 6, we construct a cascade theory for

the turbulence driven by these instabilities, and derive scaling estimates for the tur-

bulent electron heat fluxes as functions of the electron-temperature gradient, parallel

system size and the electron beta. In Chapter 7, we show numerically that electro-

static sETG turbulence saturates via a critically balanced cascade, and relate this to

the scale invariance of drift kinetics in the electrostatic limit. Simulations of electro-

magnetic sTAI turbulence are shown to exhibit a lack of saturation in Chapter 8, and

possible explanations are speculated about. Finally, results are summarised and lim-

itations, implications and future directions are briefly discussed in Chapter 9. Given

its focus, this thesis shares significant material with [1] in its exploration of the linear

instabilities in Chapters 3 and 4. For the sake of brevity, we have not included here any

of the associated technical calculations, choosing, instead, to focus on the fundamental

physics; a reader looking for further detail can find it in the appendices of [1].
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Linear instabilities: ETG and TAI
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Chapter 2

Low-beta equations

We wish to describe dynamics at electron scales (below the ion Larmor scale) of a mag-

netised plasma, in the presence of electromagnetic perturbations. Our electron species

will have an equilibrium temperature gradient, and will be advected by the magnetic

drifts associated with a magnetic geometry of constant curvature. Our equations are

derived in a low-beta asymptotic limit of gyrokinetics; this allows us to order out

compressive magnetic field perturbations while retaining Alfvénic ones. Formally, the

electron beta is ordered as me/mi ≪ βe ≪ 1, the normalised collisionality as ν∗ ∼ 1,

and perpendicular wavenumbers as ρ−1
i ≪ k⊥ ∼ d−1

e ≪ ρ−1
e (sub-ion-Larmor scales).

In this chapter, we present a summary of these equations and the physical motivation

behind them; their detailed derivation can be found in [1].

2.1 Magnetic equilibrium and geometry

The magnetic geometry that we adopt is one of constant magnetic curvature, as this

allows us to capture the effect of the magnetic drifts on our plasma while retaining most

of the simplicity associated with conventional slab gyrokinetics [51, 64]. We consider

a domain positioned in the magnetic field of a current line at a radial distance R from

the central axis, and define the x̂ and ŷ directions as pointing radially outwards and

parallel to the central axis, respectively, as shown in Figure 2.1. In the context of

the outboard midplane in tokamak geometry, these are analogous to the ‘radial’ and

‘poloidal’ coordinates, respectively, terms that we shall adopt in our later discussions.

One can think of this geometry as that of a Z-pinch [1, 64–66], meaning that our model

will be unable to capture the effects of magnetic shear and the poloidal variation of
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x̂

ŷ

ẑ

B0b0

∇T0e,∇B0

I
R

Figure 2.1: Illustration of the constant-curvature geometry, showing the domain positioned
at a distance R from the current axis, with the x̂ and ŷ directions pointing radially outwards
and parallel to this axis, respectively. The equilibrium magnetic field is in the b0 direction.
Both the equilibrium temperature T0e and equilibrium magnetic field B0 vary radially, with
their scale lengths LT and LB, respectively, assumed constant across the domain.

geometric coefficients along the field line (that can, e.g., lead to particle trapping); to

include them requires a careful treatment of the toroidal geometry (see, e.g., [67]).

In the geometry considered here, the magnetic field consists of an equilibrium part

that is oriented in the b0 = ẑ direction and varies radially, plus a time- and space-

dependent fluctuating part:

B(r, t) = B0(x)b0 + δB⊥(r, t). (2.1)

In what follows, we shall express the perpendicular magnetic-field fluctuations in terms

of the parallel component of the magnetic vector potential:

δB⊥(r, t) = ∇×A = −b0 ×∇A∥. (2.2)

The component of the magnetic-field fluctuations parallel to the mean field δB∥/B0 is

negligible in the limit of low beta (this follows from the perpendicular component of

Ampère’s law, see, e.g., appendix A of [1]). The electric field is related to the magnetic

vector potential A and electrostatic potential ϕ by

E(r, t) = −1

c

∂A

∂t
−∇ϕ, (2.3)

and is assumed to have no mean part. The equilibrium (mean) magnetic field has the

scale length and radius of curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0 · ∇b0| , (2.4)
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respectively, both of which are assumed to be constant across our domain. For a low-

beta plasma, it follows from equilibrium force balance that R = LB, and so we shall

henceforth no longer distinguish between them [see (A.72)]. We assume that the back-

ground gradient of the temperature T0e associated with the equilibrium distribution of

the electrons also varies radially, with scale length

L−1
T = − 1

T0e

dT0e
dx

, (2.5)

which, similarly, is assumed to be constant over the domain. The thermal speed of the

electrons is then given by vthe =
√
2T0e/me, where me is the electron mass. Both the

density gradient and the ion temperature gradient are everywhere assumed negligible.

The fact that the equilibrium gradients of the electron temperature (2.5) and magnetic

field (2.4) are aligned means that, within our simplified geometry, we are only able to

capture dynamics in the so-called ‘bad-curvature’ region of the tokamak (e.g., on the

outboard midplane).

2.2 Perturbations from equilibrium

We consider perturbations to the electron distribution function around this local equi-

librium, which are assumed to have characteristic frequencies ω and wavenumbers k∥

and k⊥ parallel and perpendicular, respectively, to the magnetic field (2.1). Following

Appendix A of [1], we adopt the following ordering of frequencies

ω

Ωe

∼ βe
de
L
,

ω

Ωi

∼ de
L
, (2.6)

lengthscales:

k⊥ρi ≫ 1, k⊥de ∼ 1, k⊥ρe ∼
√
βe, k∥L ∼

√
βe, k∥λei ∼ 1,

k∥
k⊥

∼
√
βe
de
L
,

(2.7)

and fluctuation amplitudes:

eϕ

T0e
∼ δne

n0e

∼ δni

n0i

∼ δTe
T0e

∼ δTi
T0i

∼ de
L
,

δB⊥

B0

∼
√
βe
de
L
,

δB∥

B0

∼ βe
de
L
, (2.8)

in which Ωs = qsB0/msc is the Larmor frequency of species s, qs its charge, ms its mass,

c is the speed of light, and L ∼ LB ∼ LT is once again some lengthscale associated

with the plasma equilibrium. The above ordering of frequencies, lengthscales and
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amplitudes with respect to the small parameter de/L ∼ ρi/L is the standard gyrokinetic

ordering (see, e.g., [55]), to which the ordering in me/mi ≪ βe ≪ 1 is treated as

subsidiary. Starting from the gyrokinetic system of equations, one can derive evolution

equations for the density (δne), parallel velocity (u∥e), parallel temperature (δT∥e)

and perpendicular temperature (δT⊥e) perturbations of the electrons. These equations

are presented in the following sections. As in (2.7), we assume everywhere that the

electron Larmor radius ρe is small, and so work in the drift-kinetic approximation for

the electrons. Furthermore, we will primarily be concerned with dynamics at sub-

ion-Larmor scales k⊥ ∼ d−1
e ≫ ρ−1

i , under the approximation of adiabatic ions (see

Section 2.2.4). We discuss the consequences of this choice in Section 9.1.1.

2.2.1 Density perturbations

The perturbed electron density satisfies the continuity equation:

d

dt

δne

n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
δT∥e
T0e

+
δT⊥e

T0e

)
= 0. (2.9)

This says that the density perturbation is subject to three influences: (i) advection by

the E ×B motion of the electrons,

d

dt
=

∂

∂t
+ vE · ∇⊥, vE =

ρevthe
2

b0 ×∇⊥φ, φ =
eϕ

T0e
, (2.10)

where −e is the electron charge; (ii) compression or rarefaction due to the perturbed

parallel electron flow u∥eb along the exact magnetic field, including the perturbation

of the magnetic field direction:

∇∥ = b · ∇ =
∂

∂z
+
δB⊥

B0

· ∇⊥,
δB⊥

B0

= −ρeb0 ×∇⊥A, A =
A∥

ρeB0

; (2.11)

(iii) the magnetic drifts due to the finite curvature and gradient of the magnetic field.

The parallel and perpendicular temperature perturbations arise from the velocity de-

pendence of the curvature and ∇B drifts in the gyrokinetic equation [see (A.65)]. The

presence of these magnetic drifts is essential for the curvature-mediated instabilities

that will be the focus of Section 3.3 and much of Chapter 4.

Note that we have ignored the magnetic-drift terms proportional to δne/n0e and φ

in the continuity equation (2.9), as they will always turn out to be smaller than the

magnetic-drift terms proportional to the temperature perturbations in what follows.
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This is in a bid to make our equations as simple as possible, while retaining all of

the relevant physics. We shall ignore similar terms in our other equations for the

perturbations, for the same reason. We would like to emphasise that this limit is not

formally an ordering — in the sense that some of the terms that are retained can,

in certain meaningful limits, turn out to be as small as those terms that have been

neglected — but the latter are negligible always, and so the remaining equations are

always no worse off for not having them. Cautious readers may be reassured by the

fact that all of the instabilities considered in chapters 3 and 4 are derived in a limit in

which this is a valid approximation (see [1]).

2.2.2 Parallel velocity perturbations

The parallel momentum equation associated with the electrons is

n0eme

du∥e
dt

= −∇∥p∥e − eneE∥ − νeimeu∥e. (2.12)

The three forces appearing on the right-hand side are, from right to left: (i) the colli-

sional drag against the ions (which are assumed motionless), where νei is the electron-

ion collision frequency [see (A.3)], (ii) the parallel electric field

E∥ = b ·E = −
(
1

c

∂A∥

∂t
+∇∥ϕ

)
= −

(
1

c

dA∥

dt
+
∂ϕ

∂z

)
, (2.13)

and (iii) the parallel pressure gradient, which consists of both the parallel gradient of

the parallel-pressure perturbation and the projection of the equilibrium temperature

gradient onto the perturbed magnetic field:

∇∥p∥e = ∇∥δp∥e + n0e
δBx

B0

dT0e
dx

= n0eT0e

[
∇∥

(
δne

n0e

+
δT∥e
T0e

)
− ρe
LT

∂A
∂y

]
. (2.14)

Since an electron flow uncompensated by an ion flow is a current, u∥e is related to A∥

via Ampère’s law [see (A.48)]:

−en0eu∥e = j∥ =
c

4π
b0 · (∇⊥ × δB⊥) ⇒ u∥e = vthed

2
e∇2

⊥A. (2.15)

The electron inertial scale de will be an important quantity throughout this work, as

it demarcates the boundary between the electrostatic and electromagnetic regimes in

the collisionless limit (see section 2.4). In the collisional limit (νei ≫ ω), the frictional

term on the right-hand side of (2.12) dominates over the electron inertial term on the

left-hand side, meaning that the electron inertia can be neglected.
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2.2.3 Temperature perturbations

The parallel temperature T∥e = T0e + δT∥e is advected by the local E ×B flow and is

locally increased (or decreased) by the compressional heating (or rarefaction cooling)

due to u∥e, as well as by the (appropriately normalised) perturbed parallel heat flux

δq∥e:

dT∥e
dt

=
dδT∥e
dt

+ vE · ∇⊥T0e = −∇∥
δq∥e
n0e

− 2T0e∇∥u∥e −
4

3
νe
(
δT∥e − δT⊥e

)
. (2.16)

The factor of 2 in the compressional-heating term (the second on the right-hand side)

is due to the fact that we only consider the parallel (1D) motion of the electrons

(perpendicular motions are formally small within our ordering, see [1]). The last term

on the right-hand side is a consequence of our choice of collision operator1, and is

responsible for collisional temperature isotropisation, with νe = νee + νei, and νee =

νei/Z the electron-electron collision frequency (Ze is the ion charge).

Similarly, the perpendicular temperature T⊥e = T0e + δT⊥e evolves according to

dT⊥e

dt
=

dδT⊥e

dt
+ vE · ∇⊥T0e = −∇∥

δq⊥e

n0e

− 2

3
νe
(
δT⊥e − δT∥e

)
, (2.17)

where δq⊥e is the perturbed perpendicular heat flux. Note the absence of perpendicular

compressional heating (perpendicular flows are incompressible). The term expressing

the seeding of both parallel and perpendicular temperature perturbations via the ad-

vection of the equilibrium temperature profile by the E × B flow becomes, after a

straightforward manipulation, the familiar (electrostatic) linear drive responsible for

extracting free energy from the equilibrium temperature gradient:

vE · ∇⊥T0e = T0e
ρevthe
2LT

∂φ

∂y
, (2.18)

where LT is defined in (2.5). In order to determine the heat fluxes δq∥e and δq⊥e,

kinetic theory is needed, and so we must append to our emerging system of equations

the drift-kinetic equation for electrons, of which (2.9), (2.12), (2.16) and (2.17) are four

lowest-order moments.

1Given that our primary concern was not the precise quantitative capture of collisional transport,
the derivation of these low-beta equations in [1] used a modified version of the Dougherty operator
[68], as it retained the correct conservation properties and captured the effects of friction between
electrons and ions without the complexity associated with the full Landau collision operator. Such a
choice, however, has little consequence for the dynamics: trivially so in the collisionless limit, while
the results of Appendix A make it clear that there are only minor modifications to the collisional
equations when derived using the full Landau collision operator.
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In the collisional limit, the temperature isotropisation terms in (2.16) and (2.17)

are dominant, enforcing δT∥e = δT⊥e = δTe to leading order. In this limit, therefore, we

no longer distinguish between parallel and perpendicular temperature perturbations,

and obtain an equation for δTe from the linear combination (1/3)(2.16)+(2/3)(2.17):

dδTe
dt

+ vE · ∇⊥T0e = −2

3
∇∥

δqe
n0e

− 2

3
T0e∇∥u∥e, (2.19)

where the (collisional) heat flux δqe = δq∥e/2 + δq⊥e can be expressed in terms of the

parallel gradient of the total temperature Te = T0e+ δTe along the exact magnetic field

direction:

δqe
n0eT0e

= −3

2
κ∇∥ log Te, κ =

5v2the
18νe

, (2.20)

where κ is the electron thermal diffusivity and

∇∥ log Te = ∇∥
δTe
T0e

+
δBx

B0

1

T0e

dT0e
dx

= ∇∥
δTe
T0e

− ρe
LT

∂A
∂y

(2.21)

is the parallel gradient of the total electron temperature, which will prove a key quantity

in what follows.

2.2.4 Quasineutrality

Finally, as usual, particle density is related to ϕ via quasineutrality, which is the route

whereby ions contribute to dynamics. Since, at scales smaller than their Larmor radius

∼ ρi, ions can be viewed as large motionless rings of charge, their density response is

Boltzmann:

δne

n0e

=
δni

n0i

= −Zeϕ
T0i

= −τ̄−1φ, τ̄ =
τ

Z
, (2.22)

where τ = T0i/T0e is the ratio of the ion to electron equilibrium temperatures. The

more general quasineutrality closure is discussed in Section 7.3, but, since we shall focus

on scales smaller than this in the majority of our discussions, (2.22) will be sufficient

for our purposes.
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2.3 Summary of equations

Assembling together all of the above, we end up with the following systems of equations,

in the collisionless limit (ν∗ → 0):

d

dt

δne

n0e

+∇∥u∥e +
ρevthe
2LB

∂

∂y

(
δT∥e
T0e

+
δT⊥e

T0e

)
= 0, (2.23)

d

dt

(
A−

u∥e
vthe

)
= −vthe

2

[
∂φ

∂z
−∇∥

(
δne

n0e

+
δT∥e
T0e

)
+
ρe
LT

∂A
∂y

]
, (2.24)

d

dt

δT∥e
T0e

+∇∥

(
δq∥e
n0eT0e

+ 2u∥e

)
+
ρevthe
2LT

∂φ

∂y
= 0, (2.25)

d

dt

δT⊥e

T0e
+∇∥

δq⊥e

n0eT0e
+
ρevthe
2LT

∂φ

∂y
= 0, (2.26)

or, in the collisional limit (ν∗ ≫ 1),

d

dt

δne

n0e

+∇∥u∥e +
ρevthe
LB

∂

∂y

δTe
T0e

= 0, (2.27)

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

(
∇∥

δne

n0e

+∇∥ log Te

)
+ νei

u∥e
vthe

, (2.28)

d

dt

δTe
T0e

− κ∇2
∥ log Te +

2

3
∇∥u∥e +

ρevthe
2LT

∂φ

∂y
= 0, (2.29)

to which we append the field equations:

δne

n0e

= −τ̄−1φ,
u∥e
vthe

= d2e∇2
⊥A. (2.30)

This system is a minimal model for describing low-beta, electromagnetic plasma dy-

namics — whether collisionless or collisional — driven by a background electron-

temperature gradient, and in the presence of magnetic drifts.

2.4 Flux-freezing

These equations describe two broad classes of physical phenomena: electrostatic and

electromagnetic, distinguished by whether or not the magnetic field lines are frozen

into the electron flow. We shall refer to the perpendicular scale at which the transition

between these two regimes occurs as the ‘flux-freezing scale’. In the collisionless limit,

this scale is given by the balance between the electron inertia and the inductive parallel

electric field on the left-hand side of (2.24), viz.,

k⊥de ∼ 1. (2.31)
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In the collisional limit, the analogous balance involves, instead of electron inertia, the

resistive term — the last on the right-hand side of (2.28). However, in this limit, we

shall always deal with perturbations for which the term in (2.28) that contains the

projection of the equilibrium temperature gradient onto the perturbed magnetic field

[the second part of ∇∥ log Te written in (2.21)] is larger than ∂A/∂t. Therefore, it is

with this term that the effect of resistivity will be usefully compared:

ω ≲ ω∗e ≡
kyρevthe
2LT

∼ k2⊥d
2
eνei, (2.32)

where ω∗e is the drift frequency associated with the electron-temperature gradient. For

modes with ky ∼ k⊥
2, the balance (2.32) can be written as

k⊥de ∼
ρe
de

vthe
LTνei

=
√
βe
λei
LT

≡ χ−1, (2.33)

where λei = vthe/νe is the electron mean free path. It is the scale at which k⊥deχ ∼ 1

that will effectively play the role of the flux-freezing scale in the collisional limit. Note

that χ−1 ≪ 1 (due to the small mean-free-path associated with the collisional limit),

meaning that the flux-freezing scale occurs at much longer perpendicular wavelengths

than in the collisionless limit.

We shall refer to scales below the flux-freezing scale (2.31) or (2.33) as electrostatic

scales (on which electrons are free to flow across field lines without perturbing them),

and to scales above the flux-freezing scale as electromagnetic scales (on which the

magnetic field is frozen into the electron flow). It is straightforward to show that the

electron flow into which the magnetic field lines are frozen on electromagnetic scales

(while still remaining below the ion Larmor scale) is given by

ueff = vE − ρevthe
2

b0 ×∇p∥e
n0eT0e

, (2.34)

where p∥e = neT∥e, ne = n0e + δne, and T∥e = T0e + δT∥e are the total parallel pressure,

density, and parallel temperature, respectively; in the collisional limit, δT∥e → δTe,

as in section 2.2.3. The flow (2.34) is simply the part of the electron flow velocity

perpendicular to the total magnetic fieldB, comprised of the usual E×B drift velocity

vE [see (2.10)], and a ‘diamagnetic’ contribution coming from the electron (parallel)

2Though the balance ky ∼ k⊥ is always well satisfied within our model, in which modes with
kx ≫ ky simply experience strong damping, this will not necessarily be the case in systems with
magnetic shear (see Section 9.1.2 for further discussion of this issue).
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pressure gradient, manifest in the right-hand side of (2.24) or (2.28). This is distinct

from the MHD limit (above the ion Larmor scale), in which the magnetic field is only

frozen into vE due to the dynamics being pressure balanced, a distinction that will

prove important in our considerations of electromagnetic instabilities in Chapter 4.

In what follows, all orderings introduced should be considered subsidiary to the

orderings that define the collisionless and collisional limits (see appendix A of [1] for

more details), and the resultant reduced equations thus to be particular limits of the

collisionless [(2.23)-(2.26)] or collisional [(2.27)-(2.29)] equations.
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Chapter 3

Electrostatic regime: electron
temperature gradient instability

Let us begin our consideration of linear instabilities by examining the more familiar ones

that occur at electrostatic scales, before considering what happens at electromagnetic

ones.

3.1 Collisionless slab ETG

As explained above, the electrostatic limit corresponds to perpendicular scales k⊥de ≫
1. If we strengthen this condition to

k2⊥d
2
e ≫

ω∗e

ω
≳ 1, (3.1)

then both A terms in (2.24) can be neglected in comparison with the electron in-

ertia. Furthermore, we would like to consider the slab approximation, in which the

magnetic drifts are negligible in comparison with parallel compressions. In terms of

wavenumbers, this means that we assume

k∥vthe ≫ ωde

(
LB

LT

)1/4

, ωde =
kyρevthe
2LB

, (3.2)

where ωde is the magnetic drift frequency. Though not immediately obvious, it shall

turn out that the limit (3.2) allows us to neglect the magnetic drifts in (2.23). Then, the

perpendicular temperature perturbation (2.26) becomes decoupled from the remaining

equations, leaving us with an electrostatic three-field (δne, u∥e and δT∥e) system of the

kind traditionally used to describe temperature-gradient instabilities in a slab [8]. The
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slab electron-temperature-gradient (sETG) instability [56, 57] in its most explicit, fluid

form is obtained if one further assumes

k∥vthe ≪ ω ≪ ω∗e. (3.3)

Then (2.23)-(2.25) reduce to, approximately,

d

dt
τ̄−1φ = ∇∥u∥e,

du∥e
dt

= −v
2
the

2
∇∥

δT∥e
T0e

,
d

dt

δT∥e
T0e

= −ρevthe
2LT

∂φ

∂y
. (3.4)

Linearising and Fourier-transforming, we find the familiar dispersion relation

ω3 = −
k2∥v

2
theω∗eτ̄

2
⇒ ω = sgn(ky)

(
−1,

1

2
± i

√
3

2

)(
k2∥v

2
the|ω∗e|τ̄
2

)1/3

. (3.5)

The unstable root is the collisionless sETG.

In this limit, the instability works as follows. Suppose that a small perturbation

to the parallel electron temperature is created with ky ̸= 0 and k∥ ̸= 0, bringing the

plasma from regions with higher T0e to those with lower T0e (δT∥e > 0), and vice

versa (δT∥e < 0). This temperature perturbation produces alternating hot and cold

regions along the (unperturbed) magnetic field. The resulting perturbed temperature

gradients drive electron flows from the hot regions to the cold regions [second equation

in (3.4)], giving rise to increased electron density in the cold regions [first equation

in (3.4)]. By quasineutrality, the electron density perturbation is instantly replicated

in the ion density perturbation, and that, via Boltzmann-ion response, creates an

electric field that produces a radial E × B drift that pushes hotter particles further

into the colder region, and vice versa [third equation in (3.4)], reinforcing the initial

temperature perturbation and thus completing the positive feedback loop required for

the instability. This is illustrated in figure 3.1.

The ‘fluid’ limit (3.3) is physically transparent and easy to handle, primarily because

the heat flux (and thus all kinetic effects, such as Landau damping [69]) can, in this

limit, be neglected in (2.25). However, the approximation contains the seed of its own

destruction: according to (3.5), perturbations with a larger k∥ grow faster, and can

only be checked by Landau damping when

k∥vthe ∼ ω ∼ ω∗e. (3.6)
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Figure 3.1: A cartoon illustrating the feedback mechanism of the (collisionless) sETG insta-
bility. (i) An electron temperature perturbation with ky ̸= 0 and k∥ ̸= 0 (red-and-blue curves)
has alternating hot and cold regions along the (unperturbed) magnetic field (grey arrows),
and also along ŷ. (ii) The resulting perturbed temperature gradients drive parallel electron
flows u∥e (dashed arrows) from the hot regions into the cold regions, giving rise to increased
electron density in the cold regions (over- and under- densities are indicated by the dark- and
light-grey ellipses, respectively). (iii) By quasineutrality, the electron-density perturbation
gives rise to an exactly equal ion-density perturbation, and that, via Boltzmann-ion response,
creates alternating electric fields E in the perpendicular plane (vertical black arrows). This
produces an E ×B drift vE (horizontal black arrows), which pushes hotter particles further
into the colder region, and vice versa, reinforcing the initial temperature perturbation and
thus completing the positive feedback loop required for the instability. In this cartoon, for the
sake of simplicity, we have chosen not to include the phase information between the various
perturbations involved; a reader seeking such information will find it in figure 1 of [8] (the
equivalent picture for ITG).
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Indeed, the collisionless sETG is stabilised by Landau damping above the line in

wavenumber space [1]:

∓k∥vthe

√
1 + τ̄

2
=
τ̄ω∗e

2
⇒

k∥LT√
βe

= ± τ̄

2
√

2(1 + τ̄)
kyde. (3.7)

Thus, the fastest-growing collisionless sETG modes are expected to sit in this latter,

kinetic regime.

3.2 Collisional slab ETG

An important difference between the collisionless and collisional limits, exemplified by

the form of the collisional heat flux (2.20), is the replacement of the parallel streaming

rate of electrons k∥vthe with the parallel conduction rate (k∥vthe)
2/νei. The collisional

analogues of (3.1), (3.2) and (3.3) are thus

k2⊥d
2
e ≫

ω∗e

νei
,

(k∥vthe)
2

νei
≫ ωde,

(k∥vthe)
2

νei
≪ ω ≪ ω∗e, (3.8)

respectively, for which (2.27), (2.28) and (2.29) reduce to, approximately,

d

dt
τ̄−1φ = ∇∥u∥e, νeiu∥e = −v

2
the

2
∇∥

δTe
T0e

,
d

dt

δTe
T0e

= −ρevthe
2LT

∂φ

∂y
. (3.9)

These equations are similar to (3.4), except the parallel temperature gradient is now

balanced by the electron-ion frictional force, rather than by electron inertia. The

dispersion relation is

ω2 = i
k2∥v

2
theω∗eτ̄

2νei
⇒ ω = ±1 + isgn(ky)√

2

(
k2∥v

2
the|ω∗e|τ̄
2νei

)1/2

, (3.10)

where the unstable root is the collisional sETG. The physical mechanism of the insta-

bility is analogous to that for the collisionless sETG, except the parallel electron flow

is now determined instantaneously by the parallel temperature gradient. Similarly to

the collisionless sETG, the point of maximum growth of the instability occurs when

(k∥vthe)
2

νei
∼ ω ∼ ω∗e, (3.11)

which is a balance between dissipation (through conduction, rather than Landau damp-

ing) and energy injection due to the background temperature gradient. Similarly to
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the collisionless case, the collisional sETG is stabilised by thermal conduction above

the line [1]: (
k∥LT√
βe

)4

=
τ̄ 2

(1 + τ̄)a (τ̄ + a+ 5/3)2 (1 + 1/Z)2
(kydeχ)

2, (3.12)

where a = 2νeiκ/v
2
the = 5νei/9νe = 5/[9(1 + 1/Z)].

3.3 Curvature-mediated ETG

Both the collisionless and collisional sETG instabilities were derived assuming that the

parallel wavelengths were sufficiently short for the compressional terms in (2.23) and

(2.27) to be dominant in comparison to the magnetic-drift terms, while still satisfying

(3.3) and (3.8). We now consider very long parallel wavelengths for which this is no

longer true, ordering our frequencies as

k∥vthe ≪ ωde ≪ ω ≪ ω∗e,
(k∥vthe)

2

νei
≪ ωde ≪ ω ≪ ω∗e (3.13)

in the collisionless and collisional regimes, respectively. This, in fact, amounts to

setting k∥ = 0 everywhere, i.e., we are considering purely two-dimensional modes. In

both regimes, our equations reduce to

d

dt
τ̄−1φ =

ρevthe
LB

∂

∂y

δT∥e
T0e

,
d

dt

δT∥e
T0e

= −ρevthe
2LT

∂φ

∂y
,

δT∥e
T0e

=
δT⊥e

T0e
. (3.14)

The equality between the perpendicular and parallel temperature perturbations arises

in the collisionless regime because the dominant balance in both (2.25) and (2.26) is

between the time derivative and the ETG injection term, which is also true in the

collisional limit and with strengthened isotropisation from collisions. The dispersion

relation is

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄)
1/2 , (3.15)

which is the familiar growth rate of the curvature-mediated ETG (cETG) instability

[58]. Physically, this arises due to the fact that the magnitude of the magnetic-drift

velocity for a particle is proportional to its kinetic energy, and thus temperature. The

presence of some temperature perturbation will cause an electron-density perturbation,

as electrons in the hotter regions will drift faster than those in colder regions [first equa-

tion in (3.14)]. By quasineutrality, the electron density perturbation gives rise to an
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Figure 3.2: A cartoon illustrating the feedback mechanism of the (2D) cETG instability. (i)
A temperature perturbation with ky ̸= 0 (red-and-blue curve) has alternating hot and cold
regions along ŷ. Due to the temperature dependence of the magnetic drifts vde, electrons in
the hot regions will drift faster than those in the cold regions (red and blue arrows), creating
an electron density perturbation (over- and under- densities are indicated by the dark- and
light-grey ellipses, respectively). (ii) By quasineutrality, the electron-density perturbation
gives rise to an exactly equal ion-density perturbation, and that, via Boltzmann-ion response,
creates alternating electric fields E in the perpendicular plane (vertical black arrows). This
produces an E ×B drift vE (horizontal black arrows), which pushes hotter particles further
into the colder region, and vice versa, reinforcing the initial temperature perturbation and
thus completing the positive feedback loop required for the instability.

exactly equal ion density perturbation, and that, via Boltzmann-ion response, creates

an electric field that produces an E×B drift which pushes hotter particles further into

the colder region, and vice versa [second equation in (3.14)], completing the feedback

loop required for the instability, as illustrated in figure 3.2. This mechanism is unaf-

fected by collisionality, hence the cETG instability is obtained in both the collisionless

and collisional limits.

Given that both the collisionless and collisional sETG instabilities have maximum

growth rates γmax ∼ ω∗e [see (3.6) and (3.11), respectively], there will always exist a

temperature gradient above which the growth rate of the cETG is small in comparison

to that of the sETG, viz.,

γmax√
2ωdeω∗e

∼
(
LB

LT

)1/2

≫ 1, (3.16)

though the exact value of this gradient may be quite large due to differences in nu-

merical prefactors. However, the sETG instabilities only exist at perpendicular scales
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below the flux-freezing scales (2.31) or (2.33), as they require electrons to be able to

flow across field lines without perturbing them. While sETG is stabilised by magnetic

tension above the flux-freezing scale, cETG is unaffected by flux freezing as it is an

interchange (k∥ = 0) mode and does not trigger perpendicular magnetic field pertur-

bations δB⊥. This means that it will happily survive in the electromagnetic regime.
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Chapter 4

Electromagnetic regime:
thermo-Alfvénic instability

In the electromagnetic regime [i.e., at perpendicular scales above the flux-freezing scales

(2.31) or (2.33)], the magnetic field becomes frozen into the electron flow (2.34), mean-

ing that perpendicular magnetic field perturbations δB⊥ are created as electrons move

across field lines and drag the latter along. This has two important physical conse-

quences that make electrostatic and electromagnetic phenomena distinct: (i) perturbed

magnetic fields give rise to currents that, being electron flows, oppose electron density

perturbations [this is the sub-ion-scale version of Lorentz tension, manifest in the sec-

ond term in (2.9)], and (ii) the radial equilibrium temperature gradient now has a

component along the exact field line, viz., its projection on to the radial perturbation

of the magnetic field. As discussed in Chapter 3, the first effect stabilises the sETG

instabilities at the flux-freezing scale. It also gives rise to other electromagnetic phe-

nomena to which we shall return shortly. It is the second effect, however, that will

turn out to be crucial in our study of the physics of instabilities in the electromagnetic

regime.

Throughout this chapter, we will focus on the collisional limit — equations (2.27),

(2.28) and (2.29) — as this will allow us to discuss all of the physics characteristic to

the electromagnetic regime without being hampered by the technical detail associated

with the full kinetic system. The physical similarly between the instability mechanisms

in the collisionless and collisional limits means that we can just signpost the differences

between these two limits where appropriate.

Recalling the definition of the parallel derivative (2.11), we consider the parallel

gradient of the total temperature (2.21). This gradient can be separated into two
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terms: the first is the familiar parallel gradient of the temperature perturbation that

is present also in the electrostatic regime, and the second is the projection of the

equilibrium temperature gradient onto the perturbed magnetic field line that arises

only in the electromagnetic regime. This is referred to as the magnetic-flutter drive

[70, 71]. Like the electrostatic linear drive term (2.18), this term can also be responsible

for extracting free energy from the equilibrium temperature gradient.

To aid our discussion, let us derive an evolution equation for ∇∥ log Te. A useful

result is that, for any field ψ,

∇∥
dψ

dt
− d

dt
∇∥ψ = − c

B0

{
E∥, ψ

}
= ρe

{
dA
dt

+
vthe
2

∂φ

∂z
, ψ

}
. (4.1)

The first equality follows by writing the nonlinear operators d/dt and ∇∥, which we

defined in (2.10) and (2.11), respectively, in terms of the Poisson bracket

{f, g} = b0 · (∇f ×∇g) = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(4.2)

as follows:

d

dt
=

∂

∂t
+
ρevthe
2

{φ, . . . } , ∇∥ =
∂

∂z
− ρe {A, . . . } , (4.3)

and noticing that the Poisson bracket satisfies the Jacobi identity:

{A, {φ, ψ}}+ {φ, {ψ,A}}+ {ψ, {A, φ}} = 0. (4.4)

Therefore, taking ∇∥ of (2.29), we find

d

dt
∇∥

δTe
T0e

+
ρevthe
2LT

∇∥
∂φ

∂y
+ ρe

{
dA
dt

+
vthe
2

∂φ

∂z
,
δTe
T0e

}
−κ∇3

∥ log Te +
2

3
∇2

∥u∥e = 0. (4.5)

Now taking ∂/∂y of (2.28) we find

∂

∂y

(
dA
dt

+
vthe
2

∂φ

∂z

)
=

d

dt

∂A
∂y

+
vthe
2

∇∥
∂φ

∂y
=
vthe
2

∂

∂y
∇∥ log pe + νei

∂

∂y

u∥e
vthe

, (4.6)

where we have recognised the first two terms on the right-hand side for what they are

— the parallel gradient of the total electron pressure:

∇∥ log pe = ∇∥
δne

n0e

+∇∥ log Te. (4.7)
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Subtracting (ρe/LT )·(4.6) from (4.5), we arrive at

d

dt
∇∥ log Te + ρe

{
dA
dt

+
vthe
2

∂φ

∂z
,
δTe
T0e

}
+

2

3
∇2

∥u∥e + νei
ρe
LT

∂

∂y

u∥e
vthe

= κ∇3
∥ log Te −

ρevthe
2LT

∂

∂y
∇∥ log pe. (4.8)

Let us now consider the regime

(k⊥de)
2νei ∼ ωde ≪ ω ≪ ω∗e ∼ κk2∥. (4.9)

The ordering of the resistive rate and the magnetic drift frequency is such that we can

retain perturbations of similar frequencies to the cETG, by analogy to (3.13). However,

this time, we assume the parallel wavelength of the perturbations to be short enough,

or, equivalently, their frequency to be low enough, for thermal conduction along the

field lines to be rapid in comparison to the mode frequency. Then, in the limit (4.9),

the left-hand side of (4.8) is negligible in its entirety (being smaller than the right-

hand side by at least a factor of ω/ω∗e), while the outcome of the competition between

the two terms on the right-hand side is controlled by the ratio of the perpendicular

drift-wave frequency to the parallel conduction rate:

ξ∗ =
ω∗e

κk2∥
. (4.10)

This divides our electromagnetic modes into two physically distinct classes: isothermal

(ξ∗ ≪ 1) and isobaric (ξ∗ ≫ 1), the former of which is the focus of the next section,

and the latter will be discussed in section 4.4.

4.1 Isothermal curvature-mediated TAI

Previous studies of electromagnetic phenomena driven by an electron-temperature gra-

dient have often assumed the electrons to be isothermal along the perturbed field line

[72–75]. In our system, this assumption is valid if the thermal-conduction time domi-

nates over all other timescales, viz., in addition to (4.9),

ξ∗ ≪ 1. (4.11)

In the electrostatic regime, without the ability to have perturbations of the magnetic-

field direction, adopting such a limit would simply lead to erasure of the temperature
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perturbation due to Landau damping or thermal conduction, suppressing both the

collisionless and collisional sETG, respectively.

The isothermal limit allows the system more leeway in the electromagnetic regime.

Given (4.11), the dominant term in (4.8) is the first term on the right-hand side,

meaning that, to leading order,

∇∥ log Te = ∇∥
δTe
T0e

− ρe
LT

∂A
∂y

= 0, (4.12)

i.e., the temperature perturbations, rather than being zero, will always adjust to cancel

the variation of the equilibrium temperature along the perturbed field line. At the next

order in ξ∗,

κ∇3
∥ log Te =

ρevthe
2LT

∂

∂y
∇∥

δne

n0e

⇒
|∇∥ log Te|
|∇∥δne/n0e|

∼ ξ∗ ≪ 1, (4.13)

meaning that we can neglect ∇∥ log Te in (2.28). The ∇∥u∥e term in (2.27) is also

negligible, as can be confirmed a posteriori. Our system (2.27)-(2.29) therefore becomes

d

dt

δne

ne

= −ρevthe
LB

∂

∂y

δTe
T0e

,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne

ne

, ∇∥
δTe
T0e

=
ρe
LT

∂A
∂y

, (4.14)

where, by (2.22), φ = −τ̄ δne/ne. The associated dispersion relation is

ω2 = −2ωdeω∗e(1 + τ̄) ⇒ ω = ±i [2ωdeω∗e(1 + τ̄)]1/2 , (4.15)

which looks like the familiar cETG growth rate (3.15), but enhanced by an extra order-

unity contribution. In fact, this is a physically different and (as far as we know) new1

instability, which we shall refer to as the curvature-mediated thermo-Alfvénic instability

(cTAI).

Physically, cTAI proceeds as follows. Suppose that a perturbation δBx = B0ρe∂yA
of the magnetic field is created, with ky ̸= 0 and k∥ ̸= 0. According to the second

1[75] proposed a fluid mechanism for the destabilisation of KAW (see section 4.3.1) via their
interaction with the cETG mode (see section 3.3), adopting a purely isothermal limit ξ∗ = 0 and thus
neglecting any finite-heat-flux contributions. Under the ordering (4.9), neglecting equilibrium density
gradients and electron finite-Larmor radius contributions, their dispersion relation (23) becomes, in
our notation, ω2 = −(2ωdeω∗e − ω2

KAW)(1 + τ̄). This is the same as (4.18) to lowest order in ξ∗ ≪ 1.
Obviously, it does not match the cETG growth rate (3.15) at k∥ = 0, because the isothermal limit
cannot be valid as k∥ → 0. Their dispersion relation displays behaviour qualitatively similar to ours
in the isobaric limit for k∥ < k∥c (see section 4.4), in that they capture the stabilising effect of the
KAW restoring force at k∥ > 0, but miss the fact that the peak growth rate (4.15) is achieved at
a finite k∥ (see section 4.2). Their dispersion relation also does not contain the slab TAI mode (see
section 4.3.1) or any isobaric physics (section 4.4).

36



equation in (4.14), such a perturbation is brought about by a radial displacement of

the electron fluid associated with the velocity (2.34), which, recalling the isothermal

condition (4.12), can be written as

ueff = vE − ρevthe
2

b0 ×∇δne

n0e

= −ρevthe
2

b0 ×∇ (1 + τ̄)
δne

n0e

. (4.16)

Due to the presence of the equilibrium temperature gradient, this magnetic-field per-

turbation will set up an apparent (parallel) variation of the equilibrium temperature

along the perturbed field line, as the field line makes excursions into hot and cold

regions. However, rapid thermal conduction along the field line instantaneously cre-

ates a temperature perturbation that compensates for this temperature variation, in

order to enforce isothermality (4.12) [last equation in (4.14)]. This temperature per-

turbation will cause a parallel density gradient, as electrons in the hotter regions will

curvature-drift faster than those in colder regions [first equation in (4.14)]. The re-

sulting parallel pressure gradient must be balanced by a parallel electric field [second

equation in (4.14)], whose inductive part leads to an increase in the perturbation of

the magnetic field, deforming the field line further into the hot and cold regions, and in

doing so completing the feedback loop required for the instability2. This is illustrated

in figure 4.1.

The physical distinction between cTAI and cETG can be made obvious by the

following two observations. First, unlike cETG, cTAI relies vitally on k∥ ̸= 0 and,

indeed, on k∥ being large enough for the condition (4.11) to be satisfied — even though

the growth rate (4.15) ends up being independent of k∥. In section 4.2, we shall show

that this is the peak growth rate of the instability and that it is achieved at a finite

k∥ [despite the absence of k∥ in (4.15)], while at k∥ = 0, the cETG growth rate (3.15)

is recovered. Secondly, perturbations described by (4.14) can be unstable without the

need for them to contain any E ×B flows (i.e., any electrostatic potential φ) — this

becomes obvious in the formal limit φ = −τ̄ δne/n0e → 0 as τ̄ → 0 (cold ions). In

contrast, the cETG growth rate (3.15) disappears in this limit. This is because cTAI

2Physically, this feedback loop is perhaps reminiscent of some MHD-like instabilities, such as
kinetic ballooning modes (KBMs; see references in Chapter 1). However, as is evident from the
second equation in (4.14), the isothermal cTAI does not satisfy the MHD constraint that E∥ = 0
typical of such modes. Indeed, in the isothermal regime, the magnetic field lines are not frozen into
the E × B flow, as they would be in MHD, but instead into the electron flow velocity (4.16). We
therefore consider that the isothermal cTAI can be regarded as a separate instability, rather than a
sub-species of KBM — unlike its isobaric counterpart discussed in section 4.4.
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Figure 4.1: A cartoon illustrating the feedback mechanism of the (isothermal) cTAI. (i) A per-
turbation δBx = B0ρe∂yA (solid black lines) to the equilibrium magnetic field (grey arrows,
darker grey corresponding to the plane of constant y containing δBx, or the relevant perturba-
tion in subsequent diagrams) is created with ky ̸= 0 and k∥ ̸= 0 (we show half a wavelength of
the mode along both ŷ and ẑ). Due to the presence of the equilibrium temperature gradient,
this will set up a (parallel) variation of the total temperature along the perturbed field line, as
the field line makes excursions into hot and cold regions (on the left and right, respectively).
However, rapid thermal conduction along the field line instantaneously creates a temperature
perturbation that compensates for this temperature variation (red and blue ovals, located in
the same planes of constant y as δBx). (ii) This temperature perturbation will cause a parallel
density gradient (over- and under- densities are indicated by the dark and light grey ellipses,
respectively, lying in the planes of constant y a quarter of a wavelength above those of δBx),
as electrons in hotter regions will curvature-drift faster than those in colder regions (vde, red
and blue arrows). (iii) The parallel density gradient must be balanced by a parallel electric
field (black arrows, in the same planes of constant y as the density perturbations), whose
inductive part leads to an increase in the perturbation of the magnetic field (maroon arrows),
deforming the field line further into the hot and cold regions, and in so doing completing the
feedback loop for the instability. Note that the maximal rate of change of δBx occurs where
the y-gradient of E∥ is at a maximum, as shown.
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extracts energy from the background temperature gradient not via E ×B advection

of said equilibrium gradient but via thermal conduction of it along the perturbed field

lines. In order to complete the instability loop and reinforce the magnetic perturbation

δBx required for this mechanism to work, the system only needs a perturbed density

gradient. This is due to the fact that, as we discussed in section 2.3, below the ion

Larmor scale, the magnetic field lines are frozen not into the E × B flow but in the

electron flow (2.34), which involves also a ‘diamagnetic’ contribution from the electron

pressure gradient — which, in the isothermal limit, consists just of the perturbed

density gradient, as in (4.16). It is because of the presence of this distinct destabilisation

mechanism that the cTAI growth rate (4.15) is always strictly greater than the cETG

one (3.15). Thus, cTAI is not simply an ‘electromagnetic correction’ to cETG, but

rather the main effect at scales above the flux-freezing scale (2.33) [or (2.31) in the

collisionless limit, where, as we shall see shortly, the same instability is present]. This

suggests that a purely electrostatic description of these scales is inadequate.

4.2 General TAI dispersion relation

As we have noted above, despite cTAI relying on parallel dynamics, the dispersion

relation (4.15) is itself independent of k∥. This is because we have thus far only captured

the leading-order behaviour in our analysis, and further diligence is required in order to

determine the details associated with the parallel dynamics. Let us give this problem

the diligence that it is due, and adopt the ordering (4.9) but, for now, ξ∗ ∼ 1. Neglecting

both the resistive term in (2.28) and the compressional term in (2.29) — since both

are small under (4.9) — and determining ∇∥ log Te in (2.28) from the balance of the

two terms on the right-hand side of (4.8), viz.,(
ρevthe
2LT

∂

∂y
− κ∇2

∥

)
∇∥ log Te = −ρevthe

2LT

∂

∂y
∇∥

δne

n0e

, (4.17)

we arrive at the following dispersion relation:

ω2 = −
(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + iξ∗

)
, (4.18)

where ωKAW = k∥vthek⊥de/
√
2 is the kinetic-Alfvén-wave (KAW) frequency, the physi-

cal origin of which will be discussed in section 4.3.1. The cTAI growth rate is manifest
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in this expression; adopting the isothermal limit (4.11) and neglecting ωKAW, we re-

obtain (4.15) to lowest order in ξ∗.

Though we have thus far focussed on the collisional limit, it turns out that much of

what we have done is directly applicable to the collisionless limit if we simply replace

the parallel conduction rate with the parallel streaming rate3, viz., (4.18) remains valid

but with

ξ∗ =

√
π

2

ω∗e

k∥vthe
. (4.19)

The equivalent of the ordering (4.9) in the collisionless regime is

ωde ≪ ω ≪ ω∗e ∼ k∥vthe, (4.20)

and the equations (4.14) are the same; note that in this regime, δT∥e = δT⊥e =

δTe because both the parallel and perpendicular temperature are constant along the

field line to leading order in ω/ω∗e. Furthermore, it is possible to show that (4.8)

is also valid in the collisionless limit if one replaces δTe → δT∥e, −κ∇∥ log Te →
δq∥e/n0eT0e, (2/3)∇2

∥u∥e → 2∇2
∥u∥e, νeiu∥e → du∥e/dt, and the heat flux must now

be determined kinetically. The effect is still to enforce isothermality along the field

lines, but by means of parallel particle streaming, rather than collisional conduction.

This means that cTAI, while being a ‘fluid’ instability, is not an intrinsically colli-

sional one, occurring also in the collisionless, kinetic limit. Its physical picture in the

collisionless limit is exactly the same as in the collisional one.

The dispersion relation (4.18) contains most of the interesting features of the TAI

physics (see, however, sections 4.3.3 and 4.4.2). The most obvious feature of (4.18) is

that both the growth rate and frequency vanish when

2ωdeω∗e = ω2
KAW ⇒

k∥cLT√
βe

=

(
LT

LB

)1/2
ky
k⊥
. (4.21)

This corresponds to the point of transition from the curvature-dominated regime (k∥ <

k∥c), on which we will focus in this section, to the KAW-dominated regime (k∥ > k∥c),

which will be the subject of section 4.3.1.

3ξ∗ measures the competition between diamagnetic drifts and the rate at which information can
propagate along perturbed field lines in the presence of an equilibrium temperature gradient. In the
collisional limit, this parallel rate is thermal conduction, as in (4.10), while in the collisionless one it is
clearly parallel streaming, as in (4.19). Readers unconvinced by this intuition may consult appendix
D of [1] for a rigorous derivation of (4.19), (4.20) and the statements that follow.
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Figure 4.2: (a), (c) The growth-rate and (b), (d) the real frequency of the TAI (4.22) in
the isothermal limit (4.11), plotted as functions of k∥LT /

√
βe and normalised to the cETG

growth rate (3.15) (τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and
(d) to the collisional one. The vertical dashed lines in panels (a) and (c) are for k∥ = k∥max

given by (4.24). The dashed lines in panels (b) and (d) show the isothermal KAW frequency
(4.29). Both the growth rate and the real frequency vanish at the critical parallel wavenumber
k∥cLT /

√
βe = 0.32, given by (4.21). The insets in panels (a) and (c) show details of the

behaviour of the growth rate for k∥ > k∥c; the vertical dashed line in the inset of panel (c) is the

(secondary) maximum at k∥ =
√
2k∥c discussed at the end of section 4.3.1. The perpendicular

wavenumbers chosen in this figure are all safely below the transition wavenumber (4.26), which
is k⊥∗de = 0.71 or k⊥∗deχ = 0.03 in the collisionless or collisional cases, respectively.
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If we extract the real and imaginary parts of (4.18), the (real) frequency ωr = Re(ω)

and the growth rate γ = Im(ω) of the growing modes can be written as

ω2
r =

∣∣2ωdeω∗e − ω2
KAW

∣∣ τ̄ f−(ξ∗), γ2 =
∣∣2ωdeω∗e − ω2

KAW

∣∣ τ̄ f+(ξ∗), (4.22)

where

f±(ξ∗) =
1

2τ̄

√(τ̄ + 1

1 + ξ2∗

)2

+
ξ2∗

(1 + ξ2∗)
2
± sgn

(
2ωdeω∗e − ω2

KAW

)(
τ̄ +

1

1 + ξ2∗

) .
(4.23)

The growth rate and frequency (4.22) are plotted as functions of k∥LT/
√
βe in figure 4.2.

For k∥ < k∥c, the growth rate has a maximum for some non-zero k∥; it is about to turn

out that this maximum corresponds to the cTAI growth rate (4.15), which was derived

in the isothermal limit, ξ∗ ≪ 1. Expanding (4.23) in small ξ∗ to leading and sub-leading

order, and seeking the maximum of the resultant expression with respect to k∥, we find

that this maximum occurs approximately at

k∥maxLT√
βe

=


[
π

64

3 + 4τ̄

(1 + τ̄)2
LT

LB

]1/4(k2yde
k⊥

)1/2

, collisionless,[
81

50

3 + 4τ̄

(1 + τ̄)2
LT

LB

]1/6(k2yde
k⊥

χ

)1/3

, collisional,

(4.24)

indicated by the vertical dashed lines in panels (a) and (c) of figure 4.2; χ is defined

in (2.33). Calculating the growth rate (4.22) at k∥ = k∥max, one recovers (4.15) up to

small corrections, as promised.

This solution, however, is only valid so long as it remains in the isothermal limit

(4.11). Evaluating ξ∗ at k∥ = k∥max, we find, defining α = 1, 2 in the collisionless and

collisional limits, respectively,

ξ∗
(
k∥max

)
∼
k∥max

k∥c
∼
(
k⊥
k⊥∗

)1/(1+α)

≪ 1 (4.25)

provided that k⊥ ≪ k⊥∗, where k⊥∗ is the perpendicular wavenumber at which ξ∗
(
k∥c
)
∼

1, viz.,

k⊥∗de =


4√
π

(
LT

LB

)1/2

, collisionless,

5

9

LT

LB

χ−1, collisional,

⇒ ξ∗(k∥c) =


k⊥
k⊥∗

, collisionless,

k2⊥
k⊥∗ky

, collisional.

(4.26)
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Thus, the isothermal regime is valid at sufficiently long perpendicular wavelengths. At

k⊥ > k⊥∗, a different, isobaric regime takes over, which will be considered in section 4.4.

Lastly, we note that, for k∥ < k∥c, the magnitude of the real frequency is vanishingly

small when compared to the growth rate: expanding both the growth rate and the real

frequency in (4.22) for ξ∗ ≪ 1, we find

ω2
r

γ2
≈ ξ2∗

4(1 + τ̄)2
≪ 1. (4.27)

Thus, cTAI is, like cETG, an (almost) purely growing mode; this is distinct from the

case of the sETG, whose frequency and growth rate are comparable at the latter’s

maximum (see Chapter 3).

4.3 Isothermal KAWs and slab TAI

4.3.1 Isothermal KAWs

If k⊥ ≪ k∗⊥, i.e., ξ∗
(
k∥c
)
≪ 1, then the isothermal approximation (4.12) continues to

be satisfied at k∥ > k∥c, but the effects of the magnetic drifts become negligible for

k∥ ≫ k∥c. In this region, our system (2.27)-(2.29) becomes, approximately,

d

dt

δne

n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne

n0e

, φ = −τ̄ δne

n0e

. (4.28)

These equations are also valid in the collisionless limit [there is no intrinsically colli-

sional physics in (4.28), as the resistive term in (2.28) is negligible under the order-

ing (4.9)]. We recognise these as the equations of Electron Reduced Magnetohydrody-

namics (ERMHD, see [72] or [76]), which describe the dynamics, linear and nonlinear,

of kinetic Alfvén waves (KAWs). Indeed, linearising and Fourier transforming (4.28),

we find the dispersion relation

ω2 = k2∥v
2
thek

2
⊥d

2
e

1 + τ̄

2
= ω2

KAW (1 + τ̄) . (4.29)

These are the familiar (isothermal) KAWs that arise in homogeneous systems [51,

72, 73, 76–78]. The physics of these waves is as follows. Suppose that a density

perturbation δne/n0e = −τ̄−1φ with k∥ ̸= 0 is created. This gives rise to a parallel

pressure gradient, which manifests itself as a parallel (perturbed) density gradient,

as any parallel temperature variation is instantaneously ironed out by rapid parallel
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streaming or thermal conduction. This parallel pressure gradient must be balanced

by the parallel electric field [second equation in (4.28)], whose inductive part, through

Ampère’s law (2.30), leads to a parallel current. But a parallel current is a parallel

electron flow, which leads to compressional rarefaction along the field that opposes the

original density perturbation [first equation in (4.28)]. This is also the reason for the

reduction of the cTAI growth rate at k∥ > k∥max and its vanishing at k∥ = k∥c [see

panels (a) and (c) in figure 4.2]: the parallel compression that provides the restoring

force for the KAW perturbations increases as k∥ increases, weakening the instability

mechanism of the cTAI described in section 4.1.

4.3.2 Isothermal slab TAI

Remarkably, however, it turns out that isothermal KAW, at k∥ > k∥c, are still unstable

in the presence of an equilibrium electron temperature gradient: expanding (4.18) or

(4.22) for ξ∗ ≪ 1 at k∥ ≫ k∥c (the latter in order to drop the ωde effects), we find

ω2
r ≈ ω2

KAW(1 + τ̄), γ2 ≈ ω2
KAW

ξ2∗
4(1 + τ̄)

. (4.30)

By analogy with sETG, we shall henceforth refer to this KAW-dominated TAI as the

‘slab’ TAI (sTAI); it was our original motivation for calling the instability ‘thermo-

Alfvénic’4.

The precise mechanism by which the isothermal sTAI operates is somewhat subtler

than cTAI, relying on the fact that the isothermal condition (4.12) that led to (4.29) is,

in fact, only approximately satisfied. Indeed, ∇∥ log Te is determined, in the collisional

limit, at next order in ξ∗ by (4.13) which, linearising and Fourier transforming, can be

written as (
∇∥ log Te

)
k
= −iξ∗

(
∇∥

δne

n0e

)
k

. (4.31)

This means that a small but finite parallel gradient of temperature effectively introduces

a correction to the parallel density gradient in (4.28) that is π/2 out of phase with the

contribution that enables the isothermal KAWs. This gives rise to the instability (4.30)

in both the collisional limit, and, it turns out, the collisionless one, where (4.31) also

4The sTAI instability appears to be a close relative of the ‘electron magnetothermal instability’
(eMTI) discovered by [79] in their treatment of stratified plasma atmospheres, and analysed by them
in the high-beta limit appropriate to the astrophysical applications on which they were focused.
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holds but with ξ∗ given by (4.19). Restoring finite parallel temperature gradients in

(4.28), we have

d

dt

δne

n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne

n0e

+
vthe
2

∇∥ log Te, (4.32)

with dispersion relation

ω2 = ω2
KAW(1 + τ̄ − iξ∗) ⇒ ω ≈ ±ωKAW

(√
1 + τ̄ − iξ∗

2
√
1 + τ̄

+ . . .

)
, (4.33)

whose real and imaginary parts are exactly the frequency and growth rate (4.30).

If we restore the magnetic-drift terms in the density equation, we find, in the

collisionless limit, that the sTAI growth rate increases from zero at k∥ = k∥c to a finite,

k∥-independent limit (4.30) at k∥ ≫ k∥c, viz.,

γ → 1

4

√
π

2(1 + τ̄)
k⊥deω∗e =

√
ωdeω∗e

2(1 + τ̄)

k⊥
k⊥∗

, (4.34)

where k⊥∗ is given by (4.26) [see figure 4.2(a), inset]. As we shall see shortly in sec-

tion 4.3.3, this value only persists up to a certain k∥ where sTAI is stabilised by com-

pressional heating, which was neglected in (4.18). In the collisional limit, γ → 0 as

k∥ → ∞ (also, in fact, shown to go to γ < 0 in section 4.3.3). The growth rate has

a maximum at k∥ =
√
2k∥c, which is shown by the vertical dashed line in the inset of

figure 4.2(c). The growth rate at this maximum is [1]

γ =
k2⊥d

2
ev

2
the

8
√

2(1 + τ̄)κ

√
ω∗e

ωde

=
1

2

√
ωdeω∗e

2(1 + τ̄)

k2⊥
k⊥∗ky

. (4.35)

Both the maximum growth rates (4.34) and (4.35) are manifestly much smaller than

the maximum growth rate of cTAI (4.15) as long as k⊥ ≪ k⊥∗, i.e., as long as the

isothermal approximation, in which all of these results have been derived in the first

place, is valid.

Thus, at long perpendicular wavelengths (k⊥ ≪ k⊥∗), the dominant instability is

cTAI, reaching its maximum growth rate (4.15) at the parallel wavenumber (4.24).

4.3.3 Stabilisation of isothermal slab TAI

The sTAI growth rates do not, in fact, stay positive to infinite parallel wavenumbers.

The instability is eventually quenched by the compressional-heating term in the tem-

perature equation [(2.25) or (2.29) in the collisionless and collisional limits, respectively]

that begins to compete with the TAI drive.
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To show this, let us consider the collisional limit and, instead of (4.9), the ordering

(k⊥de)
2νei ≪ ω ∼ ω∗e ≪ κk2∥. (4.36)

In this limit, the system is still isothermal to leading order in ξ∗ ≪ 1, but now we

must also retain the compressional heating term in (4.8) to determine ∇∥ log Te at next

order: instead of (4.13), we have, therefore,

κ∇3
∥ log Te =

ρevthe
2LT

∂

∂y
∇∥

δne

n0e

+
2

3
∇2

∥u∥e. (4.37)

Furthermore, it turns out that we must also retain the resistive term in (2.28) at this

order as it will end up making a contribution of the same order as the second term

in (4.37). Thus, the second equation in (4.32) is replaced by

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥
δne

n0e

+
vthe
2

∇∥ log Te + νei
u∥e
vthe

, (4.38)

Combining (4.37) and (4.38) with the density equation, still the same as in (4.32), we

obtain the following dispersion relation

ω2 − ω2
KAW(1 + τ̄ − iξ∗) = −i

(
2

3
+ a

)
ω

κk2∥
ω2
KAW, (4.39)

where a is defined as below (3.12). This is the same as (4.33) apart from the right-hand

side, previously neglected. At the stability boundary, the frequency ω must be purely

real, and both the real and imaginary parts of (4.39) must vanish individually, giving

ω2 = ω2
KAW(1 + τ̄), ω = − ω∗e

a+ 2/3
⇒ ∓ωKAW

√
1 + τ̄ =

ω∗e

a+ 2/3
. (4.40)

For ky ∼ k⊥, (4.40) are lines of constant k∥ in wavenumber space, limiting the isother-

mal sTAI at large parallel wavenumbers:

k∥LT√
βe

= ± 1

(a+ 2/3)
√

2(1 + τ̄)

ky
k⊥
. (4.41)

This stabilisation of the isothermal sTAI was not captured in the TAI dispersion re-

lation (4.18) because the ordering (4.9) did not formally allow frequencies comparable

to the drift wave frequency, required by (4.40).

In the collisionless limit, we also find that the sTAI is stabilised above a line of

constant k∥ [1]

±ωKAW

√
1 + τ̄ =

ω∗e

2
⇒

k∥LT√
βe

= ± 1

2
√

2(1 + τ̄)

ky
k⊥
, (4.42)
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due again to the competition between the compressional heating in the equation for the

parallel temperature (2.25) and the TAI drive. Appendix D of [1] details a collisionless

calculation analogous to that performed above in the collisional limit, but the latter

is sufficient here for illustrating the physics underlying the stabilisation mechanism.

In both cases, the stabilisation of sTAI does not appear in figure 4.2 (and, later,

in figure 4.3) because the orderings (4.9) or (4.20) that lead to the TAI dispersion

relation (4.18) do not formally allow this stabilisation; instead, readers will find it in the

insets of figures 5.3(c) and 5.4(c) in the collisionless and collisional limits, respectively,

where solutions of a more precise dispersion relation are shown.

Though useful for delineating the precise regions of instability in the (k⊥, k∥) space,

this stabilisation of the isothermal sTAI is of secondary importance because it is cTAI

that is the dominant instability at long perpendicular wavelengths (k⊥ ≪ k⊥∗), which

was the main conclusion of section 4.3.2.

4.4 Isobaric limit

Let us now consider what happens in the opposite limit of short perpendicular wave-

lengths, k⊥ ≫ k∗⊥, corresponding to thermal conduction (or its collisionless analogue,

parallel streaming) being weak in comparison with the ω∗e driving, viz.,

ξ∗ ≫ 1. (4.43)

Assuming this in addition to (4.9) or (4.20), we find that the dominant term in (4.8)

is the second term on the right-hand side, meaning that, to leading order,

∇∥ log pe = ∇∥ log Te +∇∥
δne

n0e

= 0. (4.44)

This is the isobaric limit, in which the total pressure is constant along the perturbed

field lines, rather than just the total temperature. That is, the temperature pertur-

bation has to adjust to cancel not just the variation of the equilibrium temperature

along the perturbed field line, as was the case in the isothermal limit, but now also the

variation of the perturbed density. At next order in ξ∗, from (4.8), we have

ρevthe
2LT

∂

∂y
∇∥ log pe = −κ∇3

∥
δne

n0e

⇒
|∇∥ log pe|
|∇∥δne/n0e|

∼ 1

ξ∗
≪ 1, (4.45)
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so we can now neglect the entire right-hand side of (2.28), reducing the latter equation

to E∥ = 0. For k∥ ≪ k∥c, i.e. neglecting the KAW restoring force, our system (2.27)-

(2.29) therefore becomes

d

dt

δne

n0e

= −ρevthe
LB

∂

∂y

δTe
T0e

,
dA
dt

+
vthe
2

∂φ

∂z
= 0, ∇∥

δTe
T0e

=
ρe
LT

∂A
∂y

−∇∥
δne

n0e

, (4.46)

where φ = −τ̄ δne/ne. As with the isothermal cTAI, these equations remain valid in

the collisionless limit, because δT∥e = δT⊥e = δTe to leading order in ω/ω∗e.

In (4.46), the temperature perturbation is determined from the third equation,

which is simply the isobaric condition (4.44). However, given the ordering (4.9), the cor-

rection to δTe due to the density perturbation is small, viz., δne/n0e ∼ (ωde/ω)δTe/T0e,

which follows from the first equation in (4.46). That is, to leading order, there is no

difference between the isothermal and isobaric conditions when it comes to determining

the temperature perturbation. Hence, the associated dispersion relation is

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄)
1/2 . (4.47)

Analysing — and plotting, in figure 4.3 — the dispersion relation (4.22) in the

isobaric regime, both collisional and collisionless, we find that the maximum of the

growth rate in the region k∥ < k∥c occurs at k∥ = 0, i.e., it is, in fact, the 2D cETG

mode that has the fastest growth. At finite k∥, it is weakened by the presence of the

restoring force associated with KAWs, reaching γ = 0 at k∥ = k∥c — this is evident in

panels (a) and (c) of figure 4.3.

The dispersion relation (4.47) is identical to the cETG dispersion relation (3.15).

This is because the second equation in (4.46) is simply E∥ = 0, implying that the

magnetic field is now frozen into the E×B flow, as are the temperature perturbations

[see (2.34), wherein the second term vanishes in the isobaric limit]. This is distinct to

the case of the isothermal cTAI introduced in section 4.1, where the magnetic field was

frozen into a different velocity field than the temperature perturbations, viz., the mean

electron flow (4.16). As a result, unlike in the isothermal case, there is no enhancement

of the cETG growth rate by the TAI mechanism in the isobaric regime: (4.47) can

simply be regarded as an extension of the familiar cETG into the electromagnetic

regime. However, physically, the isobaric cTAI is not an interchange mode, since it

involves k∥ ̸= 0. Its mechanism is similar to its isothermal cousin (figure 4.1), except

the balance along the perturbed field is of pressure rather than temperature. It may
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Figure 4.3: (a), (c) The growth-rate and (b), (d) the real frequency of the TAI (4.22) in the
isobaric limit (4.43), plotted as functions of k∥LT /

√
βe and normalised to the cETG growth

rate (3.15) (τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and (d) the
collisional one. The vertical dashed line in (c) is for k∥max given by (4.54). The dashed
and dotted lines in panels (b) and (d) are the isothermal (4.29) and isobaric (4.49) KAW
frequencies, respectively. Both the growth rate and the real frequency vanish at the critical
parallel wavenumber k∥cLT /

√
βe = 0.1, given by (4.21). The perpendicular wavenumbers

chosen in this figure are all safely above the transition wavenumber (4.26), which is k⊥∗de =
0.23 or k⊥∗deχ = 0.003 in the collisionless or collisional cases, respectively. The parallel
wavenumber corresponding to the transition between the isobaric and isothermal regimes at
a fixed ky (viz., for ξ∗ ∼ 1) is given by k∥LB/

√
βe = 0.35 or 0.36 in the collisionless and

collisional cases, respectively. We chose a very large value of LB/LT to show the asymptotic
regimes clearly.
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therefore be appropriate to regard it as an electron-scale extension of MHD-like modes,

such as the kinetic ballooning mode (KBM) — indeed, the condition E∥ = 0, which is

a direct consequence of pressure balance (4.44), is often invoked as a signature of such

modes [39, 59].

4.4.1 Isobaric slab TAI

For k∥ ≫ k∥c, and still assuming (4.43), our system (2.27)-(2.29) becomes, approxi-

mately,

d

dt

δne

n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
= 0, φ = −τ̄ δne

n0e

. (4.48)

As with the isothermal KAW, these equations are also valid in the collisionless limit.

They are similar to (4.28), except that the parallel electric field is now zero because

the parallel gradient of the perturbed pressure vanishes. This new system describes the

dynamics of isobaric KAWs — so called because they obey (4.44). Their dispersion

relation is

ω2 = k2∥v
2
thek

2
⊥d

2
e

τ̄

2
= ω2

KAWτ̄ . (4.49)

These isobaric KAW, which arise in strongly driven systems (large ω∗e), work in a

similar fashion to their isothermal cousins described at the beginning of section 4.3.1,

except the inductive part of the parallel electric field now creates a magnetic perturba-

tion and, therefore, a parallel current, from the electrostatic part of the parallel electric

field, rather than from a combination of the latter and the parallel pressure gradient.

Like the isothermal KAW, the isobaric KAW are unstable to sTAI: expanding (4.18)

or (4.22) for ξ∗ ≫ 1 at k∥ ≫ k∥c, we find

ω2
r = ω2

KAWτ̄ , γ2 = ω2
KAW

1

4τ̄ ξ2∗
, (4.50)

which is (4.49) once again but with a small, but finite, growth rate. In a similar fashion

to the isothermal sTAI described in section 4.3.1, the instability arises due to the fact

that the isobaric condition (4.44) that led to (4.48) is, in fact, only approximately

satisfied. In the collisional limit, ∇∥ log pe is determined at next order in ξ−1
∗ by (4.45),

which, linearising and Fourier transforming, can be written as(
∇∥ log pe

)
k
=

1

iξ∗

(
∇∥

δne

n0e

)
k

. (4.51)
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This means that there will be a term in the second equation in (4.48) that is π/2 out of

phase with the electrostatic contribution to the parallel electric field that enables the

isobaric KAW. The result is the instability (4.50), which exists also in the collisionless

limit, but with ξ∗ given by (4.19). Indeed, restoring finite pressure gradients in (4.48),

we have

d

dt

δne

n0e

= −vthe∇∥d
2
e∇2

⊥A,
dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log pe, (4.52)

leading to the dispersion relation

ω2 = ω2
KAW

(
τ̄ +

1

iξ∗

)
⇒ ω ≈ ±ωKAW

(√
τ̄ − i

2
√
τ̄ ξ∗

+ . . .

)
, (4.53)

whose real and imaginary parts are exactly the frequency and growth rate (4.50).

As k∥ is increased, the isobaric limit (4.43) must eventually break down and be

replaced by the isothermal limit (4.11). This means that there will be a transition

between isobaric and isothermal KAW, and the associated limits of sTAI, occurring,

clearly, at ξ∗ ∼ 1. In the collisionless limit, the growth rate once again asymptotes

to a constant value as k∥ → ∞ (ξ∗ → 0) — this is just the isothermal limit (4.34)

except now, since k⊥ ≫ k⊥∗, this growth rate is large in comparison with the cETG

growth rate achieved at k∥ = 0 [see figure 4.3(a), noting the normalisation]. Note that

γ ∼ ωKAW near the transition ξ∗ ∼ 1 (i.e., at k∥ ∼ ω∗e/vthe), but γ ≪ ωKAW as k∥ → ∞.

In the collisional limit, there is peak growth at ξ∗ ∼ 1, or

k∥max ∼
√
ω∗e

κ
∼ 1

vthe

√
ω∗eνe. (4.54)

Determining the precise prefactor, which depends only on τ̄ and is, thus, order unity,

is only possible numerically, but is, at any rate, inessential. The growth rate at this

wavenumber is

γ ∼ ωKAW ∼ k⊥de
√
ω∗eνe. (4.55)

Again, this growth rate is large in comparison with the cETG peak growth rate at

k∥ = 0:

γ√
2ωdeω∗e

∼ k⊥de

√
νe
ωde

∼
(
k⊥
k⊥∗

)1/2

≫ 1. (4.56)
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Figure 4.3 illustrates all of this behaviour. We remind the reader that at large k∥ (i.e.,

in the deep isothermal regime), the instability is quenched by compressional heating in

both collisional and collisionless limits (see section 4.3.3).

Thus, the isobaric (k⊥ ≫ k⊥∗) regime of the TAI is quite different from the isother-

mal one: the dominant instability is again electromagnetic, rather than electrostatic,

but it is the slab TAI — an instability of KAWs reaching peak growth at the parallel

wavenumber where the relevant parallel timescale — either the parallel-streaming or

thermal-conduction rate in the collisionless or collisional regimes, respectively — is

comparable to ω∗e. It must be appreciated, of course, that this behaviour only occurs

in a relatively narrow interval of perpendicular wavelengths satisfying k⊥∗ ≪ k⊥ ≪ d−1
e

(or ≪ d−1
e χ−1 in the collisional regime). For k⊥de ≳ 1 (or χ−1 in the collisional regime),

it is replaced by the electrostatic instabilities described in section 3.

4.4.2 Stabilisation of isobaric slab TAI

As was the case with the isothermal sTAI, the isobaric sTAI is also stabilised within

a certain region of wavenumber space, this time due to the effects of finite resistivity,

or finite electron inertia, in the parallel momentum equation — (2.24) or (2.28) in the

collisionless and collisional limits, respectively.

To work out this stabilisation, we once again consider the collisional limit and,

instead of (4.9), the ordering

(k⊥de)
2νei ∼ ω ∼ κk2∥ ≪ ω∗e. (4.57)

A direct consequence of this ordering is that one has to retain the resistive term in the

leading-order parallel momentum equation, viz., the second equation in (4.52), coming

from (2.28), is replaced with

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log pe + νei
u∥e
vthe

. (4.58)

This means that, instead of the system being isobaric to leading order in ξ∗ ≫ 1, the

parallel pressure gradient now balances the electron-ion frictional force:

∇∥ log pe +
2νeiu∥e
v2the

= 0. (4.59)
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This is obvious from (4.8) in the limit (4.57). To next order, we must now retain both

the time derivative of ∇∥ log Te and the compressional heating term in (4.8):

ρevthe
2LT

∂

∂y

(
∇∥ log pe +

2νeiu∥e
v2the

)
=

(
d

dt
− κ∇2

∥

)(
∇∥

δne

n0e

+
2νeiu∥e
v2the

)
− 2

3
∇2

∥u∥e.

(4.60)

Combining (4.58), (4.60) and the density equation from (4.52), we find the dispersion

relation

ω2 − ω2
KAW

(
τ̄ +

1

iξ∗

)
= − 1

iξ∗

(k⊥de)
2νei

κk2∥
ω2 − 1

ξ∗

(
5

3
+ a

)
ω

κk2∥
ω2
KAW, (4.61)

where a is the same numerical constant as in (4.39). This is the same as (4.53), apart

from the right-hand side, previously neglected. The second term on the right-hand side

simply leads to a small, in ξ∗ ≪ 1, modification of the (real) frequency, and so can be

neglected.

As usual, at the stability boundary, the frequency ω must be purely real, and both

the real and imaginary parts of (4.61) must vanish individually, giving

ω2 = ω2
KAWτ̄ ,

(k⊥de)
2νei

κk2∥
ω2 = ω2

KAW ⇒ (k⊥de)
2νei

κk2∥
=

1

τ̄
. (4.62)

This is a line k∥ ∝ k⊥ in wavenumber space; moving from small to large parallel

wavenumbers, there is a sliver of stability around this line, above which (viz., towards

higher k∥) the isobaric sTAI grows again to its peak at ξ∗ ∼ 1: see Figure 5.4(a). As with

the case of the isothermal sTAI, this stabilisation was not captured by the general TAI

dispersion relation (4.18) because the ordering (4.9) did not formally allow frequencies

comparable to both the heat-conduction and the resistive-dissipation rates, required

by (4.62).

In the collisionless limit, we find that the isobaric sTAI is stabilised at the flux-

freezing scale (2.31) [1]

k⊥de =
1√
τ̄
. (4.63)

This is not via a mechanism analogous to the collisional case, as there are no resistive

effects in the collisionless limit, but is instead due to the effect of finite electron inertia

appearing in the parallel-momentum equation (2.24) (see appendix D.7.3 of [1] for

further details).
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The stabilisation of the isobaric sTAI is somewhat more relevant than the stabilisa-

tion of the isothermal sTAI (section 4.3.3), owing to the fact that the isobaric sTAI is

the dominant instability for k⊥∗ ≪ k⊥ ≪ d−1
e (or ≪ d−1

e χ−1 in the collisional regime).

However, we shall discover in section 6.3.1 that the isobaric sTAI contributes only an

order-unity amount to the turbulent energy injection — rather than introducing sig-

nificant qualitative differences — and so the (linear) stabilisation thereof appears to

be of little consequence in the nonlinear context.
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Chapter 5

Summary of linear instabilities

In chapters 3 and 4, we introduced the linear instabilities supported by our low-beta

system of equations in the electrostatic and electromagnetic regimes, respectively. In

both the collisionless and collisional limits, we found that there were four main insta-

bilities: slab ETG [sETG, (3.5) or (3.10)], curvature-mediated ETG [cETG, (3.15)],

slab TAI [sTAI, (4.34) or (4.55)] and curvature-mediated TAI [cTAI, (4.15)]. Before

moving on to our discussions of the turbulence supported by these modes, it will be

useful to take stock of what we have learned by surveying the locations of each of

these instabilities in wavenumber space. Throughout the discussions that follow, we

will assume ky ∼ k⊥, and so consider (k⊥, k∥) to be the relevant wavenumber-space

coordinates. We shall also assume τ̄ ∼ 1, implying that both species have roughly

comparable temperatures and, more crucially, that τ̄ has no dependence on perpendic-

ular wavenumbers (as it could do, for example, on scales comparable to the ion Larmor

radius; see Section 7.3, or appendix A of [1]).

5.1 Collisionless limit

Let us first focus on the collisionless limit. At electrostatic scales k⊥ ≳ d−1
e [i.e., below

the flux-freezing scale (2.31)], we have both the sETG and cETG instabilities. The

transition between these two instabilities occurs when their growth rates are compara-

ble, viz.,

(k2∥v
2
theω∗e)

1/3 ∼ (ωdeω∗e)
1/2 ⇒

k∥LT√
βe

∼
(
LT

LB

)3/4

kyde. (5.1)
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The sETG instability begins to be quenched by Landau damping when its growth rate

becomes comparable to the parallel streaming rate [cf. (3.7)]:

(k2∥v
2
theω∗e)

1/3 ∼ k∥vthe ⇒
k∥LT√
βe

∼ kyde. (5.2)

Note that this is the same line as that corresponding to the maximum of the sETG

growth rate, viz., k∥vthe ∼ ω∗e. However, it must be stressed that this is only true

asymptotically, as is evident from Figure 5.3(a),(d). Furthermore, careful analysis of

the collisionless dispersion relation reveals that the sETG instability is also effectively

stabilised — with only exponentially small growth rates remaining — around the flux-

freezing scale [1, 80]. This ‘fluid’ stabilisation occurs when its growth rate becomes

comparable to the KAW frequency:

(k2∥v
2
theω∗e)

1/3 ∼ ωKAW ⇒
k∥LT√
βe

∼ (k⊥de)
−2. (5.3)

For k⊥∗ ≲ k⊥ ≲ d−1
e , the dominant instability is the isobaric sTAI, which is

separated from the cETG instability by k∥ = k∥c. The cETG instability in this

perpendicular-wavenumber range, and for k∥ ≲ k∥c, can also be thought about as

either the isobaric version of cTAI or the electron version of KBM (see section 4.4).

The isobaric sTAI instability at k∥ ≳ k∥c is stabilised around the flux-freezing scale

k⊥de ∼ 1 [see (4.63)]. The area bounded by the lines k⊥de ∼ 1, k∥ = k∥c and (5.3) thus

contains only exponentially small growth rates that would be quenched by the effects

of finite dissipation in any real physical system.

For k⊥ ≲ k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isother-

mal cTAI, which is now the dominant instability, and is separated from sTAI along the

horizontal line k∥ = k∥c. The sTAI growth rate is cut off at large parallel wavenumbers

due to the effect of parallel compression [see (4.42)], viz., when

ωKAW ∼ ω∗e ⇒
k∥LT√
βe

∼ 1. (5.4)

This is all illustrated in figure 5.1, where the solid line shows the location of the peak

growth rate at each ky — following, at k⊥ ≲ k⊥∗, the peak growth of the isothermal

cTAI (4.24), and at k⊥ ⩾ k⊥∗, the boundary ξ∗ ∼ 1 between the isothermal and isobaric

regimes. The increase of the growth rate with ky is unchecked in the drift-kinetic

approximation that we have adopted, and requires the damping effects associated with
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Figure 5.1: Collisionless modes in the (k⊥, k∥) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability; these are plotted more quantitatively in figure 5.3(a).
At electrostatic scales (i.e., those below the flux-freezing scale, k⊥de > 1), the curvature-
mediated ETG [cETG, (3.15)] transitions into the slab ETG [sETG, (3.5)] along the boundary
(5.1), while the sETG is damped by parallel streaming above (5.2). ‘Fluid’ stabilisation of
the sETG occurs along (5.3). At electromagnetic scales (i.e., those above the flux-freezing
scale, k⊥de < 1), slab TAI [sTAI, (4.50)] is stabilised along k⊥de ∼ 1, meaning that the region
enclosed by the lines k⊥de ∼ 1, k∥ = k∥c, and (5.3) contains only exponentially small growth

rates, and can thus effectively be considered stable [note that k∥cLT /
√
βe = (LT /LB)

1/2, see
(4.21)]. The cETG transitions into the curvature-mediated TAI [cTAI, (4.15)] along k⊥ =
k⊥∗, with k⊥∗ defined in (4.26). cTAI is separated from sTAI by the horizontal line k∥ =
k∥c, while sTAI is stabilised by compressional heating at the horizontal line given by (5.4),
transitioning into purely oscillatory (isothermal) KAWs (4.29). Electron finite-Larmor-radius
(FLR) effects eventually provide an ultraviolet cutoff at large perpendicular wavenumbers
k⊥de, though this is outside the range of validity of our drift-kinetic approximation. Note
that the transition to ion-scale physics at small perpendicular wavenumbers k⊥ρi ≲ 1 lies
outside our adiabatic-ion approximation. The solid black line indicates the location of the
maximum growth rate at each fixed k⊥, while the solid dots are the (possible) locations of
the energy-containing scale(s) (see Chapter 6). The dotted vertical lines indicate the location
in k⊥ of figures 4.2 and 4.3, which show the isothermal and isobaric regimes, respectively.
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the finite Larmor radius (FLR) of the electrons to be taken into account; this will

introduce some ultraviolet cutoff in perpendicular wavenumbers. At the largest scales,

we must eventually encounter ion dynamics, but the effects that this may have are

outside the scope of this thesis. All of these modes are, of course, limited by the finite

parallel system size L∥, meaning that the smallest accessible parallel wavenumber is

k∥ ∼ L−1
∥ .

5.2 Collisional limit

The picture is qualitatively similar in the collisional limit, except the transition between

the electrostatic and electromagnetic regimes is modified, as discussed in section 2.3.

At electrostatic scales k⊥ ≳ d−1
e χ−1 [i.e., those below the flux-freezing scale (2.33)],

we once again have both the (collisional) sETG and cETG instabilities, whose growth

rates become comparable when(
k2∥v

2
theω∗e

νei

)1/2

∼ (ωdeω∗e)
1/2 ⇒

k∥LT√
βe

∼
(
LT

LB

)1/2

(kydeχ)
1/2. (5.5)

The sETG instability is now quenched by thermal conduction at [cf. (3.12)](
k2∥v

2
theω∗e

νei

)1/2

∼ κk2∥ ⇒
k∥LT√
βe

∼ (kydeχ)
1/2. (5.6)

Note that this is the same line as that corresponding to the maximum of the collisional-

sETG growth rate, viz., (k∥vthe)
2/νei ∼ ω∗e. As in the collisionless case, this is, of

course, only true asymptotically: see figure 5.4(a),(d).

For k⊥∗ ≲ k⊥ ≲ d−1
e χ−1, the dominant instability is once again the isobaric sTAI,

separated from cETG by k∥ = k∥c. As in the collisionless limit, the cETG instability

in this perpendicular-wavenumber range, and for k∥ ≲ k∥c, can also be thought of as

either the isobaric version of cTAI or the electron version of KBM (see section 4.4).

The isobaric sTAI instability is stabilised due to the effects of finite resistivity along

the line [cf. (4.62)]

κk2∥ ∼ (k⊥de)
2νei ⇒

k∥LT√
βe

∼ k⊥deχ. (5.7)

For k⊥ ≲ k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isother-

mal cTAI, which is once again the dominant instability, and is separated from the
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Figure 5.2: Collisional modes in the (k⊥, k∥) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability; these are plotted more quantitatively in figure 5.4(a).
At electrostatic scales (i.e., those below the flux-freezing scale, k⊥deχ > 1), the curvature-
mediated ETG [cETG, (3.15)] transitions into the (collisional) slab ETG [sETG, (3.10)] along
the boundary (5.5). sETG is damped by parallel heat conduction above (5.6). At electro-
magnetic scales (i.e., those above the flux-freezing scale, k⊥deχ < 1), the slab TAI [sTAI,
(4.50)] is stabilised by the effects of finite resistivity along (5.7), while cETG transitions into
the curvature-mediated TAI [cTAI, (4.15)] at k⊥ = k⊥∗, with k⊥∗ defined in (4.26). cTAI is
separated from sTAI by the horizontal line k∥ = k∥c [note that k∥cLT /

√
βe = (LT /LB)

1/2,
see (4.21)], while the sTAI is stabilised by compressional heating at the horizontal line given by
(5.8), transitioning into purely oscillatory (isothermal) KAWs (4.29). Perpendicular electron
viscosity will eventually provide an ultraviolet cutoff for these modes at large perpendicular
wavenumbers k⊥de, though this is outside the range of validity of our drift-kinetic approxi-
mation. As in figure 5.1, the ion-scale range k⊥ρi ≲ 1 is left outside our considerations. The
solid black line indicates the location of maximum growth at each fixed k⊥, while the solid
dots are (possible) locations of the energy containing scale(s) (see Chapter 6). The dotted
vertical lines indicate the location in k⊥ of figures 4.2 and 4.3, which show the isothermal
and isobaric regimes, respectively.
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isothermal sTAI by k∥ = k∥c. As in the collisionless case, the isothermal sTAI is cut

off at large parallel wavenumbers due to the effects of parallel compression [see (4.40)],

viz.,

ωKAW ∼ ω∗e ⇒
k∥LT√
βe

∼ 1. (5.8)

This is all illustrated in figure 5.2, where the solid line again shows the location of

the fastest growth for each ky. As in the collisionless case, modes are stabilised at large

perpendicular numbers, this time by perpendicular electron viscosity, and limited by

the parallel system size for small parallel wavenumbers. However, they are now also

limited at large parallel wavenumbers by the mean free path λei, at which the collisional

approximation breaks down, to be replaced by the collisionless one. This means that

the maximum parallel wavenumber allowed in this collisional limit is k∥ ∼ λ−1
ei .

All of the boundaries between modes derived in this chapter are, of course, only

asymptotic illustrations, and do not quantitatively reproduce, for example, the exact

stability boundaries in wavenumber space (which are derived in appendices D and E

of [1]). However, given that the arguments of the following chapter rely on scaling

estimates, rather than quantitative relationships between parameters, the illustrations

of the layout of wavenumber space provided by figures 5.1 and 5.2 will be sufficient

for our purposes. For the sake of completeness, we have also included plots of the

growth-rates in the collisionless and collisional limits that were generated by numeri-

cally solving the complete dispersion relations in each of these limits, given by (D23)

and (E15) in [1], respectively. These are shown in figures 5.3 and 5.4, respectively, and

are valid at all wavenumbers shown for the chosen parameters. In particular, we would

like to draw the reader’s attention to the similarity between figures 5.3(a) or 5.4(a) and

figures 5.1 or 5.2, in that the former reproduce all of the key features of the latter that

were predicted using the näıve estimates of this chapter.
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Figure 5.3: The growth rates of the collisionless instabilities normalised to the cETG growth
rate (3.15), and with τ̄ = 1. We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. Panel (a) is a contour plot of the positive growth rates (γ > 0) in the (ky, k∥)
plane. The white dashed line is the exact stability boundary derived in [1], while the upper
and lower horizontal lines are, respectively, (4.42) (corresponding to the stabilisation of the
isothermal sTAI at large parallel wavenumbers) and k∥ = k∥c, as defined in (4.21). The
vertical grey dashed line is (4.63), around which the isobaric sTAI is stabilised; the slanted
grey dashed line on the right is the sETG stability boundary (3.7); the slanted black dashed
line is the ‘fluid’ sETG stability boundary (5.3). Panel (b) is a cut of the growth rate along
k∥LT /

√
βe = 0.2 (plotted against a logarithmic scale), in which the vertical grey dashed lines

correspond to the two branches of the exact stability boundary, between which the growth
rate is negative. Panels (c) and (d) are cuts of the growth rate for kyde = 0.1 and kyde = 3.5,
respectively. The inset in panel (c) shows the growth rate for k∥ > k∥c; the vertical grey
dashed line is (4.42), while the same line in panel (d) is (3.7). The dashed curve in panel (c)
is the growth rate predicted by the approximate TAI dispersion relation (4.18). The small
discontinuity in the growth rate to the left of k∥ = k∥c in panel (c) is due to the difficulty
of resolving such a rapid change in the growth rate over a small range of k∥ on a finite grid.
We draw the reader’s attention to the enhancement of the cETG growth rate by the cTAI
mechanism that can be seen from the red contours in the bottom left-hand corner of panel
(a).
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Figure 5.4: The growth rates of the collisional instabilities normalised to the cETG growth
rate (3.15), and with τ̄ = 1. We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. Panel (a) is a contour plot of the positive growth rates (γ > 0) in the (ky, k∥)
plane. The white dashed line is the exact stability boundary derived in [1], while the upper
and lower horizontal lines are, respectively, (4.41) (corresponding to the stabilisation of the
isothermal sTAI at large parallel wavenumbers) and k∥ = k∥c, as defined in (4.21). The slanted
grey dashed line on the left is (4.62), around which the isobaric sTAI is briefly stabilised; the
slanted grey dashed line on the right is the electrostatic stability boundary (3.12). Panel (b)
is a cut of the growth rate along k∥LT /

√
βe = 0.4 (plotted against a logarithmic scale), in

which the vertical grey dashed line is (4.62). Panels (c) and (d) are cuts of the growth rate
for kydeχ = 0.001 and kydeχ = 3.5, respectively. The inset in panel (c) shows the growth
rate for k∥ > k∥c; the vertical grey dashed line is (4.42), while the same line in panel (d) is
(3.12). The dashed curve in panel (c) is the growth rate predicted by the approximate TAI
dispersion relation (4.18). We draw the reader’s attention to the enhancement of the cETG
growth rate by the cTAI mechanism that can be seen from the red contours in the bottom
left-hand corner of panel (a).
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Part II

Turbulence and transport
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Chapter 6

Free-energy cascades

The last two chapters were devoted to fully characterising the electrostatic (“ETG-

like”) and electromagnetic (“TAI-like”) instabilities that exist on sub-ion-Larmor scales

within our system of low-beta equations. In this chapter, we present an a priori

turbulent-cascade theory for the free energy injected by these instabilities, which will

then be numerically tested in chapters 7 and 8.

6.1 Free energy

Magnetised plasma systems containing small perturbations around a Maxwellian equi-

librium nonlinearly conserve free energy, which is a quadratic norm of the magnetic

perturbations and the perturbations of the distribution functions of both ions and

electrons away from the Maxwellian. In the system that we are considering, the (nor-

malised) free energy takes the form [1]

W

n0eT0e
=

∫
d3r

V

(
φτ̄−1φ

2
+ |de∇⊥A|2 + 1

2

δn2
e

n2
0e

+
u2∥e
v2the

+
1

4

δT 2
∥e

T 2
0e

+
1

2

δT 2
⊥e

T 2
0e

+ . . .

)
.

(6.1)

The ‘. . . ’ stand for the squares of further moments of the perturbed distribution func-

tion (such as the parallel and perpendicular heat fluxes δq∥e, δq⊥e, etc.). In the colli-

sional limit, these further moments of the perturbed distribution function are negligible,

and (6.1) becomes

W

n0eT0e
=

∫
d3r

V

(
φτ̄−1φ

2
+ |de∇⊥A|2 + 1

2

δn2
e

n2
0e

+
3

4

δT 2
e

T 2
0e

)
. (6.2)

The free energy is a nonlinear invariant, i.e., it is conserved by nonlinear interactions

[55], but can be injected into the system by equilibrium gradients, and is dissipated by
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collisions; even when these are small, they are always eventually accessed via phase-

mixing of the distribution function towards small velocity scales and nonlinear inter-

actions towards small spatial scales.

In view of this, the time-evolution of the free energy (6.1) can be written as [1]

1

n0eT0e

dW

dt
= ε−D, (6.3)

where D stands for the collisional dissipation, and ε is the injection rate due, in our

system, to the electron-temperature gradient:

ε =
1

LT

∫
d3r

V


(
1

2

δT∥e
T0e

+
δT⊥e

T0e

)
vEx +

1
2
δq∥e + δq⊥e

n0eT0e

δBx

B0

, collisionless,

3

2

δTe
T0e

vEx +
δqe

n0eT0e

δBx

B0

, collisional,

(6.4)

where

vEx = −ρevthe
2

∂φ

∂y
,

δBx

B0

= ρe
∂A
∂y

,
δqe

n0eT0e
= −3

2
κ∇∥ log Te. (6.5)

The expression multiplying 1/LT is the ‘turbulent’ heat flux due to the energy transport

by the E × B flows and to the heat fluxes along the perturbed field lines. The first

term in (6.4) is the energy injection by ETG (Chapter 3), and the second is by TAI

(Chapter 4). Evidently, the latter is only present in the electromagnetic regime, when

perturbations of the magnetic-field direction are allowed. In the absence of dissipation

(D = 0), (6.3) expresses overall entropy conservation for the plasma: the entropy of the

fluctuations on the left-hand side is balanced by the entropy generated by the turbulent

transport of equilibrium quantities on the right-hand side.

Free energy is normally the quantity whose cascade from large (injection) to small

(dissipation) scales determines the properties of a plasma’s turbulent state (see [72,

81], and references therein). Temperature-gradient-driven turbulence is no exception

[12], and so we devote the remainder of this chapter to working out at what scales

and to what saturated amplitudes the ETG-TAI injection (6.4) will drive turbulent

fluctuations. Note that we will henceforth assume that all of the nonlinear dynamics

is local, in that we will ignore any possible cross-scale interactions between turbulence

driven by the ETG and TAI.
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6.2 Electrostatic turbulence

6.2.1 Collisionless slab ETG turbulence

Following [12], we shall conjecture that our fully developed electrostatic turbulence

always organises itself into a state wherein there is a local cascade of the free energy

(6.1) that carries the injected power ε from the outer scale, through some putative

‘inertial range’, to the dissipation scale. The outer scale is something that we will have

to determine, while the dissipation scale will be near k⊥ρe ∼ 1, and so outside the

range of validity of our drift-kinetic approximation.

The perpendicular nonlinearity in our equations is the advection of fluctuations by

the fluctuating E×B flows. Therefore, we take the nonlinear turnover time associated

with such a cascade to be the nonlinear E ×B advection rate:

t−1
nl ∼ k⊥vE ∼ ρevthek

2
⊥φ̄ ∼ Ωe(k⊥ρe)

2φ̄. (6.6)

Here and in what follows, φ̄ refers to the characteristic amplitude of the electrostatic

potential at the scale k−1
⊥ , rather than to the Fourier transform of the field. More

formally, we shall take φ̄ to be defined by

φ̄2 =

∫ ∞

k⊥

dk′⊥ E
φ
⊥(k

′
⊥), Eφ

⊥(k⊥) ≡ 2πk⊥

∫ ∞

−∞
dk∥

〈
|φk|2

〉
, (6.7)

where Eφ
⊥(k⊥) is the 1D perpendicular energy spectrum, φk the spatial Fourier trans-

form of the potential, and the angle brackets denote an ensemble average. Perturbations

of other quantities, such as the velocity, parallel temperature, magnetic field, etc., will

similarly be taken to refer to their characteristic amplitude at a given perpendicular

scale.

Assuming that any possible anisotropy in the perpendicular plane can be neglected1,

a Kolmogorov-style constant-flux argument leads to the scaling of the amplitudes in

the inertial range:

τ̄−1φ̄2

tnl
∼ ε = const ⇒ φ̄ ∼

(
ε

Ωe

)1/3

(k⊥ρe)
−2/3 . (6.8)

1The existence of such a state is not always guaranteed: e.g., [82] found that the saturated state
of electrostatic ETG turbulence existed in a zonally-dominated state, which evidently violates this
assumption. In fact, the zonal state is much closer to being 2D isotropic than a streamer-dominated
state; [12] explicitly invoked zonal flows to enforce isotropy. We shall find in Section 7.2.1, however,
that the assumption of isotropy in the inertial range is indeed well-satisfied.
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The scaling (6.8) translates into the following 1D spectrum:

Eφ
⊥(k⊥) ∼

φ̄2

k⊥
∝ k

−7/3
⊥ , (6.9)

the same as was obtained, using a similar argument, and confirmed numerically, by

[12] for electrostatic, gyrokinetic ITG turbulence. In making this argument, we have

assumed that the free-energy density at a given scale k−1
⊥ can be adequately represented

by the first term in the integrand of (6.1), i.e., that all the other fields whose squares

contribute to the free energy are either small or comparable to φ, but never dominant

in comparison with it. Whether this is true will depend on the nature of the turbulent

fluctuations supported by the system in any given part of the (k⊥, k∥) space through

which the cascade might be taking free energy on its journey towards dissipation. Let

us specialise to the region of the wavenumber space (marked ‘sETG’ in figure 5.1) where

the fluctuations are collisionless, electrostatic drift waves described by (3.4). From the

first two equations of (3.4),2

τ̄−1φ̄ ∼
k∥vthe
ω

ū∥e
vthe

∼
(
k∥vthe
ω

)2 δT̄∥e
T0e

, (6.10)

where evidently we ought to estimate ω ∼ t−1
nl . Then, all three fluctuating fields do

indeed have the same size and the same scaling if we posit

t−1
nl ∼ k∥vthe. (6.11)

This is a statement of critical balance, whereby the characteristic time associated with

propagation along the field lines is assumed comparable to the nonlinear advection

rate t−1
nl at each perpendicular scale k−1

⊥ — [12] justified this by the standard causality

argument borrowed from MHD turbulence [83–86]: two points along the field line

can only remain correlated with one another if information can propagate between

them faster than they are decorrelated by the nonlinearity. We have taken the rate of

information propagation along the field lines to be k∥vthe; it is not immediately obvious

that this should work given that k∥vthe is the rate of phase mixing (which, in the linear

theory, is expected to give rise to Landau damping) rather than of wave propagation,

2The linear part of the third equation in (3.4) tells us that δT̄∥e/T0e ∼ (ω∗e/ω)φ̄ but, as we are
about to discover, this is only true at the outer scale, while in the inertial range, the ETG injection
term is subdominant.
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and why Landau damping is ineffective in the nonlinear state [87, 88]. We shall revisit

the role of dissipation in critically-balanced turbulence in Section 7.2.4.

Combining (6.6), (6.8) and (6.11), we find

k∥vthe ∼ t−1
nl ∼ Ωe

(
ε

Ωe

)1/3

(k⊥ρe)
4/3. (6.12)

By comparison, for the most unstable sETG modes, (3.6) gives us

k∥vthe ∼ ω∗e ∼ kyρe
vthe
LT

. (6.13)

These modes grow at a rate ω∗e ∝ ky. This means that the nonlinear interactions

must overwhelm the linear instability in the inertial range.3 The outer scale, i.e., the

scale that limits the inertial range on the infrared side and at which the free energy is

effectively injected, is then the scale at which the nonlinear cascade rate and the rate

of maximum growth of the instability are comparable: balancing (6.12) and (6.13), we

get

Ωe(k
o
⊥ρe)

2φ̄o ∼ ko∥vthe ∼ ωo
∗e ⇒ φ̄o ∼ (ko⊥LT )

−1, koyρe ∼ ko∥LT , (6.14)

where the superscript ‘o’ refers to quantities at the outer scale.

Now, in order to determine ko⊥, we need a further constraint. [12] found it by

conjecturing that ko∥ in (6.14) would be set by the parallel system size L∥ (the connection

length ∼ πqLB, in the case of tokamaks). This was the only reasonable choice because

there was no lower cutoff in k⊥ of the (electrostatic) ITG-unstable modes. This is not,

however, the case in our model of the sETG instability, which is stabilised at the flux-

freezing scale (2.31), i.e., at k⊥de ∼ 1. It appears to be a general rule, confirmed by

numerical simulations [89], that the outer scale is, in fact, determined by the smallest

possible kyρe or the smallest possible k∥LT , whichever is larger. Putting this within

the visual context of figure 5.1, the outer scale is set either by ko∥ ∼ L−1
∥ or by ko⊥ ∼

d−1
e , whichever is encountered first when moving along the solid black line from the

3 Here is another way to see this. Imagine that the sETG instability dominates energy injection at
each scale and that the energy thus injected is removed to the next smaller scale by the nonlinearity,
at a rate t−1

nl . Such a scheme would be consistent if the energy flux injected at each scale by the
instability were larger than the flux arriving to this scale from larger scales. Let us see if this is
possible. Balancing the nonlinear energy-removal rate (6.12) with the injection rate ω∗e, we learn
that φ̄ ∼ (k⊥LT )

−1 (corresponding to a 1D spectrum ∝ k−3
⊥ ). The injected energy flux is then

ε ∼ ω∗eφ̄
2 ∼ Ωe(ρe/LT )

3(k⊥ρe)
−1. So it declines at smaller scales, and is easily overwhelmed by the

nonlinear transfer from larger scales.
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ultraviolet cutoff towards larger scales. The former possibility, ko∥ ∼ L−1
∥ , is realised

when L∥ ≪ LT/
√
βe, and the latter, ko⊥ ∼ d−1

e , otherwise. Thus,

ko⊥de ∼
ko∥LT√
βe

∼


LT

L∥
√
βe
,
L∥

√
βe

LT

≪ 1,

1.
L∥

√
βe

LT

≳ 1.

(6.15)

Let us now estimate the energy flux that is injected by sETG at the outer scale (6.15):

considering the first term in the expression for the energy flux (6.4) (the second, involv-

ing finite perturbations to the magnetic field, is negligible in the electrostatic regime)

and ignoring any possibility of a non-order-unity contribution from phase factors, we

have

ε ∼ ωo
∗eφ̄

o
δT̄ o

∥e

T0e
∼ vtheρ

2
e

L3
T

√
βe

(ko⊥de)
−1, (6.16)

where we have used δT̄ o
∥e/T0e ∼ φ̄o and (6.14). This quantity is directly related to the

turbulent heat flux: combining (6.16) with (6.15), we get

QsETG ∼ n0eT0eεLT ∼ QgB


L∥

LT

,
L∥

√
βe

LT

≪ 1,

1√
βe
,
L∥

√
βe

LT

≳ 1,

(6.17)

where the ‘gyro-Bohm’ flux is QgB = n0eT0evthe (ρe/LT )
2. Note that the temperature-

gradient scaling in (6.17) is only valid for sufficiently large L∥/LT as our analysis

ignores any finite critical temperature gradients associated with the sETG instability.

The first expression in (6.17) is the same scaling as that obtained by [12], but this time

for electrostatic turbulence driven by an electron temperature gradient4. In the formal

limit of βe → 0, this is the only possible outcome because the second inequality in

(6.17) can never be satisfied. At finite βe, however, in the sense in which it is allowed

by our ordering and for sufficiently large temperature gradients, we obtain a different,

less steep scaling of the turbulent heat flux, given by the second expression in (6.17).

Whether the scaling (6.17) is relevant in our system depends on the dominant

energy injection therein being from the electrostatic sETG drive at k⊥de ≳ 1. That is,

4[90] found such a scaling of the heat flux with LB/LT in their investigations of nonlinear pedestal
turbulence driven by ETG modes [see their equation (1), and the following discussion] suggesting,
perhaps, that this scaling may hold in more realistic — and complex — plasma systems than that
considered here.
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in fact, far from guaranteed if L∥ > LT/
√
βe, i.e., if sufficiently small k∥ are allowed for

the electromagnetic instabilities to matter — and so for the outer scale to be located at

even larger scales along the thick black line in figure 5.1. Another reason why we must

consider the electromagnetic part of the wavenumber space is to do with the cETG

instability. At k⊥de ≳ 1, its growth rate is always small in comparison with the with

sETG [for the large LB/LT that we are considering here, see (3.16)], but it is a 2D

mode, so it is not stabilised at k⊥de ∼ 1 (it does not bend magnetic fields) and there

is no reason to assume that it cannot provide the dominant energy injection at some

large scale k⊥de ≪ 1. There, it competes with TAI (Chapter 4), so we shall have to

examine the TAI turbulence alongside the cETG one, as in Section 6.3.

6.2.2 Collisional slab ETG turbulence

For collisional sETG turbulence, the argument proceeds similarly to section 6.2.1. In-

stead of (6.10), we now have, in view of (3.9),

τ̄−1φ̄ ∼
k∥vthe
ω

ū∥e
vthe

∼
(k∥vthe)

2

ωνei

δT̄e
T0e

∼ δT̄e
T0e

, (6.18)

where we assume that all frequencies, including the nonlinear rate (6.6), are now com-

parable to the rate of parallel thermal conduction [instead of the parallel streaming

rate; see (3.11)]:

t−1
nl ∼ ω ∼

(k∥vthe)
2

νei
. (6.19)

This condition now replaces (6.11) as the ‘critical-balance’ conjecture, whereby the

parallel scale of the perturbations is determined in terms of their perpendicular scale.

Note that, since now ū∥e/vthe ≪ φ̄, it is still reasonable to estimate the free-energy

density by ∼ τ̄−1φ̄2.

At the outer scale, using (3.11) and (6.19), we find, analogously to (6.14),

Ωe(k
o
⊥ρe)

2φ̄o ∼
(ko∥vthe)

2

νei
∼ ω∗e ⇒ φ̄o ∼ (ko⊥LT )

−1, koyρe ∼ (ko∥)
2LTλei. (6.20)

Note that the relationship between the parallel and perpendicular outer scales can be

recast as

ko∥LT√
βe

∼
(
koydeχ

)1/2
, χ ≡ LT

λei
√
βe

(6.21)
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where χ is defined as in (2.33).

By analogous logic to the collisionless sETG case, the outer scale can be set either

by the parallel system size or by the flux-freezing scale (2.33), k⊥deχ ∼ 1, depending on

which is encountered first by the thick black line in figure 5.2 when descending towards

larger scales. The result is

ko⊥deχ ∼


(

LT

L∥
√
βe

)2

,
L∥

√
βe

LT

≪ 1,

1,
L∥

√
βe

LT

≳ 1.

(6.22)

In view of (6.20), the energy flux is again given by (6.16), which, with the substitution

of (6.22), becomes

ε ∼ vtheρ
2
e

L3
T

√
βe
χ


(
L∥

√
βe

LT

)2

,
L∥

√
βe

LT

≪ 1,

1,
L∥

√
βe

LT

≳ 1.

(6.23)

Therefore, finally, the turbulent heat flux is

QsETG
ν ∼ QgB


χ√
βe

(
L∥

√
βe

LT

)2

,
L∥

√
βe

LT

≪ 1,

χ√
βe
,

L∥
√
βe

LT

≳ 1.

(6.24)

These are the collisional analogues of the scalings (6.17), and are both proportional

to the electron collision frequency (∝ λ−1
ei ). Such a scaling of turbulent heat flux

with collisionality was identified by [82] from their simulations of electrostatic ETG

turbulence, though their argument relied on consideration of the dynamics of zonal

flows within their electron-scale system, and so the comparison is superficial.

6.3 Electromagnetic turbulence

6.3.1 KAW-dominated, slab TAI turbulence

On the large-scale side of the flux-freezing scales (2.31) and (2.33), for k⊥∗ ≲ k⊥ ≲ d−1
e

(or d−1
e χ−1 in the collisional limit), the dominant instability is the isobaric sTAI (see

section 4.4), an instability of kinetic Alfvén waves. KAW turbulence has been studied

quite extensively, both numerically [91–99] and observationally [100–102], in the context
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of the ‘kinetic-range’ free-energy cascade in the solar wind [72, 76, 78]. The theory

of this cascade proceeds along the same lines as the theory of any critically balanced

cascade in a wave-supporting anisotropic medium [86] and leads again to a k
−7/3
⊥ energy

spectrum [72, 91] or, with some modifications, to a k
−8/3
⊥ one [94, 95], which appears

to be closer to what is observed.

Ignoring the latter nuance, it is easy to see that the re-emergence of the k
−7/3
⊥

spectrum is unsurprising, as the arguments of section 6.2 that led to (6.8) and (6.9) are

unchanged for KAWs. What is changed, however, is the linear propagation rate that

must be used in the critical-balance conjecture: the parallel scale k−1
∥ of a perturbation

is now the distance that an (isobaric) KAW can travel in one nonlinear time, so, from

(4.49), we have, instead of (6.11) or (6.19),

ωKAW ∼ k∥vthek⊥de ∼ t−1
nl , (6.25)

where tnl is still given by (6.6)5. Note that here, and in what follows, k∥ is now taken

with respect to the total magnetic-field direction b = b0+ δB⊥/B0, rather than simply

with respect to the equilibrium magnetic-field direction b0.

This is the standard argument of KAW-turbulence theory (see references above),

which, however, was developed for situations in which energy arrived to sub-Larmor

scales from larger scales (i.e., from k⊥ρi < 1) and cascaded down to smaller scales —

as indeed it typically does in space-physical and astrophysical contexts. In contrast,

here we are dealing with an energy source in the form of an ETG-driven instability, the

isobaric sTAI, which operates most vigorously at the smallest electromagnetic scales.

Indeed, as we saw at the end of section 4.4.1, for a given k⊥de, the sTAI growth rate

peaks at ξ∗ ∼ 1, and is of the order of the KAW frequency ωKAW at that scale. This

gives

γ ∼ ωKAW ∼


ω∗ek⊥de ∼

vthe

LT

√
βe

(k⊥ρe)
2, collisionless,

√
ω∗eνek⊥de ∼

vthe√
LTλeiβe

(k⊥ρe)
3/2 , collisional,

(6.26)

5This tnl is the nonlinear time associated with the fluctuating E × B flows, coming from the
convective time derivative (2.10). In the electromagnetic regime, there is, in addition to this, the
nonlinearity associated with the parallel gradients being taken along perturbed magnetic field lines,
including finite δB⊥, as in (2.11). However, it is straightforward to show [by, e.g., estimating the sizes
of the nonlinear terms appearing in (4.14), (4.32) or (4.52)] that the E × B nonlinearity is either
comparable to, or larger than, the δB⊥ nonlinearity in all of the regimes of interest, meaning that we
may continue to use (6.6) as our estimate for the nonlinear time.
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where we used k∥ ∼ ω∗e/vthe and k∥ ∼ (ω∗e/κ)
1/2 ∼ (ω∗eνe)

1/2/vthe for the collisionless

and collisional estimates, respectively. Comparing (6.26) with (6.12), we see that, in

both cases, the instability growth rate increases faster with k⊥ than the nonlinear

cascade rate t−1
nl ∝ k

4/3
⊥ . It is intuitively obvious that these two rates reach parity at

the flux-freezing scale, k⊥de ∼ 1 or k⊥deχ ∼ 1, in the collisionless and collisional limits,

respectively. This can be formally confirmed by a calculation analogous to the one in

section 6.2. Thus, the dominant injection occurs at the small-scale end of the putative

‘inertial range’. In the absence of any inverse cascade, there is nothing to push the

energy towards larger scales. This means that the balances (6.8), (6.12) and (6.25) are

not, in fact, realised for KAW turbulence driven by the isobaric sTAI.

In order to predict the power injected by sTAI, and the associated contribution to

the turbulent heat flux, we resurrect the argument that, for sETG, we tossed aside in

footnote 3. We conjecture that the sTAI instability dominates the energy injection at

each scale, and the energy thus injected is removed to the next smaller scale by the

nonlinearity, at a rate t−1
nl ; we shall confirm a posteriori that this is a consistent scheme.

The resulting balance gives us, using (6.6) and (6.26),

t−1
nl ∼ Ωe(k⊥ρe)

2φ̄ ∼ γ ⇒ φ̄ ∼


de
LT

, collisionless,

de√
LTλei

(k⊥ρe)
−1/2, collisional,

(6.27)

and δB̄⊥/B0 ∼ k⊥ρeĀ ∼ (ρe/de)φ̄ [where we have used k⊥deĀ ∼ φ̄, which follows from

the first equation in (4.49) with ω ∼ ωKAW]. The corresponding energy spectra (6.7)

are ∝ k−1
⊥ and ∝ k−2

⊥ in the collisionless and collisional regimes, respectively. The

injected power is

γφ̄2 ∼ vtheρ
2
e

L3
T

√
βe

 (k⊥de)
2, collisionless,

(k⊥de)
1/2χ3/2, collisional,

(6.28)

where χ is defined in (2.33) or (6.21). This means that, at each scale, the energy

that arrives from larger scales can be ignored in comparison with the energy injected

locally by sTAI — unlike for the sETG cascade, this scale-by-scale injection scheme is

consistent for ‘sTAI turbulence’.

It is clear from (6.28) that the injected power is dominated by the flux-freezing

scale (2.31) or (2.33), where it reaches parity with the power injected by sETG, (6.16)
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or (6.23), and where also the sTAI approximation breaks down and sETG takes over.

Thus, the turbulent heat flux due to the sTAI turbulence is given by the same expression

as that for the sETG turbulence at sufficiently large temperature gradients — the

second expressions in (6.17) and (6.24). The only effect of sTAI is to equip the sETG

turbulence spectrum (6.9) with an electromagnetic tail at long wavelengths — scaling

as k−1
⊥ and k−2

⊥ in the collisionless and collisional cases, respectively — but without

changing by more than an order-unity amount its ability to transport energy6.

6.3.2 Curvature-mediated-TAI turbulence

At k⊥ ≲ k⊥∗, the isothermal cTAI replaces the isobaric sTAI as the dominant instability.

Since the nonlinear cascading is still done by the E×B flows, the nonlinear time is still

given by (6.6). However, how to work out the ‘inertial-range’ scalings for this cascade is

not obvious: since the real frequency is vanishingly small in comparison to the growth

rate at the cTAI maximum [see (4.27)], there is no obvious analogue of the ‘critical

balance’ conjectures (6.11) or (6.25); indeed, it is not even a given that the cascade

will be local in wavenumber space. We shall not be deterred by this uncertainty, as we

can, in fact, still calculate the injected free-energy flux (6.4) by considering solely the

fluctuations at the injection scale; we shall then propose a way of determining what

that scale is, and hence calculate the turbulent heat flux.

First, let us assume that the dominant free-energy injection will occur at the

wavenumbers (4.24), where the cTAI growth rate is largest, and given by (4.15):

γ ∼
koyρevthe√
LBLT

. (6.29)

This is consistent with our prior assumption [see, e.g., (6.14)] that the scale of dominant

free-energy injection is determined by the balance between the nonlinear cascade rate

and the rate of the maximum growth of the instability. Unlike for the electrostatic

modes, the second, ‘electromagnetic’ term in (6.4) — involving energy transport due

6This conclusion is based on the (asymptotic) assumption that both sTAI and sETG inject energy
around the same outer scale ko∥LT /

√
βe ∼ 1, ko⊥de ∼ 1 (or ∼ χ−1 in the collisional limit). However,

a more quantitative analysis of the stability properties of the collisionless and collisional systems
shows that sTAI is stabilised slightly towards the large-scale side of this assumed outer scale, while
sETG is stabilised slightly towards the small-scale side of it (see Section 4.4.2 and Figure 5.3(a) or
Figure 5.4). Thus, in principle, it is possible to assess the comparative roles of these two instabilities
in a quantitative way (e.g., numerically).
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to heat flux along perturbed field lines — must contribute to the energy injection by

cTAI. Let us estimate its size at the outer scale. The third equation in (4.14) gives us

δB̄o
x

B0

∼ koyρeĀ ∼ ko∥LT
δT̄ o

e

T0e
. (6.30)

Recalling (2.20), we estimate the size of the perturbed heat flux in the collisional limit

from (4.31):

δq̄oe
n0eT0e

∼ κ∇∥ log T̄
o
e ∼ κξo∗k

o
∥
δ̄no

e

n0e

∼ ωo
∗e
ko∥
φ̄o. (6.31)

Analogously, in the collisionless limit, we find that (see appendix D of [1])

δq̄o∥e
n0eT0e

∼ δq̄o⊥e

n0eT0e
∼ ξo∗

δ̄no
e

n0e

∼ ωo
∗e
ko∥
φ̄o. (6.32)

Thus, in both limits, the electromagnetic contribution to the free-energy injection can

be written, at the outer scale, as

ε ∼ 1

LT

δq̄oe
n0eT0e

δB̄o
x

B0

∼ ωo
∗eφ̄

o δT̄
o
e

T0e
, (6.33)

meaning that it is comparable to the first term in (6.4), the electrostatic contribution

due to energy transport by the E ×B flow.

The potential at the outer scale can once again be estimated from the balance of

the nonlinear time (6.6) with the growth rate (6.29):

ρevthe(k
o
⊥)

2φ̄ ∼ γ ⇒ φ̄o ∼ 1

ko⊥
√
LBLT

, (6.34)

while the temperature perturbations can be related to φo via the first equation in

(4.14):

δT̄ o
e

T0e
∼ γ

ωo
de

δn̄o
e

n0e

∼
(
LB

LT

)1/2

φ̄o ∼ (ko⊥LT )
−1. (6.35)

Therefore, the injected energy flux (6.33) is

ε ∼ vtheρ
2
e

L3
T

√
βe

(
LT

LB

)1/2

(ko⊥de)
−1. (6.36)

We must now determine ko⊥. We conjecture that, like in sETG turbulence, the

nonlinear interaction rate in cTAI turbulence will increase faster with k⊥ than the

growth rate (6.29), γ ∝ ky. This would certainly be the case if the cascade were
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local, wherein the Kolmogorov-style argument leading to (6.8) applied (in which case

t−1
nl ∝ k

4/3
⊥ again). Then ko⊥ will be the smallest that it can be. Since it is related to ko∥

via (4.24) [corresponding to the maximum growth rate (6.29)] viz.,

ko∥LT√
βe

∼


(
LT

LB

)1/4

(ko⊥de)
1/2, collisionless,(

LT

LB

)1/6

(ko⊥deχ)
1/3, collisional,

(6.37)

we can treat this expression as the analogue of the last expression in (6.14) or (6.20).

As we did in our treatment of sETG turbulence in sections 6.2.1 and 6.2.2, we now

posit that the parallel outer scale of cTAI turbulence will be set by the system’s parallel

size, ko∥ ∼ L−1
∥ . Then, from (6.37),

ko⊥de ∼


L
3/2
T L

1/2
B

βeL2
∥

, collisionless,

L
3/2
T L

1/2
B λei

βeL3
∥

, collisional.

(6.38)

This, of course, assumes that there is no dynamics at larger scales that can set the

perpendicular outer-scale. We discuss the constraints set by this assumption in sec-

tion 9.1.1.

Using (6.38) in (6.36), we can estimate the heat flux due to cTAI turbulence:

QcTAI ∼ n0eT0eεLT ∼ QgB


1√
βe

LT

LB

(
L∥

√
βe

LT

)2

, collisionless,

χ√
βe

LT

LB

(
L∥

√
βe

LT

)3

, collisional.

(6.39)

In order for this construction to be valid, L∥ must be large enough for ko∥ ∼ L−1
∥ ≲ k∥c,

the latter given by (4.21) — otherwise the system cannot access the cTAI regime in

the first place. The condition for this is

ko∥LT√
βe
≲

(
LT

LB

)1/2

⇔
L∥

√
βe

LT

≳

(
LB

LT

)1/2

. (6.40)

Thus, cTAI turbulence is relevant for temperature gradients that are even larger than

those needed to access the sETG and sTAI regimes described by (6.17) and (6.24). By

comparing the heat fluxes (6.39) with the second expressions in (6.17) and (6.24), it is

not hard to ascertain that the cTAI fluxes are larger than the sETG-sTAI ones as long

as (6.40) is satisfied.

76



6.4 Summary of turbulent regimes

In sections 6.2 and 6.3, we found scaling estimates for the turbulent heat fluxes arising

from sETG, sTAI and cTAI in both the collisionless and collisional limits. Which of

these scalings is realised is determined by the size of the electron temperature gradient

LT for given values of L∥, LB and βe. There are three distinct regimes.

For

ko⊥de ∼
LT

L∥
√
βe

≫ 1 ⇔
L∥

√
βe

LT

≪ 1, (6.41)

the system contains only electrostatic (perpendicular) scales, and the heat flux will

simply be that arising from sETG turbulence, given by the first expressions in (6.17)

and (6.24) in the collisionless and collisional limits, respectively. For

k∥c ≲
1

L∥
≲

√
βe
LT

⇔ 1 ≲
L∥

√
βe

LT

≲

(
LB

LT

)1/2

, (6.42)

the system can access electromagnetic (perpendicular) scales, with the (isobaric) sTAI

and stable KAW being added to the collection of possible modes. However, we showed

in section 6.3.1 that the only effect of the sTAI was to equip the sETG turbulent

spectrum with an electromagnetic tail at longer wavelengths, with at most an order-

unity enhancement of the turbulent heat flux. This heat flux is still the same as that

arising from the sETG turbulence, but with the outer scaled fixed at the flux-freezing

scale — it is given by the second expressions in (6.17) and (6.24). Finally, for

1

L∥
≲ k∥c ⇔

L∥
√
βe

LT

≳

(
LB

LT

)1/2

, (6.43)

the system has a large enough parallel size to activate cTAI. The resultant turbulent

heat flux, given by (6.39), dominates over that due to the sETG and sTAI. We note that

this last condition (6.43) can also be written in terms of the normalised temperature

gradient LB/LT as follows:

LB

LT

≳
1

βe

(
LB

L∥

)2

. (6.44)
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(a) Collisionless limit (6.45)
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(b) Collisional limit (6.46)

Figure 6.1: The scaling of the turbulent heat-flux with L∥
√
βe/LT in the (a) collisionless

and (b) collisional limits. As the temperature gradient is increased, the electron transport
initially becomes less stiff, as flux freezing pins down the ETG injection scale, after which it
stiffens again as cTAI takes over.
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To summarise, we can write the turbulent heat flux in the collisionless limit as

Q ∼ QgB
1√
βe



L∥
√
βe

LT

,
L∥

√
βe

LT

≪ 1,

1, 1 ≲
L∥

√
βe

LT

≲

(
LB

LT

)1/2

,

LT

LB

(
L∥

√
βe

LT

)2

,
L∥

√
βe

LT

≳

(
LB

LT

)1/2

,

(6.45)

or, in the collisional limit, as

Qν ∼ QgB
χ√
βe



(
L∥

√
βe

LT

)2

,
L∥

√
βe

LT

≪ 1,

1, 1 ≲
L∥

√
βe

LT

≲

(
LB

LT

)1/2

,

LT

LB

(
L∥

√
βe

LT

)3

,
L∥

√
βe

LT

≳

(
LB

LT

)1/2

.

(6.46)

Notably, this implies that the effect of increasing βe [or increasing L∥/LT ∼ πq(LB/LT ),

as in a tokamak edge], is first to make the electron heat transport less stiff, as flux

freezing pins down the ETG injection scale, and then to stiffen it back again, as cTAI

takes over. This is sketched in figure 6.1. A striking (and perhaps disturbing) feature

of these results is the discontinuity in the collisional turbulent heat flux around the

transition between the sTAI- and cTAI-dominated regimes, described by the last two

expressions in (6.46). Comparing these, it is easy to see that the latter is larger than

the former for

L∥
√
βe

LT

≳

(
LB

LT

)1/3

. (6.47)

This condition is obviously met before the parallel system size is large enough in order to

activate the cTAI, meaning that the sTAI regime must persist — despite it supporting

a notionally lower flux than that predicted by the cTAI scaling — until the inequality

in (6.43) is satisfied, at which point the cTAI takes over, leading to the discontinuity.

Whether this and the other simple ‘twiddle-algebra’ considerations that led to (6.45)

and (6.46) survive the encounter with quantitative reality is the subject of the following

chapters 7 and 8.
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Chapter 7

Critical balance in electrostatic
ETG turbulence

The majority of kinetic plasma turbulence theory has been developed for situations

in which energy is assumed to arrive into the system from larger scales (e.g., from

k⊥ρi < 1), from where it cascades down towards smaller ones (see [72] and references

therein) — this is typically the case in space-physical and astrophysical contexts, where

the energy is often injected by large-scale MHD processes. The conclusions of the

previous chapter were predicated on the assumption that such a turbulent cascade also

exists in systems for which the energy does not simply arrive from large scales to be

processed, but is instead injected by microscale instabilities that are found at every

perpendicular scale throughout the putative inertial range. In our case, these are the

ETG and TAI, which source microscale perturbations by extracting free energy from

the equilibrium electron temperature gradient. It is not obvious a priori, however,

that gradient-driven systems of this type will organise themselves to support such

a cascade, with a well-defined (and well-separated) outer scale, inertial range and

dissipation scale. Though there is some evidence to suggest that this does occur in the

context of gyrokinetic ITG turbulence [12], there have been few other demonstrations

of the existence of such cascades within the context of gradient-driven turbulence,

despite their potentially central role in determining the saturated turbulent state (see,

e.g., [103–105]). In this chapter, we employ numerical simulations to demonstrate in

a detailed way, and, we think, beyond reasonable doubt, the validity of the theory of

ETG turbulence outlined in Section 6.2. In Section 7.1, we begin by showing that

the predicted scaling of the heat flux with parallel system size follows directly from the

scale invariance of drift kinetics in the electrostatic limit. This scaling is then validated
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numerically in Section 7.1.5. The underlying physical dynamics behind this scaling

are then elucidated in Section 7.2, demonstrating that electrostatic sETG turbulence

indeed saturates via a critically balanced cascade of energy to small scales.

7.1 Drift-kinetic scale invariance

In Chapter 6, we used constant-flux arguments to derive scalings for turbulent heat

fluxes resulting from critically balanced electrostatic slab-ETG turbulence — these

were given by the first expression in (6.45) and (6.46), which we summarise here as

Q ∼ QgB


L∥

LT

, collisionless,

LT

λei

(
L∥

LT

)2

, collisional,

(7.1)

where once again QgB = n0eT0evthe (ρe/LT )
2. (7.1) predicts a particular scaling of the

heat flux with the parallel system size L∥; in this context, L∥ can be thought of either as

a measure of a quantity analogous to the connection length πqR in tokamak geometry

(where q is the safety factor and R the major radius) or a proxy for the temperature-

gradient scale length. It turns out, however, that we did not actually need to invoke

the arguments of Chapter 6 in order to arrive at these scalings: they are in fact a

consequence of the scale invariance of drift kinetics in the electrostatic limit (although

explaining how the system “implements” this scale invariance will require a return to

the physics of critical balance).

7.1.1 Electrostatic scale invariance

To show this, we take as our starting point the gyrokinetic equation (A.20). In the

drift-kinetic limit k⊥ρs ≪ 1, all gyroaverages in (A.20) turn into unity operators, and,

making use of the definition of the gyrokinetic potential (A.21), we find:

∂

∂t

[
hs −

qs
T0s

(
ϕ−

v∥A∥

c
+
T0s
qs

v2⊥
v2ths

δB∥

B0

)
f0s

]
+
(
v∥b0 + vds

)
· ∇hs (7.2)

+
c

B0

b0 ·
[
∇
(
ϕ−

v∥A∥

c
+
T0s
qs

v2⊥
v2ths

δB∥

B0

)
×∇ (hs + f0s)

]
=
∑
s′

C
(ℓ)
ss′ [hs],

where hs is the non-Boltzmann part of the fluctuating distribution function of species

s, now a function of the particle position r, to lowest order in k⊥ρs ≪ 1. In (7.2), vds
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is the sum of the curvature and ∇B drift velocities [see (7.10)] and C
(ℓ)
ss′ is the linearised

Landau collision operator [see (A.22)]. Decomposing hs into parts that are even and

odd in the parallel velocity v∥, viz.,

hevens (r, v∥, v⊥, t) =
1

2

[
hs(r, v∥, v⊥, t) + hs(r,−v∥, v⊥, t)

]
, (7.3)

hodds (r, v∥, v⊥, t) =
1

2

[
hs(r, v∥, v⊥, t)− hs(r,−v∥, v⊥, t)

]
, (7.4)

it follows straightforwardly from (7.2) that hevens and hodds satisfy, respectively,

∂

∂t

[
hevens − qs

T0s

(
ϕ+

T0s
qs

v2⊥
v2ths

δB∥

B0

)
f0s

]
+ v∥b0 · ∇hodds + vds · ∇hevens (7.5)

+
c

B0

b0 ·
[
∇
(
ϕ+

T0s
qs

v2⊥
v2ths

δB∥

B0

)
×∇hevens

]
+

c

B0

b0 ·
[
∇
(
−
v∥A∥

c

)
×∇hodds

]
+

c

B0

b0 ·
[
∇
(
ϕ+

T0s
qs

v2⊥
v2ths

δB∥

B0

)
×∇f0s

]
=
∑
s′

C
(ℓ)
ss′ [h

even
s ] ,

and

∂

∂t

[
hodds − qs

T0s

(
−
v∥A∥

c

)
f0s

]
+ v∥b0 · ∇hevens + vds · ∇hodds (7.6)

+
c

B0

b0 ·
[
∇
(
ϕ+

T0s
qs

v2⊥
v2ths

δB∥

B0

)
×∇hodds

]
+

c

B0

b0 ·
[
∇
(
−
v∥A∥

c

)
×∇hevens

]
+

c

B0

b0 ·
[
∇
(
−
v∥A∥

c

)
×∇f0s

]
=
∑
s′

C
(ℓ)
ss′

[
hodds

]
,

where we have used the isotropy of the linearised Landau collision operator (A.22) to

simplify the right-hand side. Similarly, the field equations (A.23)-(A.25) become

0 =
∑
s

qs

[
−qsϕ
T0s

n0s +

∫
d3v hevens

]
, (7.7)

∇2
⊥A∥ = −4π

c

∑
s

qs

∫
d3v v∥h

odd
s , (7.8)

∇2
⊥δB∥ = −4π

c
b0 ·

[
∇⊥ ×

∑
s

qs

∫
d3v v⊥h

even
s

]
. (7.9)

Note that in (7.5) and (7.6), we have assumed that the (radial) gradient of the equi-

librium distribution function ∇f0s is an even function of v∥ — this is only the case

in systems without any equilibrium flows, as we have been assuming throughout this

thesis.
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We now wish to consider transformations of the system of equations (7.5)-(7.9) that

can be made whilst preserving the size of perpendicular equilibrium gradients, viz., at a

fixed LTs , Ln, LB, etc. It is relatively obvious from considering, e.g., the magnetic-drift

velocity

vds =
b0
Ωs

×
(
v2∥b0 ·∇b0 +

1

2
v2⊥∇ logB0

)
, (7.10)

that any rescaling of the velocity variables v∥ and v⊥ — at fixed equilibrium magnetic-

field strength — would require a compensatory rescaling of R and LB [as defined in

(2.4)] in order to preserve the magnitude and direction of vds. Therefore, we will

henceforth restrict ourselves to transformations involving only the spatial and time

coordinates. In a similar vein to [106], we consider the following one-parameter trans-

formation:

h̃evens = λae hevens (x/λa⊥ , y/λa⊥ , z/λa∥ , t/λat), (7.11)

ϕ̃ = λae ϕ(x/λa⊥ , y/λa⊥ , z/λa∥ , t/λat), (7.12)

˜δB∥ = λae δB∥(x/λ
a⊥ , y/λa⊥ , z/λa∥ , t/λat), (7.13)

h̃odds = λao hodds (x/λa⊥ , y/λa⊥ , z/λa∥ , t/λat), (7.14)

Ã∥ = λao+2a⊥A∥(x/λ
a⊥ , y/λa⊥ , z/λa∥ , t/λat), (7.15)

where x, y and z are the radial, binormal and parallel coordinates, respectively, the

tildes indicate the transformed distribution functions and fields, and the ai’s are some

real constants parametrising the transformation. These can be fixed by demanding

that the transformation leaves (7.5) and (7.6) invariant, as we shall do shortly.

The rescaling (7.11)-(7.15) is the most general one-parameter transformation of

drift-kinetics that can be made while allowing (although not requiring) the spatial

isotropy of structures in the perpendicular plane. The field equations of quasineutrality

(7.7) and perpendicular Ampère’s law (7.9) imply that the amplitudes of the ‘even’

fields must be rescaled in the same way, as in (7.11)-(7.13), while the rescaling of

the amplitudes of the ‘odd’ fields is similarly constrained by parallel Ampère’s law

(7.8), as in (7.14) and (7.15). The spatial and time coordinates can then be rescaled

independently, with the caveat that the radial and binormal coordinates should be

rescaled in the same way in order not to rule out perpendicular isotropy.

Let us now specialise to the electrostatic limit, in which we neglect all contribu-

tions of A∥ and δB∥ to (7.5) and (7.6). Then it is possible to show, and confirm by
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inspection, that the resultant electrostatic drift-kinetic system is invariant under the

transformation

h̃evens = λ2 hevens (x/λ2, y/λ2, z/λ2/α, t/λ2), (7.16)

ϕ̃ = λ2 ϕ(x/λ2, y/λ2, z/λ2/α, t/λ2), (7.17)

h̃odds = λ2/α hodds (x/λ2, y/λ2, z/λ2/α, t/λ2), (7.18)

where we have chosen ae = 2 without loss of generality, and α = 1, 2 in the collisionless

and collisional limits1, respectively, as in Chapter 4. Mathematically, the existence

of this transformation is a consequence of the scale invariance of electrostatic drift

kinetics. In the absence of finite-Larmor-radius effects associated with ρs — manifest

in the gyroaverages and the resultant Bessel functions appearing in the gyrokinetic

equation (A.20) — there is no intrinsic perpendicular scale within the system, with

nothing to distinguish any perpendicular scale from any other.

7.1.2 Consequences for transport

We now consider the consequences of the transformation (7.16)-(7.18) for turbulent

transport. The rate of free-energy injection in electrostatic drift kinetics is given by

(see, e.g., [55])

ε =
∑
s

εs, (7.19)

1In the collisionless limit, the collision operator can be neglected in its entirety, from which it is easy
to show that ae = ao = a⊥ = a∥ = at is the only choice of ai’s that leaves the equations invariant.
The collisional limit is somewhat more subtle. As we have done throughout the remainder of this
thesis, we consider the case where the rate of thermal conduction is comparable to the frequency
of the perturbations, viz., ω ∼ (k∥vthe)

2/νss′ ≪ νss′ (νss′ is the characteristic collision frequency

between species s and s′), and order ωheven
s ∼ k∥vthsh

odd
s . In the resultant collisional expansion, the

collision operator will be forced to vanish at leading order (see Appendix A.4.1), and can only survive
at higher order due to the presence of finite-Larmor-radius effects (see Appendix A.4.3), which have
been neglected within the drift-kinetic approximation. At first order, one obtains, from (7.6), a balance
between the parallel streaming of heven

s and the collision operator acting on hodd
s (see Appendix A.4.2).

At second order, one evolves heven
s via (7.5) with the collision operator neglected (see Appendix A.4.3).

One can then show that ae = 2ao = a⊥ = 2a∥ = at is the only choice of parameters that leaves the
drift-kinetic equations invariant. The nature of such an expansion means that any constraints on the
ai’s inferred from (7.11)-(7.15) will only be valid to second order within the collisional expansion, and
not to any higher orders. However, given that the solvability conditions (A.34) and (A.47) guarantee
that a closed system can be obtained solely from these two orders, we do not consider this particularly
problematic.
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with

εs = −
∫

d3r

V

∫
d3v hevens

c

B0

b0 · (∇ϕ×∇ log f0s) . (7.20)

Then, using (7.16)-(7.18), we find that this injection rate transforms as

ε̃s = λ2εs ⇒ Q̃s = λ2Qs, (7.21)

where the right-hand expression follows from the fact that the heat flux is related to

the rate of energy injection by Qs ∼ n0sT0sεsLTs .

Suppose that our original solutions for hevens and ϕ were periodic in x, y and z with

domain sizes Lx, Ly and L∥, respectively. Then the transformed solutions h̃evens and

ϕ̃ are still periodic in x, y and z, except with domain sizes λ2Lx, λ
2Ly and λ2/αL∥,

implying that

Q̃s(λ
2Lx, λ

2Ly, λ
2/αL∥) = λ2Qs(Lx, Ly, L∥). (7.22)

The heat flux will, of course, depend on other system parameters, e.g., equilibrium gra-

dients and collisionality. These, however, will remain unchanged under the transforma-

tion, and so we did not write them explicitly in (7.22). Now, in a strongly magnetised

(gyrokinetic) plasma, structures generated by the turbulent fluctuations are ordered

comparable to the scales of the equilibrium in the parallel direction (k−1
∥ ∼ L∥), but

must remain microscopic in the perpendicular direction (k−1
⊥ ∼ ρs). This means that,

as the perpendicular domain size (i.e., L⊥ ∼ Lx ∼ Ly ∼ ρs) is increased, there must

come a point at which the turbulence, and its resultant heat flux, become independent

of the perpendicular domain size; if this were not the case, then the heat flux would

diverge as L⊥/ρs → ∞, implying that drift kinetics is not a valid local model of the

plasma. We thus assume that the heat flux is independent of the perpendicular do-

main size, viz., independent of Lx and Ly. Then, given that λ can be chosen arbitrarily,

(7.22) directly implies that

Qs ∝ Lα
∥ , (7.23)

where once again α = 1, 2 in the collisionless and collisional limits, respectively. Re-

markably, (7.23) reproduces the dependence on L∥ of the heat fluxes (7.1), as well as

that predicted by [12] in the context of ITG-driven gyrokinetic turbulence (if one takes
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L∥ to be the connection length). Given the assumption that the heat flux is indepen-

dent of perpendicular domain size, (7.23) follows directly from the scale invariance of

electrostatic drift kinetics manifest in the transformation (7.16)-(7.18). This means

that the electrostatic heat-flux scalings predicted by the arguments of Chapter 6 are

in some sense inevitable (subject to the assumptions stated above), and, as we proceed

to show numerically in Section 7.1.3, are indeed satisfied.

Let us discuss the significance of the fact that the heat flux scales with the par-

allel system size. As we conjectured in Section 6.2, and will confirm numerically in

Section 7.1.5, the outer scale for electrostatic sETG driven turbulence is set by the

parallel system size ko∥L∥ ∼ 1. Such a choice goes back to the work by [12], who,

similarly, conjectured, and numerically verified, that the outer scale of electrostatic,

gyrokinetic ITG turbulence in tokamak geometry was set by the connection length

L∥ ∼ qR. While in their case, like ours, this was the only scale that could be reason-

ably viewed as the characteristic system size (the spatial inhomogeneity of the mag-

netic equilibrium), there was also another, arguably more physically intuitive, reason

available for its role in determining the large-scale cutoff for the ITG turbulence: one

could assume that any turbulent structures correlated on parallel scales longer than

the connection length would be damped in the stable (“good-curvature”) region on the

inboard side of the tokamak. Thus, one could believe that the operative reason for the

significance of L∥ ∼ qR was the presence of large-scale dissipation, rather than, as we

have now concluded, the breaking of scale invariance by inhomogeneity (or, in our case,

the finiteness of a periodic box). Indeed, in the present context, L∥ corresponds to the

longest scale associated with any parallel inhomogeneities that break scale invariance,

but is manifestly not related to any form of dissipation triggered by the presence of

such inhomogeneities. A practical implication of this conclusion for more realistic sys-

tems appears to be that any long-scale parallel inhomogeneity should be sufficient to

break scale invariance, without the need for an energy sink — this could matter for

the analysis of turbulence in, e.g., edge plasmas [53, 54] or in stellarators [107], where

magnetic fields have parallel structure on scales shorter than the connection length.

All of these considerations, however, were predicated on the assumption that k⊥ρs ≪
1, as the existence of the transformation (7.16)-(7.18) relies on the scale invariance of

the drift-kinetic limit. Restoring finite-Larmor-radius (FLR) effects by reverting to

the (electrostatic) gyrokinetic equation will evidently break this property, as the scales
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k⊥ ∼ ρ−1
s will now appear explicitly in the equations through the Bessel functions.

Though there are, of course, exceptions [53, 54], the general effect of these Bessel

functions is to provide a cutoff for instabilities at large perpendicular wavenumbers.

In terms of the “instability landscapes” depicted in figures 5.1 and 5.2, this typically

restricts the region of instability on the ultraviolet side, providing a sink of energy (dis-

sipation) beyond the wavenumbers where the sETG growth rate peaks. The constant-

flux arguments of Chapter 6 assumed that there was sufficient separation between the

outer scale and these dissipation regions in order to allow an inertial range to develop

at the intermediate scales. Should such a separation exist, the system will effectively be

drift-kinetic in the inertial range and, crucially, at the outer scale, where the results of

this section will continue to apply, despite the system being fully gyrokinetic. In other

words, even if drift-kinetic scale invariance is broken at small scales, the assumption

behind (7.23) is that the transport is set by the outer scale, which is in the drift-kinetic

limit, and the relevant breaking of scale-invariance is done by L∥ (as we argued earlier,

it cannot be L⊥, lest the local gyrokinetic ordering be broken). The dynamical argu-

ment of Chapter 6 — based on the competition between the nonlinear time and the

growth rate of the instability setting the outer scale for the turbulence on scales well-

separated from any dissipation regions — is then the physical mechanism whereby this

scale invariance is realised. This was the case in [12], who confirmed the scaling (7.23)

using fully gyrokinetic, Cyclone-Base-Case [108] GS2 simulations. Note that the scale

separation required for such a state is far from guaranteed: non-zero magnetic shear,

for example, can create long-wavelength modes with binormal wavenumbers kyρi ∼ 1

but narrow radial structures near mode-rational surfaces on the scale kxρe ∼ 1 [67, 109].

Whether the results of this section are robust to the effects of significant magnetic shear

and other equilibrium shaping that can amplify the importance of FLR — and thus

undermine the possible separation between FLR effects and a putative outer scale — is

a subject for future work. Similarly, it is worth noting that including ion-scale physics

within our model (by allowing for a finite mass-ratio me/mi) is another possible route

by which scale invariance could be broken, though we consider this to be outside the

scope of this current work. For now, we shall focus on verifying (7.23) and explaining

why the physical assumptions that underlie it are indeed correct within the context of

the model of ETG-driven turbulence that we have been considering throughout this

thesis.
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7.1.3 Electrostatic equations

There is recent evidence [64, 66] to suggest that collisional, fluid models are capable

of providing remarkable insight about the dynamics of more general physical systems,

while retaining the advantage of being (comparatively) simple to handle both numer-

ically and analytically. In light of this, here, and throughout the remainder of this

chapter, we will focus on the collisional limit — all of the characteristic instabilities

that we have considered have both collisionless and collisional counterparts, meaning

that the collisional limit can serve as a qualitative proxy for our more general ETG

system.

To proceed, we must specialise the collisional system of equations (2.27)-(2.29) to

the electrostatic limit k⊥deχ≫ 1. On these scales, the resistive term on the right-hand

side of (2.28) is larger than all other terms containing A by a factor of βe [see (A.96)]

— the latter of which can consequently be neglected — while all of the nonlinearities

contained in the parallel derivatives (2.11) are also small in βe [see (A.97)]. This implies

that (2.28) becomes an explicit expression for the perturbed parallel electron velocity,

viz.,

u∥e = −v
2
the

2νei

∂

∂z

(
δne

n0e

− φ+
δTe
T0e

)
. (7.24)

A thus ceases to be a dynamic field: it is instantaneously determined from the par-

allel gradient of the pressure, as was indeed the case for the collisional sETG (see

Section 3.2). Substituting (7.24) into (2.27) and (2.29), recalling the definition of the

conductivity (2.20), and making use of the quasineutrality condition (2.22) to express

the density perturbations δne/n0e in terms of φ, we find

d

dt
τ̄−1φ−

(
1 +

1

τ̄

)
cφφv

2
the

2νei

∂2φ

∂z2
+
cφTv

2
the

2νei

∂2

∂z2
δTe
T0e

= 0, (7.25)

d

dt

δTe
T0e

+
2

3

(
1 +

1

τ̄

)
cTφv

2
the

2νei

∂2φ

∂z2
− 2

3

cTTv
2
the

2νei

∂2

∂z2
δTe
T0e

= −ρevthe
2LT

∂φ

∂y
, (7.26)

where

cφφ = 1, cφT = cTφ = 1, cTT = 1 +
5

9(1 + 1/Z)
(7.27)

are coefficients determined by the inversion of the collision operator (see [1]); the equal-

ity between cφT and cTφ is a manifestation of Onsager symmetry [110]. In (7.25) and
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(7.26), we have ignored any instances of magnetic-field gradients; this corresponds to

the limit of a very steep electron temperature gradient, in which one expects the sETG

to be the dominant source of energy injection, as was assumed in Section 6.2; the effect

of restoring finite magnetic-field gradients is discussed in Section 7.3.

Together, (7.25) and (7.26) form a closed, two-field system describing the evolution

of the potential φ and temperature δTe/T0e perturbations in the presence of an electron

temperature gradient. Unsurprisingly, given that they were derived as an asymptotic

subsidiary limit of drift kinetics, these equations are invariant under the transformation

(7.16)-(7.18), viz., the rescaled fields

φ̃ = λ2 φ(x/λ2, y/λ2, z/λ, t/λ2), ˜δTe = λ2 δTe(x/λ
2, y/λ2, z/λ, t/λ2), (7.28)

are also solutions to (7.25) and (7.26). This is a consequence of the fact that we

are considering scales k⊥deχ ≫ 1, on which the flux-freezing scale (2.33) is no longer

an important, or indeed relevant, perpendicular spatial scale. In fact, as we show in

Appendix A.5.3, (7.25) and (7.26) are valid within wavenumber range [cf. (A.95)]√
βe ≪ k∥LT ≪ 1, (deχ)

−1 = βeρ
−1
e

λei
LT

≪ k⊥ ≪ ρ−1
e

λei
LT

, (7.29)

i.e., at perpendicular scales much smaller than the flux-freezing scale, but much larger

than those on which one encounters the effects of electron thermal diffusion due to the

finite Larmor motion of the electrons; formally, these scales are at the intersection of

two asymptotic limits, as we discuss in Appendix A.5.3. In other words, (7.25) and

(7.26) describe physics on scales

k∥LT ∼
√
σ, k⊥ρ⊥ ∼ 1, ρ⊥ =

βe
σ
deχ =

ρe
σ

LT

λei
, (7.30)

where σ is some arbitrary constant satisfying βe ≪ σ ≪ 1 — the fact that it should

be arbitrary follows from the fact that there is no special scale within the wavenumber

ranges (7.29). Our normalisation of perpendicular and parallel wavenumbers within

(7.25) and (7.26) will thus also be arbitrary, up to the definition of σ.

Given that we are going to focus explicitly on collisionally driven instabilities, due

diligence suggests that we should work with a set of equations that capture the col-

lisional limit as accurately as possible, so as to ensure that if any of the resultant

nonlinear dynamics depends on, e.g., specific details of the collision operator, then it

is properly described. In this sense, (2.27)-(2.29), along with (7.25) and (7.26), are
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somewhat suspect, given that they were derived using a simplified collision operator

that was appropriate for the Hermite-Laguerre expansion considered in [1]. However,

we show in Appendix A that (7.25) and (7.26) remain valid even when derived with

the correct linearised Landau collision operator [see (A.22)], with the only difference

being the replacement of the collisional coefficients (7.27) with

cφφ = c1, cφT = cTφ = c1 + c2, cTT = c3 + c1

(
1 +

c2
c1

)2

, (7.31)

where c1, c2 and c3 are the (positive) ion-charge-dependent coefficients determined

from the linearised Landau collision operator [see Appendix A.4.2 and, in particular,

(A.50)]. This puts the status of (7.25) and (7.26) as the correct collisional, electrostatic

sETG-driven system beyond reproach (although it will not, in any event, make much

difference). Note that for Z = 1, c1 ≈ 1.94, c2 ≈ 1.39, and c3 ≈ 3.16, in agreement

with [111].

7.1.4 Numerical implementation

In what follows, these equations are solved numerically in a triply periodic box of size

Lx, Ly and L∥ using a pseudo-spectral algorithm. Numerical integration is done in

Fourier space (nx, ny and n∥ are the number of Fourier harmonics in the respective di-

rections) with the nonlinear term calculated in real space using the 2/3 rule for dealias-

ing [112]. We integrate the linear terms implicitly in time using the Crank-Nicolson

method, while nonlinear terms are integrated explicitly using the Adams-Bashforth

three-step method. This integration scheme is similar to the one implemented in the

popular gyrokinetic code GS2 [10, 113].

Perpendicular hyperviscosity is introduced in order to provide an ultraviolet (large-

wavenumber) cutoff for the instabilities, achieved by the replacement of the convective

time derivative on the left-hand side of (7.25) and (7.26) with

d

dt
+ (−1)nνν⊥ (ρ⊥∇⊥)

2nν , (7.32)

where ν⊥ is the “hyper-collision” frequency and nν ⩾ 2. With this change, our equa-

tions now depend on only the following dimensionless parameters: the perpendicu-

lar and parallel box sizes Lx/ρ⊥, Ly/ρ⊥ and L∥
√
σ/LT , the hyper-collision frequency

2(ρ⊥/ρe)
2ν⊥/νei, and the power of the hyperviscous diffusion operator nν . Convergence
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Lx/ρ⊥ Ly/ρ⊥ L∥
√
σ/LT nx ny n∥ 2(ρ⊥/ρe)

2ν⊥/νei nν

Baseline 40 40 20 191 191 31 0.00050 2
High resolution 40 40 20 383 383 63 0.00015 2

Table 7.1: The parameters used in the baseline and high-resolution simulations. Both simulations had
τ = Z = 1.

scans in nx, ny, and perpendicular box size Lx = Ly = L⊥ were carried out on a baseline

simulation (see table 7.1) to ensure that the chosen resolution adequately resolved the

dynamics, and to verify that L⊥ was made large enough so that it did not significantly

affect the simulation results, as was required for the arguments of Section 7.1.2.

We have found that our results do not depend on the specific details of the hy-

perviscosity, viz., ν⊥ and nν . It can be viewed as a numerical tool that allows us to

capture the dynamics of the system within a finite simulation domain and resolution,

and is not intended to model a specific physical process. Readers uneasy with this

may take the view that (7.32) represents the physical sink of energy that exists at

higher perpendicular wavenumbers. The fact that our results end up being indepen-

dent of hyperviscosity is, however, significant. The addition of (7.32) breaks the scale

invariance associated with the transformation (7.28), similar to the way in which FLR

effects formally break drift-kinetic scale invariance in the context of gyrokinetics. One

could thus question the inevitability of the scaling of the heat flux (7.23) within our

system of equations. Furthermore, the fact that the growth rate of the sETG will peak

at a perpendicular scale entirely determined by the hyperviscosity — since (7.25) and

(7.26) contain no intrinsic perpendicular wavenumber cutoff — may be a cause for

concern, as the most unstable perpendicular scale is often thought to play a central

role in determining turbulent transport. Both of these concerns can be dispelled by

the realisation that neither the scale-invariance (Section 7.1.2) nor constant-flux (Sec-

tion 6.2) arguments for the scaling of the turbulent heat flux rested on details about

the state of the system at small perpendicular scales; in both cases, it was the outer

scale that was central in determining the transport. The fact that we find that our

results are indeed independent of hyperviscosity is in fact a non-trivial validation of

our theory.
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Figure 7.1: Timetraces of the instantaneous heat flux from simulations in which L∥
√
σ/LT

was varied from 15 to 55, plotted against a logarithmic scale. One observes higher-amplitude,
longer-timescale oscillations in the heat flux for simulations with larger L∥

√
σ/LT .

7.1.5 Scan in L∥/LT

In order to test the dependence of the turbulent heat flux on L∥ predicted by both the

scale-invariance and constant-flux arguments, we performed a series of simulations in

which L∥
√
σ/LT was varied between 15 and 55 at fixed parallel resolution (viz., fixed

ratio of L∥
√
σ/LT to n∥), while keeping all other parameters the same as in the base-

line simulation (see table 7.1). Each simulation was run to long times to ensure that

saturation had been reached; for the scan based on the baseline simulation, this varied

between 12000 and 16000 (ρe/ρ⊥)
2νeit/2, depending on the value of L∥

√
σ/LT . This is

because the (perpendicular) outer scale for the simulations with larger L∥
√
σ/LT lies

closer to the perpendicular box scale, leading to larger-amplitude, longer-timescale os-

cillations in the observed heat flux (see Figure 7.1) and, consequently, a longer required

simulation time to ensure that the system has reached a statistical steady state.

In Figure 7.2, we plot the time average of the (normalised) turbulent heat flux

due to the fluctuating E × B flows — viz., the first expression multiplying 1/LT

in the collisional version of (6.4) [see also (7.37)] — normalised to (ρ⊥/ρe)QgB, with

QgB = n0eT0evthe(ρe/LT )
2, as previously. It is clear that the simulation data agrees

extremely well with the theoretical scaling (7.1). Similarly, Figure 7.3 shows that the
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Figure 7.2: The scaling of the turbulent heat flux with L∥/LT , plotted against logarithmic
axes. The black points are the simulation data, while the theoretical prediction [see (7.1) or
(7.23)] is shown by the dashed black line. A logarithmic fit to the data gives a slope of 1.98.

scaling of both the perpendicular outer scale ko⊥ with L∥/LT and the amplitude of the

electrostatic potential with the perpendicular outer scale agree well with the respective

theoretical predictions (6.22) and (6.14). In these measurements, the (perpendicular)

outer scale was determined as corresponding to the wavenumber where the maximum

of the 1D perpendicular spectrum of the free-energy injection [cf. (6.4)]

εk(k⊥) = 2πk⊥

∫ ∞

−∞
dk∥

3

2
Re

〈
iω∗eφ

∗
k

δTek
T0e

〉
(7.33)

is achieved [the asterisk denotes complex conjugation and the brackets an ensemble

average, as in (6.7)]. When analysing the output of simulations, we consider ensemble

averages to be equal to time averages over a period following saturation and the estab-

lishment of a statistical steady state [e.g., after (ρe/ρ⊥)
2νeit/2 ∼ 2000 in Figure 7.1].

The outer scale is most often defined to be the integral scale of the 1D perpendicular

energy spectrum (6.7), viz.,

ko⊥ ≡

∫ ∞

0

dk⊥ k⊥E
φ
⊥(k⊥)∫ ∞

0

dk⊥ E
φ
⊥(k⊥)

. (7.34)
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(a) (b)

Figure 7.3: (a) The scaling of the perpendicular outer scale ko⊥ρ⊥ [defined as the peak
wavenumber of (7.33)] with L∥/LT ; (b) The scaling of the amplitude of the electrostatic
potential φ̄o with the perpendicular outer scale [defined as the amplitude of φ at k⊥ = ko⊥].
The black points are the simulation data, while the theoretical prediction the black dashed
line [see (6.20)]. A logarithmic fit to the data gives a slope of -1.99 and -0.95 in (a) and (b),
respectively.

However, given that, physically, we are interested in the outer scale as the scale at

which the free energy is effectively injected, the choice to maximise (7.33) seems a

straightforward one in systems where energy is injected by local instabilities like the

sETG. Furthermore, finding the outer scale by maximising (7.33) gave better agreement

with the theoretical prediction than adopting (7.34), suggesting that, perhaps, the

former is a better measure of the outer scale for such systems.

The remarkable agreement seen in figures 7.2 and 7.3, however, should not be a

cause of complacency: the fact that the system conforms to the predicted scalings with

parallel system size is not sufficient evidence to conclude that energy transfer towards

small scales occurs via the constant-flux, critically balanced cascade of energy that was

proposed in Section 6.2. Indeed, one must be especially diligent to determine the exact

nonlinear mechanism giving rise to such macroscopic ‘observables’. To complete our

picture, and explain these observations, we thus need to consider the dynamics in the

inertial range. This is the subject of the following section.
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7.2 Inertial-range dynamics

As we discussed in Section 6.1, our system conserves the quadratic norm of the pertur-

bations of the electron distribution function away from equilibrium, i.e., the free-energy

(6.2), which we write here explicitly in terms of our two fields φ and δTe/T0e as

W

n0eT0e
=

∫
d3r

V

[
1

2τ̄

(
1 +

1

τ̄

)
φ2 +

3

4

δT 2
e

T 2
0e

]
. (7.35)

In going from (6.2) to (7.35), we have once again made use of quasineutrality (7.70) to

express δne/n0e in terms of φ, and ignored the term involving A, as the energy associ-

ated with perturbations to the magnetic field direction is negligible in this electrostatic

limit. (7.35) is the invariant that is cascaded by our turbulence, being injected by the

ETG and dissipated by the effects of collisions. It is straightforward to show that the

resultant free-energy budget is

1

n0eT0e

dW

dt
= ε−D∥ −D⊥, (7.36)

where

ε =
1

LT

∫
d3r

V

3

2

δTe
T0e

vEx, vEx = −ρevthe
2

∂φ

∂y
, (7.37)

is the energy injection from the equilibrium temperature gradient, and

D∥ =
v2the
2νei

∫
d3r

V

{
cφφ

[(
1 +

1

τ̄

)
∂φ

∂z
− cφT
cφφ

∂

∂z

δTe
T0e

]2
+

(
cTT −

c2φT
cφφ

)(
∂

∂z

δTe
T0e

)2
}
,

(7.38)

D⊥ = ν⊥

∫
d3r

V

[
(ρnν

⊥ ∇nν
⊥ φ)

2 +
3

2

(
ρnν
⊥ ∇nν

⊥
δTe
T0e

)2
]
, (7.39)

are the dissipation due to (parallel) thermal conduction and (perpendicular) hypervis-

cosity, respectively. Note that the prefactor of the last term in (7.38) is equal to c3 [see

(7.31)], and thus positive. The remainder of this section is devoted to characterising

fully the dynamics between the outer scale, that dominates the energy injection ε, and

the dissipation (inner) scale, that dominates D⊥. We will find that the dissipative

nature of the parallel dynamics, and the resultant presence of D∥ in the free-energy

budget, places a significant constraint on the behaviour of the system in the inertial

range.
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Figure 7.4: Turbulent heat flux in the high-resolution simulation (see table 7.1). The up-
per and lower panels show, respectively, the instantaneous and (rolling) time-averaged heat
fluxes in solid black. The dashed horizontal line in the lower panel is the average value
— as calculated over the entire time interval — while the transparent grey region around
this value shows the error bar associated with the mean, calculated by means of a moving
window average. The time-averaged heat flux converges to within the final error bar by
(ρe/ρ⊥)

2νeit/2 ∼ 2000.

To ensure that we had sufficient numerical resolution for these investigations, we

conducted a ‘high-resolution’ simulation (see table 7.1), on which we shall now focus.

Due to the computational demands introduced by the higher resolution, the simulation

was run only up to 5000 (ρe/ρ⊥)
2νeit/2; this was sufficient to ensure that the heat flux

had converged to some average value (see Figure 7.4).

7.2.1 Perpendicular isotropy

Throughout Chapter 6, we assumed kx ∼ ky ∼ k⊥ because there was no a priori

reason to suspect that the turbulence would preference anisotropic structures. This

assumption of perpendicular isotropy is not obviously true and must be tested. Indeed,

the maximum sETG growth rate (3.5) or (3.10) is at kx = 0, and so the outer-scale

energy injection is predominantly into so-called ‘streamers’: highly anisotropic (kx ≪
ky) structures that can be identified in real space from the alternating structure of

horizontal bands along the poloidal direction. In the context of ITG-driven turbulence,
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(a) (LT/ρ⊥)φ (b) (LT/ρ⊥)δTe/T0e

Figure 7.5: Real-space snapshots of the (a) electrostatic potential and (b) temperature per-
turbations from the high-resolution simulation at (ρe/ρ⊥)

2νeit/2 = 3000 (see table 7.1). The
coordinate axes are as shown, while the red and blue colours correspond to regions of positive
and negative fluctuation amplitude. The turbulence does not appear to be isotropic on the
large scales that are visible in these plots (streamers are manifest), but it will turn out that
it is isotropic in the inertial-range (see Section 7.2.1).

it has often been assumed that these streamers are broken apart by zonal flows (see

[8, 12] and references therein), restoring isotropy at the outer scale, and from which

isotropy in the inertial range is then assumed to follow. In ETG-driven turbulence,

however, the role of zonal flows is less obvious, and the existence of an isotropic state

far from guaranteed — the real-space snapshots of Figure 7.5 suggest that the system is

in fact dominated by streamer-like structures on the largest scales, and there is minimal

zonal-flow activity. We shall discuss the role of zonal flows further in Section 7.3.

To assess how isotropic the saturated state is, we plot the two-dimensional spectra

Eφ(kx, ky) =

∫ ∞

−∞
dk∥

〈
|φk|2

〉
, (7.40)

Eφ(k⊥, θ) = k⊥

∫ ∞

−∞
dk∥

〈
|φk|2

〉
, (7.41)

in panels (a) and (b) of Figure 7.6, respectively. Here and in what follows, θ =

tan−1(ky/kx) is the polar angle in the perpendicular wavenumber plane. In both rep-

resentations, we find that the spectrum is approximately isotropic with respect to the

perpendicular wavenumbers: at scales sufficiently smaller than the outer scale (viz., in

the inertial range) contours of constant Eφ are either circles, in the case of (7.40), or
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(a) logEφ(kx, ky) (b) logEφ(k⊥, θ)

Figure 7.6: Contour plots of the two-dimensional spectra of the electrostatic potential pertur-
bations: (a) in Cartesian coordinates, with the radial and poloidal wavenumbers plotted on
the horizontal and vertical axes, respectively. Contours of constant Eφ(kx, ky) (7.40) (black
dashed lines) are approximately circular far away from the origin, where injection is localised;
(b) in plane-polar coordinates, with θ = tan−1(ky/kx) and k⊥ρ⊥ plotted on the horizontal
and vertical axes, respectively. Contours of constant Eφ(k⊥, θ) (7.41) (black dashed lines)
are approximately horizontal far away from k⊥ρ⊥ ≲ 1, where injection is localised.

horizontal lines, in the case of (7.41). The corresponding spectra for the temperature

perturbations, defined analogously to (7.40) and (7.41), display a similar isotropy, as

in Figure 7.7. The system thus appears to be isotropic in the inertial range, despite

the fact that the largest scales are anisotropic due to the existence of streamers and

the lack of vigorous zonal flows to break them apart.

7.2.2 Revisiting critical balance

An important observation about our equations (7.25) and (7.26) that we have not yet

made is that, given the definition of the convective time derivative d/dt (2.10), the

nonlinearity in the φ equation (7.25) vanishes identically. This means that δTe/T0e

is, in fact, the only field that is advected nonlinearly on the nonlinear turnover time

t−1
nl (6.12), with φ being ‘sourced’ by the temperature perturbations through the last

term on the right-hand side of (7.25). However, the scaling of the potential with

perpendicular wavenumbers (6.8) was derived assuming that the free-energy density
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(a) logET (kx, ky) (b) logET (k⊥, θ)

Figure 7.7: The same as Figure 7.6, except for the two-dimensional spectra of the temperature
perturbations. Once again, contours of constant (a) ET (kx, ky) or (b) ET (k⊥, θ) (black
dashed lines) are either, respectively, circles or approximately horizontal lines away from
where injection is localised.

being advected at a given scale k−1
⊥ was dominated by the contribution to (7.35) arising

from the electrostatic potential — it is not obvious that this should still hold in a

case where φ itself is not being advected nonlinearly. Let us assume instead that

the free-energy density is dominated by the contribution arising from the temperature

perturbation, viz., instead of (6.8), we have

t−1
nl

δT̄ 2
e

T 2
0e

∼ ε = constant ⇒ φ̄
δT̄ 2

e

T 2
0e

∼ ε

Ωe

(k⊥ρe)
−2. (7.42)

To estimate the size of the electrostatic potential, we balance its time derivative with

the last term in (7.25), yielding

φ̄ ∼
ω∥

ω

¯δTe
T0e

, ω∥ ≡
(
k∥vthe

)2
νei

, (7.43)

which, unlike in (6.18), we expect to hold at each scale, since φ is sourced linearly by

δTe/T0e at each scale. (7.43) implies that the potential and temperature perturbations

will be comparable at both the outer-scale (6.20) and throughout the inertial range if

one adopts the critical balance conjecture as (6.19), viz.

t−1
nl ∼ ω ∼ ω∥. (7.44)
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Combining (7.42) and (7.44), one re-obtains the previous scaling of inertial-range am-

plitudes and of the nonlinear time

φ̄ ∼
¯δTe
T0e

∼
(
ε

Ωe

)1/3

(k⊥ρe)
−2/3, t−1

nl ∼ Ωe

(
ε

Ωe

)1/3

(k⊥ρe)
4/3, (7.45)

as well as the resultant 1D perpendicular energy spectra:

Eφ
⊥(k⊥) ∼ ET

⊥(k⊥) ∼
φ̄2

k⊥
∝ k

−7/3
⊥ , (7.46)

where ET
⊥ is defined analogously to Eφ

⊥ [see (6.7)]. Then, using the second expression in

(7.45), (7.44) translates into the following proportionality relationship between parallel

and perpendicular scales in the inertial range:

k∥ ∝ k
2/3
⊥ . (7.47)

Defining the 1D parallel energy spectrum

Eφ
∥ (k∥) ≡ 2π

∫ ∞

0

dk⊥k⊥
〈
|φk|2

〉
, (7.48)

where the angle brackets once again denote the ensemble average, and the correspond-

ing temperature spectrum defined analogously, the combination of (7.47) and the scal-

ing of the electrostatic potential (6.8) imply the following inertial-range scaling:

φ̄ ∝ k−1
∥ ⇒ Eφ

∥ (k∥) ∼ ET
∥ (k∥) ∼

φ̄2

k∥
∝ k−3

∥ . (7.49)

The 1D spectra (7.46) and (7.49) are plotted in Figure 7.8. Both follow quite well the

predicted scaling below the outer scale, at least up until the point at which the spec-

trum begins to steepen due to the effects of dissipation: namely, either hyperviscosity

or parallel thermal conduction. To understand the relative roles of these sources of

dissipation within the turbulence, however, we need to consider 2D spectra, as in the

following section.

7.2.3 Two-dimensional spectra

To test our understanding of the inertial range more vigorously, it is interesting to

consider the 2D spectra:

Eφ
2D(k∥, k⊥) = 2πk⊥

〈
|φk|2

〉
, (7.50)

ET
2D(k∥, k⊥) = 2πk⊥

〈
|δTek/T0e|2

〉
. (7.51)
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(a)

(b)

Figure 7.8: The 1D (a) perpendicular (6.7) and (b) parallel (7.48) energy spectra, normalised
to their value at the outer scale. The spectra of the electrostatic potential are plotted in
blue, those of the temperature perturbations are in red. The predicted inertial-range scalings
(7.46) and (7.49) are shown by the dashed black lines. The location of the outer scale is
indicated by the black dot. In (a), this is calculated from the maximum of (7.33), while in
(b), it is calculated from the maximum of the 1D parallel spectrum of the energy injection,
defined analogously to (7.33).
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Unlike in the previous section, we can no longer assume that Eφ
∥,⊥ ∼ ET

∥,⊥; this was

only true as we were previously considering “integrated” 1D spectra dominated by the

wavenumbers where the critical-balance conjecture (7.44) was assumed satisfied, and

the two fields thus exhibiting the same scaling φ̄ ∼ ¯δTe/T0e [cf. (7.43) for ω ∼ ω∥].

With this in mind, we will first consider the spectrum of the temperature perturbations,

from which the spectrum of the potential perturbations can then be inferred.

We consider two wavenumber regions, above and below the “critical-balance line”

(7.47):

ET
2D(k∥, k⊥) ∼

 k−a
∥ kb⊥, k∥ ≳ k

2/3
⊥ ,

k−c
⊥ kd∥ , k∥ ≲ k

2/3
⊥ ,

(7.52)

where a, b, c, and d are positive constants to be determined. Here, and in what follows,

whenever our expressions appear to be dimensionally incorrect, this is because we have

chosen to normalise our wavenumbers to the outer scale k∥L∥ → k∥, k⊥/k
o
⊥ → k⊥ so as

to reduce notational clutter.

Evidently, the scalings in the two regions in (7.52) must match along the boundary

k∥ ∼ k
2/3
⊥ , giving

a+ d =
3

2
(b+ c) . (7.53)

Then, if a > 1, k∥ ∼ k
2/3
⊥ will be the energy-containing parallel wavenumber at a given

k⊥. The 1D perpendicular spectrum is, therefore,

ET
⊥(k⊥) =

∫
dk∥ E

T
2D(k∥, k⊥) ∼

∫ k
2/3
⊥

0

dk∥ k
−c
⊥ kd∥ ∼ k

−c+ 2
3
(1+d)

⊥ . (7.54)

This must match the scaling (7.46) of the 1D perpendicular spectrum derived from the

constant-flux conjecture, implying that

c =
2

3
(1 + d) +

7

3
. (7.55)

The final two constraints follow from imposing boundary conditions as k∥, k⊥ → 0

at constant k⊥, k∥. The scaling of the spectrum as k⊥ → 0 (in the region k∥ ≳ k
2/3
⊥ ) can

be determined purely kinematically: the low-k⊥ asymptotic behaviour of a homogenous

isotropic system must be k3⊥, implying that

b = 3. (7.56)
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This is a fairly standard result2 (see, e.g., [87]). The scaling as k∥ → 0 (in the region

k∥ ≲ k
2/3
⊥ ) follows from causality. Indeed, in Section 6.2, we argued that the critical

balance (7.44) is a causality condition: two points along a field line can only remain

correlated with one another if information can propagate between them faster than

they are decorrelated by the nonlinearity, viz., fluctuations become decorrelated for

ω∥ ≲ t−1
nl . This latter condition is exactly k∥ ≲ k

2/3
⊥ , meaning that the parallel spectrum

of the perturbations in this region must be the spectrum of white noise, implying

d = 0. (7.57)

Combining (7.53)-(7.57), we find

a = 9, c = 3, (7.58)

which gives us the following scalings of the 2D spectrum of the temperature perturba-

tions3:

ET
2D(k∥, k⊥) ∼

 k−9
∥ k3⊥, k∥ ≳ k

2/3
⊥ ,

k−3
⊥ k0∥, k∥ ≲ k

2/3
⊥ .

(7.59)

Turning now to the 2D spectrum of the potential perturbations, analogously to

(7.52), the conditions (7.53) and (7.55) are unmodified — the spectrum must still be

continuous along k∥ ∼ k
2/3
⊥ , and match the scaling of the 1D perpendicular spectrum

that follows from the constant-flux conjecture, which is the same for both the potential

and temperature perturbations. Similarly, the scaling of the spectrum as k⊥ → 0 (in the

2Though not one that is universally true. For example, [114] (see also appendix C of [115]) showed
that a k1⊥ scaling could emerge through a balance between turbulent diffusion and the nonlinear
‘source’ that would otherwise give rise to the k3⊥ scaling. Let us estimate the rate of turbulent
diffusion in our system. The dominant contributions to the turbulent diffusion coefficient D will

be those on the energy-containing scales k∥ ∼ k
2/3
⊥ , so D ∼ v2Etnl ∼ ω̃∥/k̃

2
⊥, where have used the

critical-balance condition (7.44), and the tildes denote quantities evaluated along k∥ ∼ k
2/3
⊥ (at small

perpendicular scales relative to those that we are considering). The rate of turbulent diffusion will

thus be k2⊥D ∼ ω̃∥(k⊥/k̃⊥)
2 ≪ ω∥, since we are in the region k∥ ≳ k

2/3
⊥ where ω∥ ≫ ω̃∥ and k⊥ ≪ k̃⊥.

The effects of turbulent diffusion are thus negligible, and so we are justified in adopting the k3⊥ scaling.

Note that the survival of the k3⊥ scaling is a noteworthy feature of our system, where the k∥ ≳ k
2/3
⊥

dynamics are dominated by parallel dissipation due to thermal conductivity, rather than by waves (as
in [115]). We shall discuss further consequences of this distinction in Section 7.2.4.

3[87] obtained, through identical methods, a similar result in their considerations of long-wavelength
electrostatic turbulence. Specifically, they found that a = 5 and c = 11/3 — this was a consequence
of the fact that they considered collisionless turbulence, for which the critical-balance condition is

k∥ ∼ k
4/3
⊥ [see (6.12)].
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region k∥ ≳ k
2/3
⊥ ) will once again be k3⊥ by the same kinematic argument, implying that

b = 3. However, the causality argument that led to the white-noise scaling at k∥ ≲ k
2/3
⊥

now no longer holds, because φ cannot be directly decorrelated by the nonlinearity.

Instead, it inherits its scaling from δTe/T0e via the balance (7.43), viz.,

Eφ
2D ∼

ω2
∥

ω2
ET

2D ∼
k4∥k

−3
⊥

ω2
, (7.60)

where we have used ω∥ ∝ k2∥ and the second expression in (7.59). Now, in the region

k∥ ≲ k
2/3
⊥ , we expect thermal conductivity in the temperature equation to be sub-

dominant to the nonlinear rate, and so estimating ω ∼ t−1
nl ∝ k

4/3
⊥ in (7.60), we find

that

d = 4. (7.61)

Combining (7.53), (7.55) and (7.61), it follows that

a = 9, c =
17

3
, (7.62)

which gives us the following scalings of the 2D spectrum of the potential fluctuations:

Eφ
2D(k∥, k⊥) ∼

 k−9
∥ k3⊥, k∥ ≳ k

2/3
⊥ ,

k
−17/3
⊥ k4∥, k∥ ≲ k

2/3
⊥ .

(7.63)

Note that the perpendicular wavenumber scaling in (7.63) for k∥ ≲ k
2/3
⊥ is consistent

with the assumption that the frequency is comparable to the nonlinear rate [cf. (7.60)

for ω ∼ t−1
nl ].

Cuts of the 2D spectra (7.50) and (7.51) at constant k⊥ and k∥ are shown in figures

7.10 and 7.9, respectively, showing good agreement with the scalings predicted by

(7.59) and (7.63). The full 2D spectrum of the temperature perturbations is plotted in

Figure 7.11.
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(a) Eφ
2D(k∥ = constant, k⊥)

(b) ET
2D(k∥ = constant, k⊥)

Figure 7.9: Cuts of the 2D spectra of the (a) electrostatic potential and (b) temperature
perturbations at constant k∥. The colours indicate the value of k∥LT /

√
σ for a given cut.

The left-hand panels show the entire spectrum plotted as a function of k⊥ρ⊥. The right-
hand panels show selected cuts for k∥LT /

√
σ within the inertial range, with the horizontal

axis rescaled according to the critical-balance relation (7.47). The black dashed lines show
the predicted scalings (7.63) and (7.59) in panels (a) and (b), respectively. The spectra show
reasonable agreement with the scalings at both small and large (perpendicular) scales, despite
the effects of hyperviscosity being present on the smallest scales.
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(a) Eφ
2D(k∥, k⊥ = constant)

(b) ET
2D(k∥, k⊥ = constant)

Figure 7.10: Cuts of the 2D spectra of the (a) electrostatic potential and (b) temperature
perturbations at constant k⊥. The colours indicate the value of k⊥ρ⊥ for a given cut. The
left-hand panel shows the entire spectrum plotted as a function of k∥LT . The right-hand
panel shows cuts of the spectrum for k⊥ρ⊥ within the inertial range, with the horizontal
axis rescaled according to the critical-balance relation (7.47). The black dashed lines show
the predicted scalings (7.63) and (7.59) in panels (a) and (b), respectively. There is very

good agreement with the predicted scalings, especially for those at k∥ ≲ k
2/3
⊥ , which extend

well-beyond the inertial range to higher k⊥ρ⊥, as can be seen from the left-hand panel —
this is not surprising because the causality argument is not sensitive to the precise details of
the decorrelation physics.
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Figure 7.11: A contour plot of the logarithm of the 2D spectrum (7.51) of the temperature
perturbations in the (k∥, k⊥) plane. The line of critical balance is shown as the dashed black
line, while the outer scale is shown by the black dot. The horizontal dotted line shows the
upper bound on the parallel-wavenumber cuts plotted in the right-hand panels of Figure 7.9.
Similarly, the vertical dotted lines show the lower and upper bound on the perpendicular
wavenumber cuts plotted in the right-hand panels of Figure 7.10.

Figure 7.12: 1D perpendicular spectra of the energy injection (7.33) (solid red), parallel
dissipation (7.64) (dashed blue) and perpendicular dissipation (7.65) (dotted blue). The
location of the outer scale is shown by the black dot. It is clear that the rate of parallel
dissipation is significant throughout almost all of the wavenumber range, while perpendicular
dissipation takes over at the very smallest scales.

107



7.2.4 Dissipation in critically-balanced turbulence

Throughout this chapter, we have been assuming that there exists a separation of scales

between the outer scale and the dissipative scales, with energy being carried from the

former to the latter via a constant-flux cascade. However, a perceptive reader may have

noticed that this assumption is not obviously satisfied: the existence of the collisional

sETG depends intrinsically on the presence of thermal conduction (see Section 3.2),

which is a (primarily) dissipative effect. Plotting, in Figure 7.12, the perpendicular

wavenumber spectrum of the injection (7.33) alongside that of the parallel and perpen-

dicular dissipation, defined as [cf. (7.38) and (7.39)]

D∥k(k⊥) = 2πk⊥

∫ ∞

−∞
dk∥

〈
ω∥

[
cφφ

∣∣∣∣(1 + 1

τ̄

)
φk −

cφT
cφφ

δTek
T0e

∣∣∣∣2 (7.64)

+

(
cTT −

c2φT
cφφ

) ∣∣∣∣δTekT0e

∣∣∣∣2
]〉

,

D⊥k(k⊥) = 2πk⊥

∫ ∞

−∞
dk∥

〈
(k⊥ρ⊥)

2nνν⊥

(
|φk|2 +

3

2

∣∣∣∣δTekT0e

∣∣∣∣2
)〉

, (7.65)

we see that the parallel dissipation is significant, and comparable to the energy in-

jection, throughout almost the entire wavenumber range. How, then, is the presence

of this dissipation throughout the majority of the (perpendicular) wavenumber space

consistent with the idea that the turbulence proceeds via a constant-flux cascade? The

answer lies in the very steep parallel wavenumber scaling of the 2D spectra (7.59) and

(7.63) in the region k∥ ≳ k
2/3
⊥ . In terms of timescales, this wavenumber constraint

corresponds to ω∥ ≳ t−1
nl , and thus to a region of dominant thermal conduction that

attempts to erase parallel structure created by the turbulence. In fact, this region is

so efficient at erasing parallel structure that it is an ineffective dissipation region for

free energy: the free energy cannot be nonlinearly transferred into this region in an ef-

ficient way, and instead cascades towards higher perpendicular wavenumbers along the

critical balance line, eventually encountering the effects of perpendicular dissipation,

introduced, in this case, through hyperviscosity. Thus, in effect, the parallel conduction

region becomes a ‘barrier’ that constrains the cascade of energy in wavenumber space

to remain below the critical balance line k∥ ∼ k
2/3
⊥ . It thus appears that the system

organises itself in such a way as to maintain a constant-flux cascade to small scales,

despite the presence of dominant (parallel) dissipation.
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The causality argument behind the critical-balance conjecture must therefore be

modified as follows. Since there is no mechanism to preserve the parallel coherence

of structures created by perpendicular mechanisms (via injection due to the ETG, or

nonlinear cascade), one expects them to break up in the parallel direction to as fine

scales as the system will allow. The limiting factor for this parallel refinement is that

if structures reach parallel scales such that k∥ ≳ k
2/3
⊥ , they are immediately wiped out

by heat conduction. This process is so efficient that there is little nonlinear coupling

into such small parallel scales: parallel dissipation acts not as a sink for the cascade,

but as a “wall” along which the cascade is constrained to take place.

One could dismiss this observation as being a peculiarity of the collisional model

that we have chosen to consider, given that the dissipative nature of collisional sETG

instability (3.10) is hard-wired by assumption. However, this picture is not entirely

different from what is observed in more generic systems of plasma turbulence: e.g.,

[116] observed an overlap of the spatial scales of energy injection and dissipation in

electrostatic, ion-scale toroidal gyrokinetic simulations, as did [96] in the context of

Alfvénic turbulence. Indeed, the same behaviour could also be relevant in the context

of kinetic ETG-driven turbulence. The growth rate of the collisionless sETG (3.5) is

limited by the parallel streaming rate k∥vthe, which is also the rate of Landau damping;

viewed within the context of the current discussion, this suggests, perhaps, that Landau

damping could play a dissipative role similar to that of the thermal conduction in

determining the way in which the system organises itself in order to support a constant-

flux cascade of energy to small scales. Then, the rates of either parallel streaming or

thermal conduction appearing in the critical balances (6.11) and (6.19), respectively,

can also be interpreted as being there because they are the rates of parallel dissipation,

rather than parallel information propagation, limiting any further refinement of the

parallel scale of the turbulent structures.

Taken together, the numerical evidence from the scan in L∥/LT (Section 7.1.5)

and consideration of the 1D and 2D energy spectra (sections 7.2.2 and Section 7.2.3,

respectively) seems to us to be quite conclusive: collisional, electrostatic, sETG-driven

turbulence saturates via a critically balanced, constant-flux nonlinear cascade of free

energy to small perpendicular scales, with thermal conductivity limiting the cascade of

free energy in parallel wavenumbers, clamping it to the line of critical balance k∥ ∝ k
2/3
⊥ .

This is, in fact, one of only two existent numerical demonstrations of the existence of
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such a state within gradient-driven turbulence of this kind — the other being [12], in

the context of ITG turbulence. The fact that turbulence in gradient-driven systems

appears to behave similarly to those in which energy is injected by explicitly large-scale

processes is encouraging from the perspective of theory, as it suggests that existing

insights into, and experience of, the latter can be applied to the former, significantly

less well studied case.

7.3 Finite magnetic-field gradients

As discussed in Section 7.1.3, we have been working in the limit of a very steep electron

temperature gradient, in comparison to which the magnetic-field gradient could be

neglected everywhere that it appeared in our equations. Formally, this corresponds to

the limit of LB/LT → ∞. Let us now consider the effect of including magnetic-field

gradients within our electrostatic ETG system; restoring the magnetic-drift terms in

(7.25) and (7.26) gives [see (A.98) and (A.99), respectively]:

d

dt
τ̄−1φ−

(
1 +

1

τ̄

)
cφφv

2
the

2νei

∂2φ

∂z2
+
cφTv

2
the

2νei

∂2

∂z2
δTe
T0e

+
ρevthe
LB

∂

∂y

[(
1 +

1

τ̄

)
φ− δTe

T0e

]
= 0,

(7.66)

d

dt

δTe
T0e

+
2

3

(
1 +

1

τ̄

)
cTφv

2
the

2νei

∂2φ

∂z2
− 2

3

cTTv
2
the

2νei

∂2

∂z2
δTe
T0e

− 2

3

ρevthe
LB

∂

∂y

[(
1 +

1

τ̄

)
φ− 7

2

δTe
T0e

]
= −ρevthe

2LT

∂φ

∂y
. (7.67)

Evidently, the presence of these terms introduces another instability into the system,

the cETG (3.15), which could modify its turbulent transport properties. In particular,

the turbulence theory of Section 6.2.2 assumed that the sETG was the dominant source

of energy injection; this is only the case at sufficiently large LB/LT [see (3.16)], meaning

that we would expect departures from the behaviour observed in the previous sections

to be most significant for LB/LT of order unity.

A series of simulations were conducted in which LB/LT was varied, with all other

parameters being kept the same as in the baseline simulation (see table 7.1); the heat

flux from these simulations is plotted in Figure 7.13. It is readily apparent that the

introduction of finite magnetic-field gradient led to a failure of saturation for all simu-

lations where LB/LT was above the linear critical gradient for the sETG instability:

LB

LT

>
1

2

(
τ̄ +

40

9

1

τ̄ 2

)
, (7.68)
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Figure 7.13: Timetraces of the instantaneous heat flux from simulations with finite LB/LT ,
with the limit of LB/LT → ∞ shown for comparison. All parameters are the same as the
baseline simulation (see table 7.1). The heat flux grows without bound in all simulations with
(finite) LB/LT above the linear critical gradient (7.68) (≈ 2.72 for τ̄ = 1), with the rate of
divergence decreasing as LB/LT is increased. These simulations were stopped after shorter
times due to computational demands. Note that we are potentially dealing with a case of
non-interchangeability of limits, in that the long-time behaviour from a simulation in which
LB/LT → ∞ is not the same as that from one in which LB/LT is taken to infinity at long
times; in the former case, the heat flux converges, while in the latter, it does not.

a threshold that can straightforwardly be derived from (7.66) and (7.67). This lack of

saturation appears to be robust to changes in box size, box aspect ratio, and resolution

in all of the coordinate directions.

This effect was first encountered in fluid simulations of ITG-driven turbulence by

[117], who observed that saturation could be restored by adopting the modified adia-

batic electron response (see, e.g., [74]) that one encounters on ion scales:

δni

n0i

=
δne

n0e

=
e(ϕ− ϕ)

T0e
≡ eϕ′

T0e
, (7.69)

where ϕ and ϕ′ denote the zonal and non-zonal components of the electrostatic po-

tential. Indeed, (7.69) has been found to be crucial for capturing essential zonal flow

physics [64, 66, 118]. Physically, this can be explained by the fact that (7.69) reserves

a special status for zonal flows, in that it allows there to be non-trivial nonlinear in-

teractions between the ϕ and ϕ′ through, e.g., the electrostatic E × B nonlinearity

contained in the convective derivative (2.10).
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(a) (LT/ρ⊥)φ (b) (LT/ρ⊥)δTe/T0e

Figure 7.14: Real-space snapshots of the (a) electrostatic potential and (b) tempera-
ture perturbations from the simulation with LB/LT = 1000 from Figure 7.13, taken at
(ρe/ρ⊥)

2νeit/2 = 200. The coordinate axes are as shown, while the red and blue colours
correspond to regions of positive and negative fluctuation amplitude. At these early times,
the turbulence appears similar to that of saturated sETG turbulence for LB/LT → ∞ (cf.
Figure 7.5), despite the eventual lack of saturation.

(a) (LT/ρ⊥)φ (b) (LT/ρ⊥)δTe/T0e

Figure 7.15: The same as Figure 7.14, except taken at (ρe/ρ⊥)
2νeit/2 = 1000. The indefinite

growth of the heat flux is associated with the formation of large-scale, approximately two-
dimensional streamer structures that appear to be robust to all types of nonlinear shearing.
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However, as we discussed in Section 7.2.2, the adiabatic ion response (2.22) causes

the nonlinearity in the continuity equation (7.66) to vanish identically. Crucially, this

means that (7.66) lacks any nonlinearity capable of generating two-dimensional sec-

ondary instabilities that are often responsible for the generation of zonal flows and

destruction of streamers generated by curvature-driven instabilities [64, 119–121]. In-

deed, the lack of saturation in the case of our ETG simulations appears to be due to

the inability of the system to break apart streamers once they have been established

by the cETG; the existence of such streamers causes the heat flux to diverge as they

‘short circuit’ the heat transport across the radial domain. Even if the simulation

initially appears to saturate after the linear phase, it will eventually form large-scale

streamers that appear to be robust to all types of nonlinear shearing, as seen clearly

in the real-space snapshots of cETG turbulence shown in figures 7.14 and 7.15.

This suggests, perhaps, that the adiabatic ion response (2.22) is insufficient to

saturate ETG-scale turbulence in the presence of finite magnetic-field gradients, and

one may have to resort to other closures for the ions. One such closure including scales

comparable to the ion-Larmor radius was introduced in [1], given by

δne

n0e

= −τ̄−1φ+
1

n0i

∫
d3v ⟨gi⟩r , (7.70)

where τ̄−1 is now an operator defined as follows:

−τ̄−1φ = −Z
τ
(1− Γ̂0)φ ≈


Z

2τ
ρ2i∇2

⊥φ, k⊥ρi ≪ 1,

−Z
τ
φ, k⊥ρi ≫ 1,

(7.71)

and the operator Γ̂0 can be expressed, in Fourier space, in terms of the modified Bessel

function of the first kind: Γ0 = I0(αi)e
−αi , where αi = (k⊥ρi)

2/2. The presence of the

non-adiabatic ion distribution function gi in (7.70), however, means that one would

have also to include a self-consistent treatment of ions in order to make use of this

closure. Should this, or other similar closures, allow for saturation, this would then

imply that one must always appeal, at least in part, to ion-scale physics for saturation

of electrostatic cETG-driven turbulence. The extent to which such considerations are

relevant, however, depends on whether or not the system being considered contains

any electromagnetic physics, and thus on the value of the (electron) plasma beta βe.

Indeed, for βe ≳ me/mi, the flux-freezing scale de (or deχ, in the collisional limit)
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is encountered before (i.e., is smaller than) the ion Larmor radius ρi when moving

towards larger perpendicular scales (to the left in figures 5.1 and 5.2). Provided that

the wavenumber interval between de and ρi is sufficiently wide to allow for the presence

of either sTAI or cTAI, the mechanisms of saturation in such a system could be vastly

different than in the electrostatic regime; this is the subject of the following section.

Lastly, a perceptive reader may have noticed that the validity of scale-invariance

results of Section 7.1 did not depend on any stipulations about the perpendicular

equilibrium gradients of the system, apart from the requirement that their size must

preserved under any transformation considered. This means that the transformation of

electrostatic drift kinetics (7.16)-(7.18), and the resultant scaling of the heat flux (7.23),

are also valid in the case of finite magnetic field gradients; indeed, it is straightforward

to show that (7.66) and (7.67) are also invariant under the transformation (7.28).

How, then, is the lack of saturation in simulations with finite magnetic field gradients

compatible with this result? The answer to this question lies in the fact that in writing

(7.22), we implicitly assumed the heat flux to be independent of time, i.e., that it has

been able to reach a statistical steady state. If this is not the case, (7.22) has to be

replaced with

Q̃s(λ
2Lx, λ

2Ly, λ
2/αL∥, t/λ

2) = λ2Qs(Lx, Ly, L∥, t), (7.72)

which, even under the assumption that the heat flux is independent of perpendicular

box size, does not lead to the scaling (7.23). Thus, there is no contradiction with scale

invariance. If we had been able to find a case of cETG turbulence that saturated, we

would have expected the scaling (7.23) for the corresponding heat flux (although not

necessarily the same detailed inertial-range structure as for the sETG turbulence that

we studied above), but in any event, no such saturated cases presented themselves.

Perhaps interestingly, the case of LB/LT = 1000, which had a long period of seemingly

saturated behaviour before its heat flux began to diverge, did have a heat flux during

that period with the same magnitude as the sETG one (LB/LT → ∞), and indeed all

the other cases went nonlinear around that same magnitude of the heat flux as well

(see Figure 7.13).
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Chapter 8

Electromagnetic TAI-driven
turbulence

One aspect of turbulent transport that has baffled tokamak modellers in recent years

is the failure to find a saturated state in local, nonlinear electromagnetic simulations.

In many cases, the turbulent heat flux in these simulations grows without bound, with

energy principally being injected on large scales, and no statistical steady state is ever

established. Though there are some proposed explanations for this behaviour (see,

e.g., [60–63] and references therein), its physical cause remains largely unclear. This

chapter is devoted to the consideration of this issue in the context of the low-beta

system with which we have been working throughout this thesis. In particular, we

find that nonlinear simulations of purely sTAI-driven turbulence display a failure of

saturation, similarly to the aforementioned gyrokinetic simulations. The nature of this

“blow-up” (a term that we shall adopt henceforth) is characterised in Section 8.1, while

Section 8.2 outlines some of the possible mechanisms responsible. Lastly, in Section 8.3,

we revisit the broader subject of drift-kinetic scale invariance and how it may apply,

or otherwise, in the electromagnetic regime. In many ways, the material presented in

this chapter is incomplete: we do not yet have a satisfyingly conclusive narrative about

the saturation (or lack thereof) of electromagnetic turbulence in the same way that

there was in Chapter 7 for the electrostatic sETG regime. Our results demonstrate,

however, that electromagnetic tokamak turbulence is not very well understood — even

within the context of our dramatically simplified model — and so remains an exciting

and attractive area of active and future research.

115



8.1 Non-saturation of sTAI turbulence

Let us consider the simplest possible case of electromagnetically driven turbulence

available within our reduced model: that driven by the sTAI, in the absence of any

equilibrium magnetic-field gradients. Though this is somewhat restrictive, it will allow

us to focus on the fundamental physics behind electromagnetic destabilisation without

the further complications that arise to due to the presence of magnetic drifts, viz., we

will not have to consider turbulence simultaneously driven by both the sTAI and cTAI.

Note also that in restricting ourselves to sTAI-driven turbulence, we will be considering

a case of saturation failure that is electromagnetic in an essential way, and is manifestly

different from the one involving magnetic drifts considered in Section 7.3.

Such a system is described by (2.27)-(2.29), with the magnetic drifts neglected in

the density equation. However, to be consistent with the pedagogy of Section 7.1.3, we

will adopt an equivalent set of equations derived using the correct linearised Landau

collision operator [see (A.89)-(A.91)]:

d

dt
τ̄−1φ− vthe∇∥d

2
e∇2

⊥A = 0, (8.1)

dA
dt

+
vthe
2

∂φ

∂z
= −vthe

2
∇∥τ̄

−1φ+

(
1 +

c2
c1

)
vthe
2

(
∇∥

δTe
T0e

− ρe
LT

∂A
∂y

)
+
νei
c1
d2e∇2

⊥A,

(8.2)

d

dt

δTe
T0e

− κ∇∥

(
∇∥

δTe
T0e

− ρe
LT

∂A
∂y

)
+

2

3

(
1 +

c2
c1

)
vthe∇∥de∇2

⊥A = −ρevthe
2LT

∂φ

∂y
, (8.3)

where the field equations (2.30) have been used to express the density and parallel veloc-

ity perturbations in terms of the electrostatic and parallel magnetic vector potentials,

respectively. The ion-charge-dependent coefficients c1, c2, and c3 are the same as those

in (7.31), while κ = c3v
2
the/3νei is now the electron thermal conductivity. Rescaling the

collisionality and thermal conductivity as νei/c1 → νei, c1κ → κ, it is straightforward

to see that (8.1)-(8.3) are identical to (2.27)-(2.29) apart from the presence of the ad-

ditive c2/c1 factors in (8.2) and (8.3); the physical origin of these ‘thermal forces’ is

discussed in Appendix A.5.2. This noted, a concerned reader may rest assured that

(8.1)-(8.3) reproduce all of the linear instabilities considered in chapters 3 and 4 up to

order-unity modifications to constant coefficients — our results are robust with respect

to the exact choice of collision operator.
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Lx/deχ Ly/deχ L∥
√
βe/LT nx ny n∥ 2χ2ν⊥/νei nν

sTAI simulation 800 800 80 191 191 31 1.0 2

Table 8.1: Table showing the parameters used in the simulation representative of the lack of saturation
in electromagnetic sTAI turbulence. The simulation has τ = Z = 1.

This three-field system (8.1)-(8.3) was simulated using the same numerical method

as that described in Section 7.1.4. Hyperviscosity of the form [cf. (7.32)]

d

dt
+ (−1)nνν⊥ (deχ∇⊥)

2nν , (8.4)

was once again used in order to provide an ultraviolet wavenumber cutoff for the insta-

bilities and, in particular, to allow us to restrict our consideration to the electromag-

netic scales k⊥deχ ≪ 1 on which the sTAI resides. With (8.4) appended, our system

of equations (8.1)-(8.3) depends on the following dimensionless parameters: the per-

pendicular and parallel box sizes Lx/deχ, Ly/deχ, and L∥
√
βe/LT , the hyper-collision

frequency 2χ2ν⊥/νei, and the power of the hyperviscous diffusion operator nν .

So far, none of the simulations of (8.1)-(8.3) that we attempted have been able

to reach saturation, despite exploring a relatively large amount of the available pa-

rameter space, viz., the observed blow-up seems to be robust to changes in parallel

and perpendicular box sizes, their aspect ratio, resolution in all of the coordinate di-

rections, and hyperviscosity. The fact that we observe such a blow up is, in a sense,

unsurprising, given that simulations of electromagnetic, gradient-driven turbulence are

notoriously difficult to saturate. We are reasonably confident that this blow-up is not

due to an accumulation of numerical errors within the code: its pseudo-spectral nature

makes it robust against many of the numerical instabilities associated with calculating

derivatives via finite-difference methods, and we have verified that the code nonlinearly

conserves the free energy (6.2) at all times down to a level of precision consistent with

the timestep being used. Furthermore, its relative simplicity has allowed us to check the

implementation exhaustively to ensure that it is working as intended by, e.g., bench-

marking the linear part of the solver against analytical expressions or stress-testing

the kernels used to compute each of the nonlinear terms individually. The following

discussion will thus be predicated on the assumption that the blow-up is physical —

related to the mechanisms of saturation of electromagnetic turbulence in of our reduced

model — rather than due to some purely numerical issue.
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Figure 8.1: Turbulent heat flux in the simulation with parameters given in table 8.1. The
upper and lower panels show, respectively, the instantaneous and (rolling) time-averaged heat
fluxes. The electrostatic and electromagnetic contributions to the heat flux are shown in blue
and red, respectively, while the total heat flux is shown in black. After initial linear growth,
apparent saturation is observed around νeit/2χ

2 ∼ 10000, but the system has not in fact
reached a steady state — due to the secular growth of a particular large-scale mode — with
the heat flux beginning to grow significantly at later times.

To examine the nature of this electromagnetic blow-up, we consider a representa-

tive simulation, whose parameters can be found in table 8.1. The magnitude of the

hyperviscosity was chosen so as to ensure that there were no wavenumbers unstable

to the (electrostatic) sETG instability, meaning that all energy injection must be due

to the sTAI. In Figure 8.1, we plot the time evolution of the (normalised) turbulent

heat flux, which is composed of two parts: (i) the electrostatic contribution due to the

fluctuating E × B flow, given by the first expression multiplying 1/LT in the colli-

sional version of (6.4); and (ii) the electromagnetic contribution due to heat flow along

perturbed magnetic field lines (magnetic flutter), given by the second. As expected,

the simulation undergoes a period of linear growth due to the sTAI (the electromag-

netic heat flux is dominant during the initial part of the linear phase) until around

νeit/2χ
2 ∼ 10000, after which it appears to reach nonlinear saturation, settling into an

apparent steady state by νeit/2χ
2 ∼ 20000. However, as the simulation continues to

run, we see that both the electrostatic and electromagnetic contributions to the heat

flux begin to grow at νeit/2χ
2 ∼ 50000, seemingly without bound. This growth is not
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arrested if one allows the simulation to run to even longer times. However, we have

not been able to run to significantly longer times due to the associated computational

demands; we cannot disregard the possibility that saturation at large amplitudes could

indeed still occur, but we think it unlikely given the nature of the blow-up.

In Figure 8.2, we plot the time evolution of individual poloidal wavenumbers kydeχ

from the simulation. The smaller scales are initially damped by the effects of hyper-

viscosity, while larger scales, where hyperviscosity is negligible, grow slowly. These,

however, are not the most unstable wavenumbers, since the sTAI peaks at smaller

scales k⊥deχ ∼ 1 (see the discussion at the end of Section 4.4.1); the growth of these

most unstable wavenumbers eventually triggers the linear phase, after which most of

the modes are damped by some nonlinear ‘saturation’ process. Figures 8.3 and 8.4 show

real-space snapshots of the simulation during and after the linear phase, respectively.

The presence of the sTAI is evident in the former: the instability is clearly three-

dimensional, as seen from the parallel structure manifest in all of the fields, and is

Alfvénic in nature, since the electrostatic and magnetic vector potential perturbations

are approximately in phase [we expect that A ∼ k⊥deφ for a KAW-like perturbation;

see, e.g., (4.32)]. This represents the first numerical confirmation of the fact that the

sTAI instability exists and is able to drive turbulence which, the question of the blow-

up aside, is a non-trivial result in itself. From Figure 8.4, it is clear that the magnetic

vector potential is already dominated by larger scales than the other two fields following

the nonlinear ‘saturation’, corroborating the spectral evidence from Figure 8.2(b).

As time progresses, we eventually see the emergence of a large-scale mode that

seems to grow without bound, mirroring the growth of the heat flux seen on the far

right of Figure 8.1. As can be seen in Figure 8.5, this mode is dominated by the

second harmonics in both the parallel and poloidal directions, viz., it corresponds to

the wavenumbers kydeχ = 0.0157 (ny = 2) and k∥LT/
√
βe = 0.157 (n∥ = 2). This

is particularly obvious from the real-space snapshots of the magnetic vector potential

perturbations, which are almost entirely composed of these larger scales [cf. with

Figure 8.2(b) at late times]; the electrostatic potential and temperature perturbations

consist of some smaller-scale, mostly two-dimensional structure superimposed on this

large-scale background. It is clear from Figure 8.2 that this mode exhibits secular

growth throughout the simulation at a rate comparable to its rate of linear growth,

eventually breaking the apparent steady-state established around νeit/2χ
2 ∼ 20000
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(a)

(b)

Figure 8.2: The time-evolution of individual poloidal wavenumbers kydeχ of the (a) temper-
ature and (b) parallel magnetic vector potential perturbations in the simulation described
in table 8.1, and for kxdeχ = 0 and k∥LT /

√
βe = 0.157. The electrostatic potential and

temperature perturbations display qualitatively similar behaviour, and so we have not in-
cluded the former here. The dominant (growing) wavenumber at late times in both panels is
kydeχ = 0.0157, corresponding to the second poloidal harmonic (i.e., ny = 2). Throughout
its evolution, the parallel magnetic vector potential is dominated by large-scale modes; the
amplitudes of all but the first decade of wavenumbers are negligible by comparison [note the
scale of the colour bar].
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(see Figure 8.1). The dominance of this mode at late times has been observed in all

simulations, regardless of changes in perpendicular and parallel box sizes, as well as

their aspect ratio. Once it has been established, amplitudes appear to grow indefinitely,

and the system never reaches a steady state.

8.2 Speculations on non-saturation

It is not currently clear as to why these simulations of electromagnetic sTAI-driven

turbulence are unable to saturate. It is not obvious, for example, why the system

wants to form a large-scale mode in the first place, given that the energy injection

occurs at smaller scales and that the offending mode emerges out of a state of apparent

saturation that manages to persist for a long time. In the remainder of this section,

we examine a number of possible explanations for this lack of saturation; this material

is entirely speculative in nature.

8.2.1 Lack of zonal dynamics

As we discussed in Section 7.3, the adiabatic ion response (2.22) causes the nonlin-

earity in the continuity equation (8.1) to vanish identically. Crucially, this means

that (8.1) lacks any nonlinearity capable of generating zonal flows via a secondary

instability associated with the Reynolds stress — viz., from interactions between the

density and potential perturbations — which might have caused shearing of the prob-

lematic large-scale modes. Indeed, examining the zonal and non-zonal components of

the perturbations in the simulation described in table 8.1, it is clear that the zonal

components are at least an order of magnitude smaller than the non-zonal ones at

all times throughout the simulation (see Figure 8.6). It is thus possible that the lack

of saturation in these electromagnetic simulations is a consequence of the fact that

electron-scale simulations are generically difficult to saturate in cases where they form

large-scale structures, as the sub-dominant nature of zonal flows means that they are

not easily eroded once established. This assertion can be tested directly in our system

of equations (8.1)-(8.3). In the absence of magnetic-field gradients, the contribution

from the non-adiabatic ion distribution function gi to the quasineutrality closure (7.70)

vanishes, meaning that we can adopt (7.70) without having to include a self-consistent
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(a) (LT/deχ)φ (b) (LT/deχ)δTe/T0e

(c) (LT/deχ
2)A

Figure 8.3: Real-space snapshots of the (a) electrostatic potential, (b) temperature, and (c)
parallel magnetic vector potential perturbations from the simulation described in table 8.1,
taken at νeit/2χ

2 = 8000 during the linear phase. The coordinate axes are as shown, while
the red and blue colours correspond to regions of positive and negative fluctuation amplitude.
The three-dimensional nature of the sTAI can be seen in the parallel structure manifest in all
of the fields, as can the Alfvénic character of the instability in the fact that the electrostatic
and magnetic vector potential perturbations are approximately in phase [we expect that
A ∼ k⊥deφ for a KAW-like perturbation; see, e.g., (4.32)].
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(a) (LT/deχ)φ (b) (LT/deχ)δTe/T0e

(c) (LT/deχ
2)A

Figure 8.4: The same as Figure 8.3, except taken at νeit/2χ
2 = 20000 following the linear

phase. The structure of the potential and temperature perturbations is relatively isotropic in
the perpendicular plane, while the latter appears to be almost two-dimensional. The magnetic
vector potential is now at significantly larger scales than the other two fields, displaying a
streamer-like structure, albeit one with a non-zero k∥.
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(a) (LT/deχ)φ (b) (LT/deχ)δTe/T0e

(c) (LT/deχ
2)A

Figure 8.5: The same as Figure 8.3, except taken at νeit/2χ
2 = 80000, when the heat flux

is growing without bound. The lack of saturation is associated with a now fully-developed
streamer-like structure (with non-zero parallel and poloidal variation) in the parallel magnetic
vector potential. This structure appears to be impervious to all mechanisms of nonlinear
shearing.
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Figure 8.6: The time-evolution of the zonal and nonzonal components of the perturbations
in the simulation described in table 8.1. The top left panel shows the maximum amplitude of
each of the fields. In the remaining panels, the zonal and non-zonal components are, in the
usual way, indicated by the overbar and prime; e.g., φ̄ and φ′ are the zonal and non-zonal
components of the electrostatic potential, respectively, as in (7.69).

treatment of the ions. This restores the nonlinearity in the continuity equation (8.1),

viz.,

d

dt
τ̄−1φ =

∂

∂t
τ̄−1φ+

ρevthe
2

{
φ, τ̄−1φ

}
, (8.5)

where τ̄ is now an operator, given by (7.71). The Reynolds stress is manifest in the

nonlinearity in (8.5): considering scales k⊥ρi ≪ 1, it becomes, via (7.71),

lim
k⊥ρi≪1

{
φ, τ̄−1φ

}
= −

{
φ, ρ2s∇2

⊥φ
}
, (8.6)

where ρs =
√
Z/2τρi is the ion sound radius. [64] showed that the Reynolds stress plays

a key role in enabling saturation in ITG-driven turbulence, in that it is responsible for

the turbulent generation (and restoration) of zonal flows activity that results in the

shearing of large-scale eddies generated by the curvature-mediated ITG instability. It

would be interesting to see whether the Reynolds stress is capable of playing a similar

role within our electromagnetic simulations by, e.g., generating sufficiently large zonal

flows to be able to break apart the growing mode(s) responsible for the blow-up. This

is a subject for future work.
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8.2.2 Reynolds and Maxwell stresses

Closely related to the above considerations is the question of the relative roles of

Reynolds and Maxwell stresses in determining the saturated state of the turbulence.

The finite perturbations of the magnetic-field direction encountered in the electromag-

netic regime give rise to the nonlinearity within the parallel derivative [see (2.11)],

which in the continuity equation (8.1) manifests itself as

vthe∇∥d
2
e∇2

⊥A = vthe
∂

∂z
d2e∇2

⊥A− ρevthe
{
A, d2e∇2

⊥A
}
. (8.7)

The nonlinearity in (8.7) is the Maxwell stress, which, within (8.1), has the opposite

sign to that of the Reynolds stress, if the latter is not zero, as in (8.6). This implies

that the generation of zonal flows, or otherwise, within our model of electromagnetic

turbulence will involve a competition between the Reynolds and Maxwell stresses, with

the former perhaps promoting their formation like in ITG turbulence [64], and the latter

resisting it. As discussed in the previous section, the simulations that we have thus far

conducted have assumed adiabatic ions, for which the Reynolds stress vanished, and

in which no saturation is observed. If the above reasoning is sound, this may be due

to the Maxwell stress winning a fight to which its opponent is a no-show.

Re-introducing the Reynolds stress through the adoption of the quasineutrality

closure (7.70), as in (8.5), would allow us to determine the outcome of the competition

between these stresses. In particular, it would give rise to another length scale to which

the flux-freezing scale (2.33) can be meaningfully compared, viz., the ion Larmor radius

ρi. The ratio of the latter to the former, given by

ρi
deχ

∼
√
mi

me

βe
λei
LT

, (8.8)

effectively controls the size of the Reynolds stress within our electromagnetic system;

this was infinite in the adiabatic-ion approximation, viz., when considering wavenum-

bers k⊥deχ ∼ 1 but k⊥ρi ≫ 1. It is then possible, for example, that there will exist a

value of (8.8) below which the Reynolds stress becomes large enough to generate zonal

flows, despite the presence of the Maxwell stress attempting to prevent this, and thus

allowing the system to saturate. Given the dependence of (8.8) on the electron beta,

this would imply the existence of a ‘critical’ value of βe below which the system is able

to saturate, which could have profound implications for the saturation of electromag-

netic gyrokinetic turbulence within more general systems. Such a prediction could be
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directly tested in gyrokinetic simulations by varying the parameters appearing in (8.8),

such as the mass-ratio.

8.2.3 Invariants and inverse cascades

In addition to the free energy (6.2), the electromagnetic system of equations (8.1)-(8.3)

has a second (nonlinear) invariant, the (electron-scale version of) cross-helicity:

H =

∫
d3r

V

δne

n0e

A = −
∫

d3r

V

(
τ̄−1φ

)
A. (8.9)

This is a particular case from a class of 2D invariants of gyrokinetics, which are con-

served by 3D systems in certain limits (see appendix F of [72], or appendix A of [77]).

The time evolution of H follows straightforwardly from (8.1) and (8.2):

dH

dt
= εH −DH (8.10)

where the helicity injection rate is

εH = −
(
1 +

c2
c1

)∫
d3r

V

vthe
2

(
τ̄−1φ

)(
∇∥

δTe
T0e

− ρe
LT

∂A
∂y

)
, (8.11)

and DH is the rate of helicity dissipation due to a combination of resistivity and

hyperviscosity; its exact form is irrelevant for the purposes of the current discussion.

Should there exist scales at which εH ̸= 0 and others where neither εH nor DH are

important, the existence of this additional invariant could lead to inverse cascades and

saturation failures (see, e.g., [122] or [123]).

Note, however, that gyrokinetics in up-down symmetric equilibria has a parity

symmetry [124, 125]:

(x, y, z, v∥, hs, φ,A, δB∥) → (−x, y,−z,−v∥,−hs,−φ,A,−δB∥), (8.12)

where the odd parity of the gyrokinetic distribution function hs implies also odd parity

for any of its moments that are even in v∥, viz., δne/n0e, δTe/T0e, etc. Our equations

(8.1)-(8.3), being derived in an asymptotic limit of gyrokinetics, retain this symmetry,

which is manifest on inspection. The helicity injection rate (8.12) is odd under the

parity transformation (8.12), εH → −εH , and should thus vanish within our turbulent

system; the same is true about the helicity (8.9) itself, rendering its consideration

seemingly irrelevant.
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However, [126] showed that the decay of non-helical plasma turbulence — in which

an MHD analogue of (8.9) (the magnetic helicity) vanishes by construction — is con-

strained by the existence of another (non-zero) integral invariant (the ‘Hosking inte-

gral’, analogous to the Loitsyansky and Saffman integrals of hydrodynamic turbulence)

that expresses the conservation of the random helicity “patches” contained in suffi-

ciently large volumes. Considerations of this kind have also been shown to carry over,

in a certain sense, to the case of forced turbulence [114], suggesting that, perhaps, they

could also apply in gradient-driven systems such as ours. For (8.1)-(8.3), the analogue

of the Hosking integral would be

IH(r) =

∫
d3r′

V

〈
H̄(r)H̄(r + r′)

〉
, (8.13)

where H̄ = (δne/n0e)A is the helicity density, and the brackets denote an ensemble av-

erage. It is possible that, despite the helicity (8.9) formally vanishing due to the parity

symmetry (8.12), the conservation of random magnetic helicity — that can be spon-

taneously generated patchwise, but vanishes over the entire volume of the system —

according to (8.13) could be constraining the electromagnetic, sTAI-driven turbulence

in such a way as to prevent its saturation by promoting an inverse cascade of energy

to large scales. Whether this is indeed true is for future investigations to determine,

but the possible conservation of integrals such as (8.13) presents an interesting avenue

of investigation into the present issue of non-saturation.

8.3 Scale invariance in the electromagnetic regime

Before concluding our discussions of electromagnetic turbulence, it is perhaps appro-

priate to revisit the drift-kinetic scale invariance that we considered in Section 7.1.

The transformation (7.16)-(7.18) only holds in the electrostatic regime, in which the

terms involving A∥ and δB∥ in (7.5) and (7.6) can be neglected; these must be restored

in the electromagnetic regime. Given that the parallel (compressive) magnetic-field

perturbation always appears alongside ϕ in the combination

ϕ+
T0s
qs

v2⊥
v2ths

δB∥

B0

, (8.14)

and with which it shared an identical transformation [see (7.12) and (7.13)], its inclusion

does not, in fact, modify the electrostatic arguments of sections 7.1.1 and 7.1.2.
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It is the presence of perpendicular magnetic-field perturbations, however, that

proves problematic: the terms involving A∥ in (7.5) and (7.6) cannot be made si-

multaneously invariant alongside the other terms under a transformation of the type

(7.11)-(7.15) — these terms generate more constraint equations than there are free

parameters (the ai’s), rendering the only solution the trivial one, viz., all ai = 0.

Physically, this is because the inclusion of non-zero A∥ introduces the important per-

pendicular scale with which we have principally been concerned in this thesis: the

flux-freezing scale de (or deχ, in the collisional limit), implicit in the Laplacian on the

left-hand side of (7.8). This demands a fixed relationship between the rescaling of

the amplitudes of hodds and A∥ that depends on a⊥ [see (7.14) and (7.15)]1; it can be

confirmed by inspection that this enforces either ao = 0 or a⊥ = 0, which inevitably

results in a reduction to the trivial solution.

These considerations do not necessarily imply that the heat-flux scaling (7.23) can

never be realised in systems with finite plasma beta, for which A∥ and δB∥ are in-

evitably non-zero. Indeed, we argued in Section 7.1.2 that this scaling would still

hold in the presence of finite-Larmor-radius effects if the outer scale for the turbulence

remained within the drift-kinetic limit, despite scale invariance being broken at the

smallest spatial scales. A similar argument is applicable here. If the outer scale lies

at scales sufficiently smaller than the flux-freezing scale, i.e., at k⊥de ≫ 1 (or ∼ χ−1,

in the collisional limit), then the scaling (7.23) will continue to hold as, once again,

the assumption behind it is that transport is set by the outer scale located in the

electrostatic drift-kinetic limit, and the relevant breaking of scale invariance is done by

L∥, rather than by the flux-freezing scale. This means that the results of Section 7.1.2

may continue to hold even in simulations with a finite plasma beta. For example, [90]

performed nonlinear, electromagnetic simulations of JET-ILW pedestals for k⊥ρi ≳ 1,

and observed the same scaling of the heat flux with LB/LT as the first expression in

(7.1), suggesting that (7.23) was also satisfied, despite the presence of electromagnetic

effects.

What is clear, however, is that if the effective injection scale does lie above the

flux-freezing scale, i.e., if the turbulence is truly electromagnetic, as the sTAI-driven

turbulence discussed above was, then the constraints imposed by the scale invariance

1This relationship is actually still present in the electrostatic regime, as (7.8) must always be satis-
fied. It can, however, simply be regarded as a constitutive relation from which A∥ can be determined,
given that it plays the role of a spectator field in this regime.
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of electrostatic drift kinetics are lifted. It may be that there are classes of transforma-

tions different from (7.11)-(7.15) (e.g., those involving two parameters) that will leave

(7.5) and (7.6) invariant in the electromagnetic regime; this is the subject of ongoing

investigations.
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Chapter 9

Summary and discussion

In this thesis, we have considered electromagnetic instabilities and turbulence driven by

the electron-temperature gradient in a local slab model of a tokamak-like plasma with

constant equilibrium gradients (including magnetic drifts but not magnetic shear, see

section 2.1), with the governing equations (section 2.3) derived in a low-beta asymp-

totic limit of gyrokinetics. The formal ordering of the equilibrium parameters was given

by me/mi ≪ βe ≪ 1 and ν∗ ∼ 1 for the electron-beta and normalised collisionality,

respectively, while the perturbations were ordered as in (2.6)-(2.8). Central to our con-

siderations was the electron inertial scale de, which divided our system into two distinct

physical regimes: electrostatic (perpendicular scales below de, k⊥ ≫ d−1
e , or d−1

e χ−1 in

the collisional limit, where χ = LT/λei
√
βe) and electromagnetic (perpendicular scales

above de, but still smaller than the ion gyroradius, ρ−1
i ≪ k⊥ ≪ d−1

e , or d−1
e χ−1 in the

collisional limit), distinguished by whether or not the magnetic field lines were frozen

into the electron flow (2.34).

In the electrostatic regime (Chapter 3), magnetic field lines are decoupled from the

electron flow, and so electrons are free to flow across field lines without perturbing them.

In this regime, we recovered both the familiar electrostatic electron-temperature gra-

dient (sETG, sections 3.1 and 3.2) and curvature-mediated ETG (cETG, Section 3.3)

instabilities, noting in particular that the mechanism responsible for the extraction

of free energy from the (radial) equilibrium temperature gradient was the fluctuating

E ×B flow — the usual electrostatic linear drive — in that it converted the equilib-

rium temperature variation into perturbations of the electron temperature [see, e.g.,

the third equation in (3.4)].
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In the electromagnetic regime (Chapter 4), the magnetic field lines are frozen into

the electron flow (2.34), meaning that perpendicular magnetic-field perturbations δB⊥

are created as electrons move across field lines and drag the latter along. Crucially, this

means that the equilibrium temperature gradient has a component along the perturbed

field line, viz., its projection onto the radial component of the perturbed magnetic field

[see, e.g., the second term in (2.21)], which proved to be responsible for the electromag-

netic destabilisation associated with the novel thermo-Alfvénic instability (TAI). We

showed that the TAI exists in both a slab version (sTAI, destabilising kinetic Alfvén

waves, sections 4.3.2 and 4.4.1) and a curvature-mediated version (cTAI, sections 4.1

and 4.4). The transition between these two occurs at the critical parallel wavenumber

k∥c (4.21): from sTAI at k∥ ≫ k∥c to cTAI at k∥ ≲ k∥c. Another important scale

for the TAI is the perpendicular wavenumber k⊥∗ (4.26), which controls the transi-

tion between the isobaric (k⊥∗ ≲ k⊥ ≲ d−1
e , or d−1

e χ−1 in the collisional limit) and

isothermal (ρ−1
i ≪ k⊥ ≲ k⊥∗) limits. In the isobaric limit (section 4.4), we demon-

strated that cTAI is subdominant to sTAI, and can be regarded as an electron-scale

extension of MHD-like modes, such as kinetic-ballooning modes (KBMs). In contrast,

in the isothermal limit (section 4.1), we found that the cTAI is the dominant insta-

bility, with a peak growth rate (4.15) greater than that of the cETG (3.15), exciting

electromagnetic perturbations with a specific parallel wavenumber (4.24) (unlike the

cETG, which is two-dimensional). This isothermal cTAI’s physical mechanism hinges

on the fact that — in the presence of either dominant parallel streaming k∥vthe (in the

collisionless limit) or thermal conduction κk2∥ ∝ k2∥v
2
the/νe (in the collisional one) — per-

turbations of the magnetic field are coupled to those of the electron temperature as the

latter must always adjust to cancel the variation of the equilibrium temperature along

the perturbed field line [see, e.g., the isothermal condition (4.12)]. Such an instability

mechanism can only be present in the electromagnetic regime, when perturbations of

the magnetic field’s direction are significant.

Informed by this extensive linear analysis (summarised in Chapter 5), we used a

critical-balance phenomenology analogous to [12] to construct an a priori turbulent-

cascade theory for the free energy injected by both the electrostatic and electromagnetic

instabilities (Chapter 6). Scalings for the turbulent heat fluxes were derived in both

the collisionless and collisional limits, demonstrating that the cTAI dominated the
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turbulent transport for temperature gradients LB/LT larger than β−1
e (LB/L∥)

2 (Sec-

tion 6.4). Moreover, the turbulent electron heat flux carried by the fluctuations at

the cTAI injection scale (6.33) turned out to scale more steeply with the temperature

gradient than the heat flux due to the electrostatic sETG turbulence in this regime,

thus giving rise to stiffer transport [see (6.45) in the collisionless limit and (6.46) in

the collisional one].

In Chapter 7, we showed that the dependence of the electrostatic heat flux on par-

allel system size, as derived in Chapter 6, is in fact a direct consequence of the scale

invariance of drift kinetics in the electrostatic limit, with the argument leading to this

conclusion relying on only three assumptions: that the system was spatially periodic,

that it was able to reach a statistical steady state, and that the heat flux was indepen-

dent of the system’s perpendicular size (as it should be for any valid local model of a

plasma). The critically balanced, constant-flux cascade proposed in Chapter 6 provides

the dynamical explanation for these scalings, which we demonstrated numerically in

simulations of collisional sETG-driven turbulence described in Section 7.2. The effects

of dissipation associated with parallel thermal conduction play a key role in deter-

mining the saturated state of these simulations, limiting the cascade of free energy in

parallel wavenumbers by clamping it to the line of critical balance. This shows that a

constant-flux cascade can in fact be compatible with a formal lack of scale separation

between injection and dissipation in turbulent plasma systems — a departure from the

‘classic’ Kolmogorov picture of hydrodynamic turbulence. Analogous simulations of

electrostatic cETG-driven turbulence display a lack of saturation reminiscent of previ-

ous studies of fluid ITG-driven turbulence (see, e.g., [117]), related to the presence, or

otherwise, of zonal activity on electron scales. These simulations were then extended

into the electromagnetic regime, were it was shown that electromagnetic, sTAI-driven

turbulence fails to saturate similarly to what has been observed more widely within

the field (Chapter 8). This demonstrates (numerically) that sTAI is indeed a viable in-

stability capable of driving vigorous turbulence. The nature of this ‘blow-up’ was then

characterised, and some routes towards explanation speculated about (Section 8.2).

The results of this thesis demonstrate two key points: (i) that if finite perturba-

tions of the magnetic-field direction are allowed in the presence of a radial equilibrium

electron temperature gradient, then the system is able to extract free energy from the

equilibrium temperature gradient via a route that is distinct from the usual E × B
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feedback, manifested here in the novel thermo-Alfvénic instability, and that this ex-

traction channel can be dominant — in some sense, infinitely so, as the presence of

electromagnetic instabilities such as the TAI can lead to a lack of saturation in lo-

cal turbulence simulations; and (ii) turbulence in gradient-driven systems, like those

encountered in the context of magnetic-confinement fusion, is able to saturate via a

constant-flux cascade of energy from some large-scale region of injection to dissipation

at small scales. The fact that it should ever do so is not obvious a priori ; the ma-

terial of Chapter 7 is one of only two existing demonstrations of this fact, the other

being [12], in the context of ITG turbulence. This said, such a saturation mechanism

appears to be more fragile than perhaps previously realised: it turns out to be quite

easy to find types of ETG-driven turbulence that fail to saturate, one example being

the already mentioned blow-up of sTAI-driven turbulence and another the blow up of

the cETG-driven one. It may be that in such reduced models of plasma turbulence,

saturation is an exception rather than the rule, and each instance of it should be a

cause for careful physical investigation.

Given the suitably general nature of these findings, this physics should be of some

concern, or at least interest, to those attempting to model the effect of turbulent trans-

port in tokamak-relevant configurations, particularly those in which electromagnetic

effects are thought to be dominant.

9.1 Open issues

The results and conclusions of this thesis were derived within the context of a reduced

model, as doing so allowed us to focus directly on the fundamental physical processes

behind electromagnetic destabilisation on electron scales in the presence of an electron

temperature gradient. Such simplifications, however, always come at a cost to general

practical applicability, and so we will here devote some space to a discussion of the most

pressing questions and lines of investigation left open, or opened up, by this work.

9.1.1 Ion dynamics

With little exception, the results of this thesis have been derived in the limit where the

ion density response is Boltzmann, as in (2.22). In terms of perpendicular scales, this

is equivalent to the assumption that k⊥ ≫ ρ−1
i . Simultaneously, the electromagnetic

134



physics — to which we have given much attention — occurs on the scales at which

magnetic-field perturbations can be created by electron motions, viz., below the flux-

freezing scale, k⊥ ≲ d−1
e (or d−1

e χ−1, in the collisional limit). Therefore, in order for

the adiabatic-ion assumption to remain valid, we need a sufficient separation between

ρi and the largest perpendicular scale within our system. For the outer scale (6.38) of

our putative cTAI turbulence, this implies a restriction on the electron beta of

Z2me

τmi

≪ βe ≪
τmi

Z2me

(
LT

LB

)3


(
LB

L∥

)4

, collisionless,(
LB

L∥

)6(
λei
LB

)2

, collisional,

(9.1)

with the lower bound following from demanding that ρi ≫ de. This scale separation is

never going to be very large in a realistic plasma, and thus an important question is

whether the TAI mechanism — that provides an electromagnetic source of free energy

on the largest electron scales — survives at, or indeed across, the ion-Larmor transition,

for k⊥ρi ≲ 1. Answering this will require both a careful handling of finite-ion-Larmor-

radius (FLR) effects and the introduction of an ion-temperature gradient, in addition to

the electron one. Indeed, as we discussed in sections 7.3 and 8.2.1, the inclusion of ion

dynamics may be crucial for determining the saturation of electron-scale turbulence.

This work is already under way.

9.1.2 Micro-tearing modes

As mentioned in Chapter 1, much of the research into electromagnetic microinstabilities

and turbulence in fusion contexts has focused on two microinstability classes: micro-

tearing modes (MTMs) and KBMs. While we have already discussed the latter within

the context of this work (Section 4.4), we have little to say about MTMs. This is

because we did not include in our model any shear of the equilibrium magnetic field

— often thought to be a crucial ingredient in MTM dynamics, which encourages the

associated tearing of magnetic field lines (see, e.g., [28] and references therein). Note

that the effect sometimes viewed as responsible for driving slab MTMs in the absence

of magnetic shear, the so-called ‘time-dependent thermal force’ [26], is negligible within

our analysis (see appendix G of [1]). As a result, we conclude that the TAI cannot be

classed as a particular branch of the MTM zoo. It is, naturally, an interesting question

how the results of this thesis would be modified in the presence of magnetic shear;
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given that the TAI mechanism leads to a growth of perturbations of the magnetic

field’s direction, it is possible that the TAI could drive tearing in a sheared setting. In

any case, introducing magnetic shear into our reduced system would perhaps allow for

an investigation of MTM dynamics. Another key ingredient required for a complete

description of MTM dynamics is the poloidal variation of the magnetic field, since

MTMs typically sample an average ‘good-curvature’ in a tokamak due their extended

nature along the field line. Given the alignment of the magnetic-field and electron-

temperature gradients in the geometry adopted in Section 2.1, our model is consigned

to describe only the ‘bad-curvature’ region of a tokamak, and so will not capture the

(potentially critical) effects of this average ‘good-curvature’ on MTM dynamics. A

model of these modes that includes both the effects of magnetic shear and the poloidal

variation of the magnetic field can be found in [109].

9.1.3 Nonlinear saturation of electromagnetic simulations

Lastly, we return to the issue of the saturation failure encountered in simulations of

electromagnetic turbulence. The equations that we have been considering are suffi-

ciently simple — in comparison to the full gyrokinetic system employed in more ‘com-

plete’ simulations — that making theoretical sense of their saturation failure should

be a graspable task; we proposed a number of routes towards this in Section 8.2. The

issue of the blow-up aside, there is of course the broader question of the structure

of the saturated state of electromagnetic turbulence in tokamak plasmas — or even

the much simpler tokamak-inspired ones, like ours. The simulations of electrostatic

sETG-driven turbulence of Chapter 7 strongly support the assertion that electrostatic

gradient-driven plasma turbulence can saturate via a constant-flux, critically balanced

cascade of free energy towards small scales; will the same be true in the electromagnetic

regime? The numerical studies of Chapter 8 are but a preliminary step toward further

investigations that should reveal the answer to this question and many others encoun-

tered in the pursuit of a full characterisation of the saturated state of electromagnetic

turbulence in tokamak plasmas.
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Appendix A

Derivation of electron fluid
equations

This appendix details a self-contained derivation of the electron-fluid equations that

are used throughout the numerical studies of chapters 7 and Chapter 8. The purposes

of its inclusion are two-fold: (i) to demonstrate that (7.25) and (7.26) remain valid even

when derived with the correct linearised Landau collision operator, up to the definition

of certain coefficients (see the discussion of Section 7.1.3); and (ii) to show that the

low-beta equations that we have been considering throughout this thesis are valid for

a greater range of parameters and perpendicular scales than those considered in [1].

In what follows, Appendix A.1 describes and physically motivates our electron-scale,

collisional ordering, which is then implemented to derive equations describing our ion

and electron dynamics in Appendix A.3 and Appendix A.4, respectively. Appendix

A.5 introduces useful subsidiary limits of these equations and their reduction to those

used throughout the main body of this thesis. Appendix A.6 discusses an instability

driven by the ETG in the presence of electron-ion thermal diffusion. All other technical

appendices can be found in [1]. We will adopt the same magnetic equilibrium as in

Section 2.1.

A.1 Collisional, electron-scale ordering

In our equations, we would like to be able to capture, at a minimum, the physics

associated with drift waves, perpendicular advection by both magnetic drifts andE×B

flows, and parallel heat conduction. As such, we postulate an asymptotic ordering in
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which the frequencies ω of the perturbations in the plasma are comparable to the

characteristic frequencies associated with these phenomena, viz.,

νee ∼ νei ≫ ω ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ κk2∥, (A.1)

where

ω∗s =
kyρsvths
2LTs

, ωds =
kyρsvths
2LB

(A.2)

are the drift frequency and magnetic-drift frequency, respectively, vE = cE ×B/B2 is

the E ×B drift velocity (c is the speed of light), κ ∼ v2the/νei is the electron thermal

diffusivity, and

νei =
4
√
2π

3

e4n0e log Λ

m
1/2
e T

3/2
0e

, νee =
νei
Z

(A.3)

are the electron-ion and electron-electron collision frequencies, respectively, with log Λ

the Coulomb logarithm [111, 127].

The ordering of the parallel conduction rate with respect to the drift frequencies

gives us a constraint relating parallel and perpendicular wavenumbers:

κk2∥ ∼ ω∗s ∼ ωds ∼ k⊥ρe
vthe
L

⇒ (k∥L)
2 ∼ L

λei
k⊥ρe, (A.4)

where λei = vthe/νei is the electron-ion mean free path and L is some (perpendicular)

equilibrium length scale, L ∼ Lns ∼ LTs ∼ LB ∼ R. The ordering of the parallel

conduction rate with respect to the E ×B drifts determines the size of perpendicular

flows within our system:

κk2∥ ∼ k⊥vE ⇒ vE
vthe

∼
k∥
k⊥
k∥λei ∼

de
L

√
βe ≡ ϵ

√
βe, (A.5)

where ϵ = de/L is the gyrokinetic small parameter (see, e.g., [55]), mandating small-

amplitude, anisotropic perturbations. The frequency of these perturbations is small

compared to the Larmor frequencies of both the electrons and ions:

ω

Ωe

∼ k⊥vE
Ωe

∼ k⊥deϵβe,
ω

Ωi

=
mi

Zme

ω

Ωe

∼ k⊥deϵβe
mi

me

. (A.6)

The ordering of vE relative to the electron thermal velocity allows us to order the

amplitude of the perturbed scalar potential ϕ:

vE
vthe

∼ c

B0

k⊥ϕ

vthe
∼ k⊥ρe

eϕ

T0e
⇒ eϕ

T0e
∼ ϵ

k⊥de
. (A.7)
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The density perturbations δns are ordered anticipating a Boltzmann density response

and the temperature perturbations δTs are assumed comparable to them:

δTe
T0e

∼ δTi
T0i

∼ δni

n0i

=
δne

n0e

∼ eϕ

T0e
∼ ϵ

k⊥de
. (A.8)

For the ordering of perpendicular magnetic field perturbations, we demand that the

effects of Lorentz tension (equivalently, of parallel compressions) must always be large

enough so as to have an effect on the electron density perturbation, viz., [cf. (A.68)]

d

dt

δne

n0e

∼ ∇∥u∥e ∼
c

4πen0e

∇∥ [b0 · (∇⊥ × δB⊥)] ⇒ δB⊥

B0

∼
k∥L

k⊥deχ

eϕ

T0e
, (A.9)

whereas the (compressive) parallel magnetic-field perturbations are ordered anticipat-

ing pressure balance:

δB∥

B0

=
4π

B2
0

δ

(
B2

8π

)
∼ 4π

B2
0

δ(nsTs) ∼ βe
δTe
T0e

∼ ϵβe
k⊥de

. (A.10)

In their current form, the orderings (A.4) and (A.5)-(A.10) under-constrain our

system, in that they still allow for a choice of ordering for our perpendicular wavenum-

bers k⊥ with respect to the electron and ion Larmor radii. Here, we choose to append

to (A.1) the characteristic frequencies associated with kinetic Aflvén waves, resistivity

and thermal diffusivity, viz.,

νee ∼ νei ≫ ω ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ κk2∥ ∼ (k⊥de)
2νei ∼ (k⊥ρe)

2νee, (A.11)

where

ωKAW =
1√
2
k∥vthek⊥de, (A.12)

is the kinetic Alfvén wave frequency. Such a choice represents a maximal ordering

that allows us to retain all of the relevant electron physics, while making ion dynamics

sufficiently simple [see (A.27)]. Then, the ordering of the parallel conduction rate with

respect to the KAW implies that

ωKAW ∼ κk2∥ ⇒ k⊥de ∼ k∥λei, (A.13)

which, when combined with (A.4), implies that parallel and perpendicular wavenum-

bers must be ordered as

k∥L ∼
√
βe, k⊥de ∼

√
βe
λei
L

≡ χ−1, (A.14)
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i.e., the perpendicular wavelengths must be ordered comparable to the flux-freezing

scale, as anticipated in (2.33). Lastly, the ordering of the resistive and diffusive rates

gives

(k⊥de)
2νei ∼ (k⊥ρe)

2νee ⇒ de ∼ ρe ⇒ βe ∼ 1, (A.15)

i.e., we must perform our expansion treating βe as an order-unity parameter (subsidiary

orderings with respect to βe are considered in Appendix A.5).

Together, (A.14) and (A.15) imply the following ordering of frequencies:

ω

Ωe

∼ χ−1ϵ,
ω

Ωi

∼ mi

Zme

χ−1ϵ, (A.16)

length scales:

k⊥ρi ∼ χ−1

√
mi

me

, k⊥de ∼ k⊥ρe ∼ χ−1, k∥L ∼ 1,
k∥
k⊥

∼ χϵ, (A.17)

and fluctuation amplitudes:

eϕ

T0e
∼ δne

n0e

∼ δni

n0i

∼ δTe
T0e

∼ δTi
T0i

∼ δB⊥

B0

∼
δB∥

B0

∼ χϵ, (A.18)

meaning that all relevant quantities are naturally ordered with respect to some com-

bination of me/mi, χ
−1, and the gyrokinetic small parameter ϵ = de/L. The above

ordering of frequencies, length scales and amplitudes with respect to ϵ is the stan-

dard gyrokinetic ordering (see, e.g., [55]). We choose to treat the ordering in χ−1

— the fact that this should be formally small following straightforwardly from, e.g.,

νei ≫ (k⊥de)
2νei — as subsidiary to both the orderings in ϵ and in the mass ratio [see

the first expression in (A.17)], meaning that the formal hierarchy of our expansions is

ϵ≪
√
me

mi

≪ χ−1 ≪ 1, (A.19)

with all other dimensionless parameters treated as finite. Since βe ∼ 1, our collisional

expansion parameter χ−1 =
√
βeλei/L is simply the ratio of the electron-ion mean free

path to some (perpendicular) equilibrium length scale, viz., χ−1 ∼ λei/L ≪ 1, the

usual Braginskii ordering [111]. However, we have chosen to use χ−1 here to remain

consistent with the notation used in [1] for ease of comparison.
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A.2 Gyrokinetic equations

Given (A.19), we take as our starting point the gyrokinetic system of equations, in

which the gyrokinetic distribution function hs is described by

∂

∂t

(
hs −

qs ⟨χ⟩Rs

T0s
f0s

)
+
(
v∥b0 + vds

)
· ∇hs +

c

B0

b0 ·
[
∇⟨χ⟩Rs

×∇ (hs + f0s)
]

=
∑
s′

〈
C

(l)
ss′ [hs]

〉
Rs

, (A.20)

where ⟨. . . ⟩Rs
denotes the standard gyroaverage at constant gyrocentre position Rs,

and

⟨χ⟩Rs
=
∑
k

eik·Rs

[
J0(bs)

(
ϕk −

v∥A∥k
c

)
+

2J1(bs)

bs

T0s
qs

v2⊥
v2ths

δB∥k
B0

]
(A.21)

is the (gyro-averaged) gyrokinetic potential, with bs = k⊥v⊥/Ωs. The collision term on

the right-hand side of (A.20) involves gyroaverages of the linearised Landau collision

operator

C
(l)
ss′ [hs] =

γss′

ms

∇v ·
∫

d3v′ f0s(v)f0s′(v
′)(∇w∇ww) (A.22)

·
[
1

ms

∇v

(
hs(v)

f0s(v)

)
− 1

ms′
∇v′

(
hs′(v

′)

f0s′(v′)

)]
,

where w = |w|, w = v − v′, and γss′ = 2πq2sq
2
s′ log Λ, and all velocity derivatives are

evaluated at constant position r. Finally, (A.20) is closed by the three field equations

of quasineutrality, the parallel and perpendicular parts of Ampère’s law:

0 =
∑
s

qsδns =
∑
s

qs

[
−qsϕ
T0s

n0s +

∫
d3v ⟨hs⟩r

]
, (A.23)

∇2
⊥A∥ = −4π

c

∑
s

qs

∫
d3v v∥ ⟨hs⟩r , (A.24)

∇2
⊥δB∥ = −4π

c
b0 ·

[
∇⊥ ×

∑
s

qs

∫
d3v ⟨v⊥hs⟩r

]
. (A.25)

In Appendix A.3 and Appendix A.4, we systematically expand the gyrokinetic system

of equations (A.20)-(A.25) in order to obtain a closed system to leading order in our

collisional expansion.
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A.3 Ion kinetics

Given that the ordering of perpendicular wavenumbers (A.17) implies that k⊥ρi ≫ 1

within the expansion in the mass ratio, it is straightforward to show [by, e.g., expanding

the Bessel functions in (A.21) for bi ≫ 1] that the gyroaveraged terms in (A.20) for

s = i are small:

⟨. . . ⟩Ri
∼ 1√

k⊥ρi
≪ 1. (A.26)

This means that, to leading order in the mass ratio expansion, (A.20) is satisfied by

the solution

hi = 0, (A.27)

with any contributions to the field equations (A.23)-(A.25) arising from the inhomoge-

neous solutions to (A.20) being of size

⟨hi⟩r ∼
〈
⟨χ⟩Ri

〉
r
∼ χ

k⊥ρi
, (A.28)

which can safely be neglected. Thus, the ion dynamics do not enter anywhere into our

equations, which is the approximation of ‘adiabatic ions’. We will henceforth neglect

the ion temperature gradient, and denote the electron temperature gradient LTe = LT .

A.4 Electron fluid equations

We now proceed with our derivation of the electron fluid equations, expanding our

gyrokinetic distribution function he in χ
−1 ≪ 1 as

he =
∞∑
n=0

h(n)e , h(n)e ∼ χ−n eϕ

T0e
f0e. (A.29)

The electromagnetic fields will not be expanded in the same way, as it will turn out

that they only need to be determined to leading order for a closed system of equations

to be obtained.
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A.4.1 Zeroth order: perturbed Maxwellian

Given the ordering of timescales (A.11), the collision operator is dominant to leading

order:

C(l)
ee

[
h(0)e

]
+ Lei

[
h(0)e

]
= 0, (A.30)

where C
(l)
ee is given by (A.22) for s = s′ = e, and

Lei [he] =
γein0e

m2
e

∇v

[
f0e∇v∇vv · ∇v

(
he
f0e

)]
(A.31)

is the pitch-angle scattering (Lorentz) collision operator, valid to leading order in the

mass ratio. We multiply (A.30) throughout by h
(0)
e /f0e and integrate over the entire

phase space, yielding∫
d3r

V

∫
d3v C(l)

ee

[
h(0)e

]
+

∫
d3r

V

∫
d3v Lei

[
h(0)e

]
= 0. (A.32)

Both terms in (A.32) are negative definite and must vanish individually, meaning that

the solution is constrained to be a perturbed Maxwellian with no mean flow [127], viz.,

h(0)e =

[
δne

n0e

− φ+
δTe
T0e

(
v2

v2ths
− 3

2

)]
f0e, (A.33)

where φ is as defined in (2.13), and we have imposed the solvability conditions∫
d3v h(n)e =

∫
d3v v2h(n)e = 0, n ⩾ 1, (A.34)

in order to determine uniquely the density δne and temperature δTe moments in (A.33).

We note that, in general, the Lorentz collision operator constrains the electron distri-

bution function to be isotropic in the frame moving with the parallel ion velocity. How-

ever, the parallel ion velocity is zero to all orders within our expansion in χ−1 [given

the adiabatic ion solution (A.27)], meaning that the electron distribution function will

have no parallel velocity moment to leading order.

We now turn our attention to the field equations (A.23)-(A.25). Using the solutions

(A.27) and (A.33), as well as the fact that the gyroaverage operators are unity operators

at this order in the collisional expansion, quasineutrality and perpendicular Ampère’s

law straightforwardly become

δne

n0e

= −Z
τ
φ ≡ −τ̄−1φ,

δB∥

B0

= −βe
2

(
δne

n0e

− φ+
δTe
T0e

)
. (A.35)

The first of these is the first expression in (2.30).
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A.4.2 First order: parallel flows

The parallel flows are determined self-consistently from the leading-order perturbations

at the next order in our expansion. Given the ordering of wavenumbers (A.17) and

field amplitudes (A.18), the terms involving the parallel component of the magnetic

vector potential enter at the next order, viz.,

v∥A∥

cϕ
∼ 1

k⊥ρe
∼ χ. (A.36)

This means that h
(1)
e is determined by the Spitzer-Härm problem [111, 127, 128]:

v∥

[
∇∥ log pe +

(
v2

v2the
− 5

2

)
∇∥ log Te

]
f0e + v∥

eE∥

T0e
f0e = C(l)

ee

[
h(1)e

]
+ Lei

[
h(1)e

]
.

(A.37)

In (A.37), ∇∥ log Te and ∇∥ log pe are defined in (2.21) and (4.7), respectively, the

parallel derivative along the exact field line ∇∥ in (2.11), and the parallel electric field

is given by (2.13).

(A.37) can be inverted for h
(1)
e by means of standard variational methods. We define

the functional:

Σ[he] =−
〈
he, C

(l)
ee [he]

〉
− ⟨he,Lei [he]⟩

+ 2

〈
he,

[
∇∥ log pe +

eE∥

T0e
+

(
v2

v2the
− 5

2

)
∇∥ log Te

]
v∥f0e

〉
, (A.38)

where ⟨. . . , . . . ⟩ denotes an inner product in velocity space weighted by the inverse

of the electron (Maxwellian) equilibrium f0e. Then, considering small variations he =

hmin+δhe and using the self-adjointness of the linearised collision operator, it is straight-

forward to show that the functional Σ[he] has a minimum at hmin = h
(1)
e , for any varia-

tion δhe (see, e.g., [127]). Given that the spherical harmonics are eigenfunctions of the

linearised collision operator, we choose to expand our distribution function in terms of

spherical coordinates in velocity space (x, α, β), with x = v2/v2the, as

h(1)e =
∞∑
p=0

apL
(3/2)
p (x)v∥f0e(v) =

∞∑
p=0

apL
(3/2)
p (x)v cosαf0e(v), (A.39)
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where L
(n)
p (x) are the generalised Laguerre polynomials and ap coefficients to be deter-

mined. Using this in (A.38), one obtains

Σ
[
h(1)e

]
= n0ev

2
the

[
∞∑
p=0

∞∑
q=0

apaq
2

(
νeeK

ee
pq + νeiK

ei
pq

)
+a0

(
∇∥ log pe +

eE∥

T0e

)
− 5

2
a1∇∥ log Te

]
, (A.40)

where

Kee
pq = − 2

neνee

〈
x1/2L(3/2)

p (x)f0e(v) cosα,C
(l)
ee

[
x1/2L(3/2)

q (x)f0e(v) cosα
]〉
, (A.41)

Kei
pq = − 2

neνei

〈
x1/2L(3/2)

p (x)f0e(v) cosα,Lei

[
x1/2L(3/2)

q (x)f0e(v) cosα
]〉
, (A.42)

are coefficients as calculated in, e.g., [67] (and references therein). Truncating (A.39)

at p = 3, and demanding that the functional (A.40) be stationary with respect to

variations in the coefficients ap, we find that

h(1)e =
[
a0 + a1L

(3/2)
1 (x) + a2L

(3/2)
2 (x)

]
v∥f0e, (A.43)

where the coefficients are given by

νeia0 = −
217
64

+ 151
8
√
2Z

+ 9
2Z2

1 + 61
8
√
2Z

+ 9
2Z2

(
∇∥ log pe +

eE∥

T0e

)
−

5
2

(
33
16

+ 45
8
√
2Z

)
1 + 61

8
√
2Z

+ 9
2Z2

∇∥ log Te, (A.44)

νeia1 =

33
16

+ 45
8
√
2Z

1 + 61
8
√
2Z

+ 9
2Z2

(
∇∥ log pe +

eE∥

T0e

)
+

5
2

(
13
4
+ 45

8
√
2Z

)
1 + 61

8
√
2Z

+ 9
2Z2

∇∥ log Te, (A.45)

νeia2 = −
3
8
− 3

2
√
2Z

1 + 61
8
√
2Z

+ 9
2Z2

(
∇∥ log pe +

eE∥

T0e

)
−

5
2

(
3
2
+ 3

2
√
2Z

)
1 + 61

8
√
2Z

+ 9
2Z2

∇∥ log Te, (A.46)

which can easily be shown to satisfy the Onsager relations [110]. (A.43) allows us to

determine, subject to the solvability condition∫
d3v v∥h

(n)
e = 0, n ⩾ 2, (A.47)

the parallel electron flow, and thus the parallel component of the magnetic vector

potential via parallel Ampère’s law (A.24):

u∥e =
1

n0e

∫
d3v v∥h

(1)
e = vthed

2
e∇2

⊥A. (A.48)
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This is the second expression in (2.30). Using the solution (A.43) for h
(1)
e in (A.48)

and re-arranging the resulting expression for ∂A/∂t, it becomes the first of our three

fluid equations, describing the evolution of the parallel magnetic vector potential per-

turbations:

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

∇∥ log pe +
c2
c1

vthe
2

∇∥ log Te +
νei
c1
d2e∇2

⊥A, (A.49)

where we have defined the (ion-charge-dependent) coefficients [cf., for Z = 1, (C16)

and (C17) in [67]]

c1 =

217
64

+ 151
8
√
2Z

+ 9
2Z2

1 + 61
8
√
2Z

+ 9
2Z2

, c2 =

5
2

(
33
16

+ 45
8
√
2Z

)
1 + 61

8
√
2Z

+ 9
2Z2

, c3 =

25
4

(
13
4
+ 45

8
√
2Z

)
1 + 61

8
√
2Z

− c22
c1
. (A.50)

A.4.3 Second order: electron thermal diffusion

At second order, the electron gyrokinetic equation describes the evolution of the density

and temperature perturbations in (A.33), viz.,

d

dt

[
h(0)e +

(
φ− v2⊥

v2the

δB∥

B0

)
f0e

]
+
ρevthe
2

{
h(0)e + φf0e,

v2⊥
v2the

δB∥

B0

}
+ v∥∇∥h

(1)
e

+ vde · ∇⊥h
(0)
e +

ρevthe
2

∂

∂y

(
φ− v2⊥

v2the

δB∥

B0

)[
1

Ln

+
1

LT

(
v2

v2the
− 3

2

)]
f0e

=
〈
C(l)

ee [he]
〉
Re

+ ⟨Lei[he]⟩Re
. (A.51)

Taking the density and temperature moments of (A.51) is straightforward for all terms

but the collision operator on the right-hand side, which needs to be evaluated to second

order in χ−1, a task on which we shall now focus. In particular, we consider the integral

Icol =
1

n0e

∫
d3v G(v)

〈〈
C(l)

ee [he] + Lei[he]
〉
Re

〉
r
, (A.52)

where G(v) = (1, v2/v2the − 3/2). Expressing he in Fourier components as

he =
∑
k

eik·Rehek, (A.53)

we can write

⟨C[he]⟩Re
=
∑
k

〈
C
[
heke

ik·Re
]〉

Re
=
∑
k

〈
C
[
heke

−ik·ρe
]
eik·ρe

〉
eik·Re , (A.54)
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where ρe = b0 × v⊥/Ωe. Then, given the ordering of wavenumbers (A.17), we expand

the oscillatory exponential factors in (A.52) to order (k · ρe)
2 ∼ χ−2:

Icol =

∫
d3v G(v)

∑
k

eik·r
[〈
C(l)

ee

[
h
(0)
ek

]〉
+
〈
C(l)

ee

[
h
(2)
ek

]〉
− 1

2

〈
(k · ρe)

2
〉
C(l)

ee

[
h
(0)
ek

]
+

〈
C(l)

ee

[
−1

2
(k · ρe)

2h
(0)
ek

]〉
+
〈
(ik · ρe)C

(l)
ee

[
−(ik · ρe)h

(0)
ek

]〉
+
〈
Lei

[
h
(0)
ek

]〉
+
〈
Lei

[
h
(2)
ek

]〉
− 1

2

〈
(k · ρe)

2
〉
Lei

[
h
(0)
ek

]
+

〈
Lei

[
−1

2
(k · ρe)

2h
(0)
ek

]〉
+
〈
(ik · ρe)Lei

[
−(ik · ρe)h

(0)
ek

]〉]
, (A.55)

where all terms linear in k · ρe have vanished due to the definition of the gyroaverage.

Both the electron-electron and electron-ion collision operators conserve both particle

number and energy, and so the first, second, fourth, sixth, seventh and ninth terms

vanish identically. The third and eighth terms combine to give (A.30), and thus also

vanish, leaving

Icol = Iee + Iei, (A.56)

where

Iee =
1

n0e

∫
d3v G(v)

∑
k

eik·r
〈
(ik · ρe)C

(l)
ee

[
−(ik · ρe)h

(0)
ek

]〉
, (A.57)

Iei =
1

n0e

∫
d3v G(v)

∑
k

eik·r
〈
(ik · ρe)Lei

[
−(ik · ρe)h

(0)
ek

]〉
. (A.58)

These integrals represent the effects of electron thermal diffusion due to electron-

electron collisions and electron-ion collisions, respectively. To evaluate the first of

them, we follow [64, 67, 129] in writing

k · ρe = −v · σ, σ =
b0 × k

Ωe

, (A.59)

and changing variables inside the integral to {u,w} = {v + v′,v − v′}. With some

judicious integration by parts, we find that (A.57) can be written as

Iee = − γeen0e

16π3m2
ev

6
the

∑
k

eik·r
δTek
T0e

∫
d3u

∫
d3w e−(u2+w2)/2v2the (∇w∇ww)ij[

σi(G(v)−G(v′)) + (σ · v)∂G(v)
∂vi

− (σ · v′)
∂G(v′)

∂v′i

] [
σj

u ·w
v2the

+ uj
σ ·w
v2the

]
.

(A.60)
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This is clearly zero for G(v) = 1, reflecting the fact that electron-electron collisions

are unable to modify the electron density perturbation. For G(v) = v2/v2the − 3/2, we

make use of the properties of the projection operator

(∇w∇ww)ij =
w2δij − wiwj

w3
, (∇w∇ww)ijwi = (∇w∇ww)ijwj = 0, (A.61)

where δij is the Kronecker delta, as well as the identity

(σvthe)
2 = (b0 × k) · (b0 × k)ρ2e = k · [k − (k · b0)b0] ρ2e = (k⊥ρe)

2, (A.62)

from which we obtain

Iee =

(
0,

1√
2
νeeρ

2
e∇2

⊥
δTe
Te

)
. (A.63)

Following an entirely analogous procedure for (A.58), we find

Iei =

(
1

2
νeiρ

2
e∇2

⊥

[
δne

n0e

− φ− 1

2

δTe
T0e

]
,
1

2
νeiρ

2
e∇2

⊥
δTe
T0e

− 1

4
νeiρ

2
e∇2

⊥

[
δne

n0e

− φ− 1

2

δTe
T0e

])
.

(A.64)

We see that, unlike in the case of electron-electron collisions (A.63), electron-ion colli-

sions make a contribution to the electron thermal diffusion that appears in the density

moment. This arises due to the fact that the Lorentz collision operator (A.31) does

not conserve momentum, allowing electron finite-Larmor-radius effects to couple den-

sity and temperature perturbations.

With these contributions calculated, we are in a position to take the density and

temperature moments of (A.51). Making use of the fact that

vde · ∇⊥h
(0)
e =

ρevthe
2

(
2

R

v2∥
v2the

+
1

LB

v2⊥
v2the

)
∂h

(0)
e

∂y
, (A.65)

and (A.48), the density moment straightforwardly yields (A.68). For the temperature

moment, we note that, from (A.43),

1

n0e

∫
d3v v∥

(
v2

v2the
− 3

2

)
h(1)e =

(
1 +

c2
c1

)
u∥e +

δqe
n0eT0e

, (A.66)

where

δqe
n0eT0e

= −c3
v2the
2νei

∇∥ log Te (A.67)

is the collisional heat flux arising from the gradient of the total temperature along the

perturbed field line (c3 = 3.16 for Z = 1, in agreement with [111]). Then, taking the

temperature moment yields (A.70).
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A.4.4 Summary of equations

The outcome of appendices A.4.1-A.4.3 are the electron fluid equations arising from

the moments of the electron gyrokinetic equations corresponding to density

d

dt

(
δne

n0e

−
δB∥

B0

)
+
ρevthe
2

{
δne

n0e

+
δTe
T0e

,
δB∥

B0

}
+∇∥u∥e +

ρevthe
2Ln

∂φ

∂y

+
ρevthe
2

(
1

LB

+
1

R

)
∂

∂y

(
δne

n0e

− φ+
δTe
T0e

)
− ρevthe

2

(
1

Ln

+
1

LT

)
∂

∂y

δB∥

B0

=
1

2
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ− 1

2

δTe
T0e

)
, (A.68)

velocity

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

(
∇∥

δne

n0e

− ρe
Ln

∂A
∂y

)
+

(
1 +

c2
c1

)
vthe
2

(
∇∥

δTe
T0e

− ρe
LT

∂A
∂y

)
+
νei
c1

u∥e
vthe

, (A.69)

and temperature

d

dt

(
3

2

δTe
T0e

−
δB∥

B0

)
+
ρevthe
2

{
δne

n0e

+
7

2

δTe
T0e

,
δB∥

B0

}
+∇∥

δqe
n0eT0e

+

(
1 +

c2
c1

)
∇∥u∥e

+
ρevthe
2

(
1

LB

+
1

R

)
∂

∂y

(
δne

n0e

− φ+
7

2

δTe
T0e

)
− ρevthe

2

(
1

Ln

+
7

2LT

)
∂

∂y

δB∥

B0

+
3

2

ρevthe
2LT

∂φ

∂y
=

1

2

(
1 +

√
2

Z

)
νeiρ

2
e∇2

⊥
δTe
T0e

− 1

4
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ− 1

2

δTe
T0e

)
. (A.70)

Given the field equations

δne

n0e

= −τ̄−1φ,
u∥e
vthe

= d2e∇2
⊥A,

δB∥

B0

= −βe
2

(
δne

n0e

− φ+
δTe
T0e

)
, (A.71)

and the definition of the collisional heat flux (A.67), (A.68)-(A.70) form a closed, three-

field system describing the evolution of the electrostatic potential φ, parallel component

of the magnetic vector potential A and electron temperature δTe/T0e perturbations in

the presence of an electron temperature gradient, density gradient and magnetic field

gradients associated with a magnetic geometry of constant curvature (see Section 2.1).

For the sake of completeness, we note that the usual force balance between the

pressures of all plasma species, the equilibrium magnetic pressure, and the magnetic

curvature force due to field-line bending gives us a constraint by which the equilibrium

length scales of our system are related:

βe
2

(
1

Ln

+
1

LT

)
+
τ̄βe
2Ln

+
1

LB

=
1

R
. (A.72)
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A.5 Subsidiary limits

We now consider limits of the system (A.68)-(A.70) with respect to subsidiary orderings

in the electron plasma beta βe ≪ 1, which was considered formally order unity for the

purposes of the expansion in χ−1 [see (A.15)]. Physically, ordering βe to be anything

other than order unity corresponds to introducing a length-scale separation between

the electron Larmor radius ρe and the electron inertial scale de = ρe/
√
βe . As we shall

shortly discover, this means that, as βe is made small, one must choose to consider

scales comparable to ρe (the zero-beta limit, Appendix A.5.1), de (the low-beta limit

Appendix A.5.2), or somewhere in between (the electrostatic limit, Appendix A.5.3).

We would like any subsidiary ordering that we take to retain the effects of parallel

thermal conduction simultaneously with those of the perpendicular drifts, meaning

that we demand that

ω ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ κk2∥, (A.73)

as in (A.1). Recalling (A.4), this implies that the ordering of parallel and perpendicular

wavenumbers can be written as

k∥LT ∼
√
σ, and k⊥ρe ∼ σ

λei
LT

⇔ k⊥deχ ∼ σ

βe
, (A.74)

where σ is some constant, yet to be specified, that will be ordered with respect to βe.

Such a choice ensures that these effects will be captured in any subsidiary ordering,

regardless of the value of σ. Instead, σ determines the size of the rates of thermal

diffusion and resistivity relative to the frequency of the perturbations, viz.,

(k⊥ρe)
2νee

ω
∼ σ,

(k⊥de)
2νei

ω
∼ σ

βe
, (A.75)

where we have used the fact that ω ∼ κk2∥, as in (A.73). From (A.8)-(A.10), we then

find the ordering of field amplitudes:

φ ∼ δne

n0e

∼ δTe
T0e

∼ βe
σ
χϵ,

δB⊥

B0

∼ βe√
σ
φ,

δB∥

B0

∼ βe
σ
φ. (A.76)

The first and second of these orderings guarantees that we will always retain the effects

ofE×B flows [see (A.5)-(A.7)] and parallel compressions [see (A.9)], respectively, while

the third follows from the perturbed pressure balance manifest in the last expression in

150



(A.71). A direct consequence of (A.74) and (A.76) is that the size of the nonlinearities

contained in the parallel derivatives ∇∥ [see (2.11)] is also determined by σ, viz.,

δB⊥

B0

· ∇⊥ ∼ βe
σ

∂

∂z
. (A.77)

In light of (A.75) and (A.77), σ can be viewed as an ordering parameter that controls

the size of the electromagnetic terms in (A.68)-(A.70) — this is what we will indeed

find in the following sections.

A.5.1 Zero-beta limit

Let us first consider the case of σ ∼ 1. From (A.74) and (A.76), we immediately have

the ordering of wavenumbers

k∥L ∼ 1, k⊥ρe ∼
λei
L
, (A.78)

and amplitudes

φ ∼ δne

n0e

∼ δTe
T0e

∼ βeχϵ,
δB⊥

B0

∼
δB∥

B0

∼ β2
eχϵ. (A.79)

(A.75) then implies that the resistive rate is the dominant frequency within the system,

viz.,

ω ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ κk2∥ ∼ (k⊥ρe)
2νee ≪ (k⊥de)

2νei. (A.80)

This means that the resistive term on the right-hand side of (A.69) is larger than all

other terms containing A by a factor of βe — the latter of which can consequently be

neglected — while all nonlinearities contained in the parallel derivatives ∇∥ are, from

(A.77), small in βe:

δB⊥

B0

· ∇⊥ ∼ βe
∂

∂z
≪ ∂

∂z
. (A.81)

This is a consequence of the fact that field lines are not frozen into the electron flow

(2.34) on electrostatic scales, and so no finite perturbations to the magnetic field di-

rection can be created. Together, (A.80) and (A.81) imply that (A.69) becomes an

equation for the perturbed parallel electron velocity [cf. (7.24)]:

u∥e = vthed
2
e∇2

⊥A = −c1v
2
the

2νei

∂

∂z

[
δne

n0e

− φ+

(
1 +

c2
c1

)
δTe
T0e

]
. (A.82)
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A thus ceases to be a dynamic field, in that it is instantaneously determined from the

parallel gradient of the pressure. Substituting (A.82) into (A.68) and (A.70), neglecting

any incidences of the parallel magnetic field perturbations according to (A.79), and

noting that (A.72) implies that R = LB for βe ≪ 1, we find the following two-field

system describing the evolution of the perturbations of the electron density

d

dt

δne

n0e

− c1v
2
the

2νei

∂2

∂z2

(
δne

n0e

− φ

)
−
(
1 +

c2
c1

)
c1v

2
the

2νei

∂2

∂z2
δTe
T0e

+
ρevthe
2Ln

∂φ

∂y

+
ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
δTe
T0e

)
=

1

2
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ− 1

2

δTe
T0e

)
(A.83)

and temperature

d

dt

δTe
T0e

− 2

3

(
1 +

c2
c1

)
c1v

2
the

2νei

∂2

∂z2

(
δne

n0e

− φ

)
− 2

3

[(
1 +

c2
c1

)2

+
c3
c1

]
c1v

2
the

2νei

∂2

∂z2
δTe
T0e

+
2

3

ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
7

2

δTe
T0e

)
+
ρevthe
2LT

∂φ

∂y

=
1

3

(
1 +

√
2

Z

)
νeiρ

2
e∇2

⊥
δTe
T0e

− 1

6
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ− 1

2

δTe
T0e

)
. (A.84)

While we will not make use of these equations in the main body of this thesis, they

have been included here for the sake of later comparisons, and to highlight the presence

of an instability driven by the ETG in the presence of electron-ion thermal diffusion,

which is discussed in Appendix A.6. We have called this the ‘zero-beta’ limit in order

to distinguish it from the electrostatic limit of Appendix A.5.3.

A.5.2 Low-beta limit

In the previous section, the primary consequence of the ordering σ ∼ 1 and of the

resultant length-scale orderings (A.78) was to eliminate electromagnetic physics entirely

from (A.68)-(A.70). Here, however, we wish to be able to resolve simultaneously both

electrostatic and electromagnetic physics, the transition between which is controlled

by the resistive term on the right-hand side of the parallel momentum equation (A.69)

(see discussion in Section 2.4). This means that we must order the parallel conduction

and resistive rates to be comparable, which, from (A.75) implies that σ ∼ βe, and so

k∥L ∼
√
βe, k⊥de ∼ χ−1 ≡

√
βe
λei
L
, (A.85)
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i.e., the perpendicular wavelengths must be ordered comparable to the flux-freezing

scale (2.33), as in (A.14), but now for βe ≪ 1. The ordering of the field amplitudes

once again follows directly from (A.76):

φ ∼ δne

n0e

∼ δTe
T0e

∼ χϵ,
δB⊥

B0

∼ χϵ
√
βe,

δB∥

B0

∼ βeχϵ. (A.86)

An immediate consequence of this ordering is that, from (A.75), the rate of thermal

diffusion is negligible in comparison to the other timescales, viz.,

ω ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ κk2∥ ∼ (k⊥de)
2νei ≫ (k⊥ρe)

2νee, (A.87)

and so can be neglected everywhere that it appears in (A.68)-(A.70). The ordering

of the perpendicular magnetic-field perturbations in (A.86) now allows field variation

along the exact (perturbed) field lines to be order-unity different from the variation

along the direction of the equilibrium magnetic field, viz., from (A.77),

δB⊥

B0

· ∇⊥ ∼ ∂

∂z
, (A.88)

meaning that we retain the nonlinear terms inside the parallel derivatives ∇∥ [see

(2.11)]. Neglecting the parallel magnetic-field perturbations everywhere according to

(A.86), our fluid equations (A.68)-(A.69) become:

d

dt

δne

n0e

+∇∥u∥e +
ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
δTe
T0e

)
= −ρevthe

2Ln

∂φ

∂y
, (A.89)

dA
dt

+
vthe
2

∂φ

∂z
=
vthe
2

(
∇∥

δne

n0e

− ρe
Ln

∂A
∂y

)
+

(
1 +

c2
c1

)
vthe
2

(
∇∥

δTe
T0e

− ρe
LT

∂A
∂y

)
+
νei
c1

u∥e
vthe

, (A.90)

d

dt

δTe
T0e

+
2

3
∇∥

δqe
n0eT0e

+
2

3

(
1 +

c2
c1

)
∇∥u∥e +

2

3

ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
7

2

δTe
T0e

)
= −ρevthe

2LT

∂φ

∂y
, (A.91)

where we have (once again) used the fact that R = LB for βe ≪ 1 [see (A.72)]. Using

the expression for the collisional heat flux (A.67), and ignoring all incidences of density

and magnetic-field gradients, we obtain exactly (8.1)-(8.3).

Rescaling the collisionality as νei/c1 → νei [recalling the definition of the collisional

heat flux (A.67)], it becomes clear that the only difference between (A.89)-(A.91) and

(2.27)-(2.29) — aside from the presence of some extra magnetic-drift terms, previously
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neglected — is the presence of the additive c2/c1 factors in (A.89) and (A.91). These

factors are due to the fact that, in the presence of a temperature gradient, the energy

of a particle depends on the direction of its motion, with particles coming from the

higher-temperature regions having more energy than particles moving in the opposite

direction (coming from the lower-temperature regions). This gives rise to a net fric-

tional force proportional to ∇∥ log Te — manifest on the right-hand side of (A.90) — as

the lower-temperature particles will undergo more frequent collisions than their hotter

counterparts, and will thus lose more momentum than those coming from the hotter

region. These thermal forces (see, e.g., [111, 127]) exist due to the velocity dependence

of the collision frequency associated with the Landau collision operator, and hence

were not captured by the simplified collision operator used in [1], where the collision

frequency was a velocity-independent constant. If one performs the same analysis with

(A.89)-(A.91) as was performed with the collisional equations (2.27)-(2.29) used in

chapters 2-6, one will find only finite modifications to constant factors entering into all

expressions; e.g., the electromagnetic results of Chapter 4 remain valid but with the

rescaling (1 + c2/c1)ξ∗ → ξ∗, where ξ∗ is defined in (4.10). This means that our results

are robust with respect to the exact choice of collision operator, as we discussed in

Section 7.1.3.

Note that (A.89)-(A.91) are identical to the equations (G9)-(G11) in [1]; this is

unsurprising, since the ordering (A.87) is similarly identical to theirs [cf. their (A74)].

It may seem that the efforts of this appendix were somewhat futile, given that we have

obtained the same set of equations in this low-beta limit. However, there is payoff

for these efforts: not only does this appendix provide necessary clarification for the

cursory derivation included in [1] [cf. their appendix G.1], but it demonstrates that

(A.89)-(A.91) are in fact valid for a greater range of parameters and perpendicular

scales than those considered here. Let us explain this point.

In this appendix, we first considered scales comparable to the electron Larmor

radius ρe [see the first expression in (A.17)], the consequence of which was to make the

ions adiabatic, as in (A.27). We then expanded the remaining terms in the electron

gyrokinetic equation assuming dominant collisions [see (A.6)], ordering perpendicular

wavenumbers to the flux-freezing scale, as in (A.14). Finally, taking the low-beta limit
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as above, we arrived at (A.89)-(A.91). Formally, such a procedure implies the following

relative ordering of dimensionless parameters:

ϵ≪
√
me

mi

≪ χ−1 ≪
√
βe ≪ 1, (A.92)

viz., the expansions χ−1 and βe were successive subsidiary expansions of the expansion

in the mass ratio (and indeed also of the gyrokinetic ordering). However, the approach

taken in [1] was to first order wavenumbers to be simultaneously comparable to both

the ion Larmor radius ρi and the electron inertial length de, before assuming dominant

collisions and imposing the adiabatic-ion limit in an analogous way to above [see their

appendix A]. Such a procedure implies the following relative ordering of dimensionless

parameters:

ϵ≪
√
βe ∼

√
me

mi

≪ χ−1 ≪ 1. (A.93)

From a comparison of (A.92) and (A.93), it is clear that the expansions in βe and χ

commute, implying that (A.89)-(A.91) are valid for a large range of electron beta:√
me

mi

≲
√
βe ≪ 1. (A.94)

Most importantly, the fact that the same equations can be obtained whether one first

considers scales comparable to the electron Larmor radius (as we did here) or the

ion Larmor radius (as in [1]) implies that they extend over a much greater range

of perpendicular scales than is immediately obvious, viz., they are valid on scales

ρ−1
i ≪ k⊥ ≪ ρ−1

e for the range of beta (A.94). As such, we consider (A.89)-(A.91) to

be the inevitable model for describing low-beta, collisional, electron-scale dynamics in

the presence of equilibrium density and electron-temperature gradients in a geometry

of constant magnetic curvature.

A.5.3 Electrostatic limit

Let us now consider intermediate scales between those corresponding to the zero-beta

(σ ∼ 1) and low-beta (σ ∼ βe) limits. Recalling (A.78) and (A.85), this implies that

we must order our parallel and perpendicular wavenumbers as√
βe ≪ k∥LT ≪ 1, (deχ)

−1 ≪ k⊥ ≪ ρ−1
e

λei
LT

. (A.95)
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Comparing (A.95) with (A.74), this means that we must also order βe ≪ σ ≪ 1, i.e.,

σ must have some intermediate value between those corresponding to the zero-beta

and low-beta limits; this translates immediately into the ordering (7.30). Then, (A.75)

implies that the rates of electron thermal diffusion and resistivity are subdominant and

dominant, respectively, viz.,

(k⊥ρe)
2νee

ω
≪ 1,

(k⊥de)
2νei

ω
≫ 1. (A.96)

The first of these expressions means that electron thermal diffusion can be neglected

everywhere that it appears in (A.68)-(A.70), as was done in Appendix A.5.2. When

combined with the fact that the nonlinearities contained in the parallel derivatives ∇∥

are, from (A.77), once again negligible, viz.,

δB⊥

B0

· ∇⊥ ≪ ∂

∂z
, (A.97)

the second expression in (A.96) implies that (A.69) once again becomes an equation

for the perturbed parallel electron velocity, as in (A.82). Then, in the same way as in

Appendix A.5.1, this can be substituted into (A.68) and (A.70), yielding

d

dt

δne

n0e

− c1v
2
the

2νei

∂2

∂z2

(
δne

n0e

− φ

)
−
(
1 +

c2
c1

)
c1v

2
the

2νei

∂2

∂z2
δTe
T0e

+
ρevthe
2Ln

∂φ

∂y

+
ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
δTe
T0e

)
= 0, (A.98)

d

dt

δTe
T0e

− 2

3

(
1 +

c2
c1

)
c1v

2
the

2νei

∂2

∂z2

(
δne

n0e

− φ

)
− 2

3

[(
1 +

c2
c1

)2

+
c3
c1

]
c1v

2
the

2νei

∂2

∂z2
δTe
T0e

+
2

3

ρevthe
LB

∂

∂y

(
δne

n0e

− φ+
7

2

δTe
T0e

)
+
ρevthe
2LT

∂φ

∂y
= 0, (A.99)

where we have once again neglected any incidences of the parallel magnetic-field per-

turbations according to (A.76), and used the fact that that R = LB for βe ≪ 1 [see

(A.72)]. Making use of the quasineutrality condition (2.22) to express the density

perturbations δne/n0e in terms of φ, defining the constants (7.31), and ignoring the

equilibrium density gradient, these become exactly (7.66) and (7.67), respectively. In

the absence of magnetic-field gradients, they become (7.25) and (7.26).

The electrostatic equations (A.98) and (A.99) can also be derived directly from

either our zero-beta [(A.83) and (A.84)] or low-beta [(A.89)-(A.91)] equations. In

the former case, this is done simply by considering the scales k⊥ρe ≪ λei/L, as this
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allows the thermal-diffusion terms to be neglected. In the low-beta case, it is done

by considering the scales k⊥deχ ≫ 1, and following the same logic as in Section 7.1.3.

The viability of both of these routes is unsurprising, given that (A.98) and (A.99) were

explicitly derived at the scales intermediate between the two limits. The reason that

we have belaboured this point, however, is to stress that σ is allowed to be arbitrary,

up to the condition that it must lie within the range βe ≪ σ ≪ 1 — the upper bound

of this range corresponding to k⊥ρe ∼ λei/L, and the lower bound corresponding to

k⊥deχ ∼ 1. This arbitrary nature of σ is a reflection of the fact that (A.98) and (A.99)

are in fact scale-invariant, as we discuss in Section 7.1.3. These electrostatic equations

thus represent a smooth connection between the low-beta and zero-beta (asymptotic)

limits, and are thus an appropriate set of equations for the purposes of Chapter 7.

A.6 Electron-ion collisional instability

(A.83) and (A.84) contain the usual electrostatic instabilities that were the subject of

Chapter 3 — namely, the collisional sETG and curvature-mediated ETG instabilities —

a feature that they share with the other systems of equations derived in this appendix.

(A.83) and (A.84), however, also contain another instability that relies solely on the

presence of electron-ion thermal diffusion and the electron temperature gradient. To

demonstrate this explicitly, we specialise to the two-dimensional limit and ignore the

equilibrium gradients of both density an the magnetic field. Then, (A.83) and (A.84)

become

d

dt

δne

n0e

=
1

2
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ− 1

2

δTe
T0e

)
, (A.100)

d

dt

δTe
T0e

= −ρevthe
2LT

∂φ

∂y
+

1

3

(
5

4
+

√
2

Z

)
νeiρ

2
e∇2

⊥
δTe
T0e

− 1

6
νeiρ

2
e∇2

⊥

(
δne

n0e

− φ

)
. (A.101)

Linearising, Fourier transforming, and making use of the quasineutrality condition

(A.35), we find the dispersion relation

ω2 +

[
1 + τ̄ +

2

3

(
5

4
+

√
2

Z

)]
k2⊥ρ

2
eνei
2

iω

− 2

3
(1 + τ̄)

(
1 +

√
2

Z

)(
k2⊥ρ

2
eνei
2

)2

+
k2⊥ρ

2
eνei
4

iω∗eτ̄ = 0. (A.102)
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If we consider the limit of strong ETG drive, viz.,

(k⊥ρe)
2νei ≪ ω ≪ ω∗e, (A.103)

then the balance of the first and last terms in (A.102) gives us

ω2 = −ik
2
⊥ρ

2
eνeiω∗eτ̄

4
⇒ ω = ±1− isgn(ky)√

2

(
k2⊥ρ

2
eνei |ω∗e| τ̄

4

)1/2

, (A.104)

with the unstable root representing the electron-ion collisional instability.

Physically, this instability arises due to the fact that the finite gyro-motion of the

electrons allows them to sample the inhomogeneity in the equilibrium temperature,

providing a feedback mechanism that is somewhat analogous to that provided by the

magnetic drifts. The minimal set of equations that describe this process can be obtained

from (A.100) and (A.101) under the ordering (A.103):

d

dt
τ̄−1φ =

1

4
νeiρ

2
e∇2

⊥
δTe
T0e

,
d

dt

δTe
T0e

= −ρevthe
2LT

∂φ

∂y
. (A.105)

Suppose that a small perturbation of the electron temperature is created with ky ̸= 0,

bringing the plasma from regions with higher T0e to those with lower T0e (δTe > 0), and

vice-versa (δTe < 0). Electrons in the hotter regions, owing to their larger gyro-orbits,

will have higher velocities than those in colder regions; the difference between these

velocities along the line of unperturbed temperature gives rise to an effective drift of

electrons, and thus an electron-density perturbation [first equation in (A.105)]. This

mechanism is similar to that which gives rise to the diamagnetic heat flux (see, e.g.,

[111]). By quasineutrality, the electron density perturbation gives rise to an exactly

equal ion density perturbation, and that, via Boltzmann response, creates an electric

field that produces an E × B drift which pushes hotter particles further into the

colder region, and vice-versa [second equation in (A.105)], completing the feedback

loop required for the instability.

Though (A.104) has been derived considering purely two-dimensional modes, the

instability in fact extends to finite parallel wavenumbers, until it is quenched by ther-

mal conduction and immediately replaced by the sETG instability. This is shown in

Figure A.1(b). At short enough perpendicular wavelengths, it is eventually quenched

by thermal diffusion, which erases both the density and temperature perturbations in
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(a) k∥LT = 0 (b) kxρeLT/λei = 0

Figure A.1: Contour plots of the positive growth rates (γ > 0) arising from the linear
dispersion relation of (A.83) and (A.84) in the (a) (kx, ky) and (b) (ky, k∥) planes. The growth
rates are normalised to (λei/LT )

2νei/2, and we have set τ̄ = Z = 1 and ωde = 0. In both
panels, the solid black line is the contour of zero growth rate. In panel (b), the vertical grey
dashed line is (A.107), the stability boundary associated with the two-dimensional electron-
ion collisional instability (A.104). The slanted grey dashed line is stability boundary of
the collisional sETG instability (3.10), as derived from (A.83) and (A.84). The upper and
lower regions of positive growth rate correspond to the sETG and electron-ion collisional
instabilities, respectively.

(A.100) and (A.101). To see this, we consider the exact stability boundary of (A.102):

assuming that ω is purely real, the real and imaginary parts of (A.102) are, respectively,

ω2 − 2

3
(1 + τ̄)

(
1 +

√
2

Z

)(
k2⊥ρ

2
eνei
2

)2

= 0,

[
1 + τ̄ +

2

3

(
5

4
+

√
2

Z

)]
ω +

τ̄

2
ω∗e = 0.

(A.106)

These can straightforwardly be combined to yield(
k⊥ρe

LT

λei

)2

=
3

8

τ̄ 2

(1 + τ̄)
[
1 + τ̄ + 2

3

(
5
4
+

√
2

Z

)]2 k2yk2⊥ , (A.107)

where the perpendicular wavenumber normalisation has been chosen consistently with

the ordering (A.78). This is the vertical grey dashed line in Figure A.1(b); to the right

of this line, corresponding to the limit (k⊥ρe)
2νei ≫ ω∗e, all modes are damped due

to rapid thermal diffusion. The maximum growth rate of the instability is, therefore,
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reached asymptotically at ω∗e ∼ (k⊥ρe)
2νei. Indeed, maximising the growth rate from

(A.102), we find that

γmax = C(τ̄ , Z)ω∗e, (A.108)

where C(τ̄ , Z) is some constant formally of order unity, e.g., C(1, 1) ≈ 0.025. This

means that the maximum growth rate of the electron-ion collisional instability is always

(formally) comparable to that of the sETG [cf. (3.11)] at these scales.

We note that this instability does not appear within the low-beta equations (A.89)-

(A.91) — or indeed the electrostatic equations (A.98) and (A.99) — on which we focus

in this thesis, owing to the fact that the effects of thermal diffusion are negligible in

both limits [see (A.87) or (A.96)]. However, given that we are primarily interested in

electrostatic and electromagnetic instabilities on either side of the flux-freezing scale

(2.33), we do not see the absence of the electron-ion collisional instability from our

equations as particularly problematic for the current study.
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