-
UKAEA-CCFE-PR(24)2092024
This study systematically explores the parameter space of disruption mitigation through shattered pellet injection in ITER with a focus on runaway electron dynamics, using the disruption modelling tool Dream. The physics fidelity is considerably increased compared to previous studies, by e.g., using realistic magnetic geometry, resistive wall confi…
-
UKAEA-CCFE-CP(23)402022
Shattered pellet injection (SPI), with research started in recent years, is the current concept for the ITER disruption mitigation system (DMS) to prevent disruption-related damage. Compared with impurity SPI, pure deuterium (D2) SPI could contribute to runaway electron (RE) avoidance in ITER via a strong dilution cooling before the thermal quen…
-
UKAEA-CCFE-PR(18)452018
In magnetic fusion devices, unwanted non-axisymmetric magnetic eld perturbations, known as error fields (EF), can have detrimental effects on plasma stability and confinement. To minimize their impact on plasma performances and on the available operational space, it is important to identify the EF sources and develop EF control strategies. MAST Up…
-
2014
The high pressure gradients in the edge of a tokamak plasma can lead to the formation of explosive plasma instabilities known as edge localised modes (ELMs). The control of ELMs is an important requirement for the next generation of fusion devices such as ITER. Experiments performed on the Mega Amp Spherical Tokamak (MAST) at Culham have shown that…
-
2014
Lobe structures due to the application of resonant magnetic perturbations (RMPs) have been observed using wide-angle imaging of light from He1+ ions in the vicinity of the lower X-point in MAST. The data presented are from lower single-null discharges where RMPs of toroidal mode number, n, of 4 and 6 were applied. It has been found that, above a th…
-
2014
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which…
-
2013
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to…
-
2013
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reduction in ELM energy loss. A threshold current for ELM mitigation is observed above which the ELM freque…
-
2012
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above wh…
-
2012
The application of nonaxisymmetric resonant magnetic perturbations (RMPs) with a toroidal mode number n . 6 in the MAST tokamak produces a significant reduction in plasma energy loss associated with type-I edge localized modes (ELMs), the first such observation with n>3 . During the ELM mitigated stage clear lobe structures are observed in visible-…
Showing 1 - 10 of 19 UKAEA Paper Results