Overview of the Alcator C-Mod Research Program

Overview of the Alcator C-Mod Research Program

Overview of the Alcator C-Mod Research Program 150 150 Mathew

This paper summarizes highlights of research results from the Alcator C-Mod tokamak covering the period 2006 through 2008. Active flow drive, using mode converted waves in the ion cyclotron range of frequencies (ICRF), has been observed for the first time in a tokamak plasma, using a mix of D and 3 He ion species; toroidal and poloidal flows are driven near the location of the mode conversion layer. ICRF induced edge sheaths are implicated in both the erosion of thin boron coatings and the generation of metallic impurities. Lower Hybrid Range of Frequencies (LHRF) microwaves have been used for efficient current drive, current profile modification, and toroidal flow drive. In addition, LHRF has been used to modify the H-mode pedestal, increasing temperature, decreasing density, and lowering the pedestal collisionality. Studies of hydrogen isotope retention in solid metallic plasma facing components reveal significantly higher retention than expected from ex-situ laboratory studies; a model to explain the results, based on plasma/neutral induced lattice damage has been developed and tested. During gas-puff mitigation of disruptions, induced MHD causes the magnetic field to become stochastic, resulting in reduction of halo currents, spreading of plasma power loading, and loss of run-away electrons before they cause damage. Detailed pedestal rotation profile measurements have been used to infer E r profiles, and correlation with global H-mode confinement. An improved L-mode regime, obtained at q 95 =3 with ion drift away from the active x-point, shows very good confinement without a strong density pedestal, and no evidence of particle or impurity accumulation, without the need for ELMs or any additional edge density regulation mechanism.

Collection:
Journals
Journal:
Publisher:
Published date:
01/01/2009