TEM study of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000 °C under 40 keV He+ irradiation

TEM study of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000 °C under 40 keV He+ irradiation

TEM study of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000 °C under 40 keV He+ irradiation 150 150 tsosupport
UKAEA-CCFE-PR(24)200

TEM study of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000 °C under 40 keV He+ irradiation

Helium-induced defect nucleation and accumulation in polycrystalline W and W-0.5wt.%ZrC  (W-ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000 °С at the maximum damage level of 1 dpa.  Radiation-induced dislocation loops were not observed in the current study. W-ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 oC) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 oC, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 oC, faceted helium bubble population was dominated in W.

Collection:
Journals
Journal:
Nuclear Engineering and Technology
Publisher:
Elsevier
Published date:
05/12/2023