-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(24)2482023
This work describes the usage of Error Field Correction coil system [Barlow I. et al 2001 Fusion Eng. Des. 58-59 189], which is a set of 4 coils located external to the vessel of the JET device, with the aim of introducing non-axisymmetric n=1 magnetic field perturbations in various targeted plasma experiments. Besides being used to characterize…
-
UKAEA-CCFE-PR(24)2472023
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challeng…
-
UKAEA-CCFE-PR(24)2452023
2021 JET experimental campaign has produced high stationary fusion power with 50%D 50%T discharges, operated with the ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. It has provided a unique opportunity to assess the DT fusion power prediction capability before ITER DT experiments. This pap…
-
UKAEA-CCFE-PR(24)022023
This work studies the influence of RF waves in ICRH range of frequency on fusion alphas during recent JET D-T campaign. Fusion alphas from D-T reactions are born with energies of about 3.5MeV and therefore have significant Doppler shift enabling synergistic interaction between them and RF waves at broad range of frequencies including the ones fo…
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1822023
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of tritium and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3T [1]. Experiments ha…
-
UKAEA-CCFE-PR(23)1812023
During the DTE2 campaign in the JET tokamak we performed a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from betaN = 1.0 to 3.0. Based on this wide data…
-
UKAEA-CCFE-PR(23)1802023
-
UKAEA-CCFE-PR(23)1792023
Showing 1 - 10 of 61 UKAEA Paper Results