-
UKAEA-CCFE-PR(25)3772025
The vacancies and interstitials produced in high-energy collision cascades of irradiated tungsten can form prismatic dislocation loops with Burgers vectors 1⁄2⟨1 1 1⟩ and ⟨1 0 0⟩. The 1⁄2⟨1 1 1⟩ loops are very mobile, and their mobility is essential for the microstructure development of irradiated materials, It is a key parameter …
-
UKAEA-CCFE-PR(25)3292025
Tungsten-based low-activation high-entropy alloys are possible candidates for next-generation fusion reactors due to their exceptional tolerance to irradiation, thermal loads, and stress. We develop an accurate and efficient machine-learned interatomic potential for the W–Ta–Cr–V system and use it in hybrid Monte Carlo mo…
-
UKAEA-STEP-PR(24)092024
The STEP Prototype Powerplant (SPP) will be a first of a kind powerplant – its prime objective is to export electrical power, to the grid, above 100MWe. As part of a wider issue, addressing the STEP concept design, this paper seeks to explore how electrical power will be generated from a Spherical Tokamak heat source. Accordingly, the followin…
-
UKAEA-CCFE-PR(25)3892023
Swelling and microstructural evolution of nanocrystalline (NC) tungsten are investigated by atomic scale simulations exploring the low temperature, high radiation exposure limit. Statistical analysis of microstructures containing at least a million atoms, with the grain size varying from 5 nm to 20 nm, suggests that their evolution is dominated …
-
UKAEA-CCFE-PR(25)3432023
-
UKAEA-CCFE-PR(24)2542023
Conventional crystal plasticity (CP) solvers are based on a Newton-Raphson (NR) approach which use an initial guess for the free variables (often stress) to be solved. These solvers are limited by a finite interval of convergence and often fail when the free variable falls outside this interval. Solution failure results in the reduction of the t…
-
UKAEA-CCFE-PR(24)2172023
Fusion energy offers the potential for a near limitless source of low-carbon energy and is oftenregarded as a solution for the world’s long-term energy needs. To realise such a scenario requiresthe design of high-performance fusion reactors capable of maintaining the extreme conditionsnecessary to enable fusion. Turbulence …
-
UKAEA-CCFE-PR(24)2102023
This work addresses in-situ synergistic irradiation and thermomechanical loading of nuclear reactor components by linking new mechanistic understanding with crystal plasticity finite element modelling to describe the formation and thermal and mechanical annihilation of dislocation loops. A model of pressurised reactor cladding is constructed to …
-
UKAEA-CCFE-PR(24)062023
We describe the parameterization of a tungsten-hydrogen empirical potential designed for use with large-scale molecular dynamics simulations of highly irradiated tungsten containing hydrogen isotope atoms, and report test results. Particular attention has been paid to getting good elastic properties, including the relaxation volumes of small def…
-
UKAEA-CCFE-PR(23)1712023
We simulate effects of irradiation on nanocrystalline tungsten in the athermal high dose limit using the creation-relaxation algorithm, where microstructural evolution is driven not by thermally activated diffusion, but by fluctuating stresses resulting from the production and relaxation of defects. Over the entire interval of radiation exposure sp…
Showing 1 - 10 of 29 UKAEA Paper Results