-
UKAEA-CCFE-PR(24)2442022
Zirconium alloys are widely used as the fuel cladding material in pressurised water reactors where a significant population of defects and dislocations is produced by exposure to neutrons. We present and interpret synchrotron microbeam X-ray diffraction measurements of proton- irradiated Zircaloy-4, where we identify a transient peak and the sub…
-
UKAEA-CCFE-PR(23)1492022
Materials subjected to irradiation damage often undergo local changes in the microstructure that effect the expected performance. To investigate those changes, this work proposes a novel approach to detect strain localisation caused by irradiation-induced damage in nuclear materials on the microstructural level, conside…
-
UKAEA-CCFE-PR(23)1342022
During operation, structural components made of zirconium alloys are subject to neutron irradiation, which leads to the displacement of zirconium atoms from their lattice sites, the production of self-interstitials and vacancies, and eventually dislocation loops. This process can lead to deleterious effects such as irradiation growth, creep and …
-
UKAEA-CCFE-PR(22)632022
Classical crystal plasticity formulation based on dislocation slip was extended to include the mechanisms of dislocation channelling, with associated strain softening which is observed in many alloys post irradiation. The performance of the model was evaluated against experimental data on Zircaloy-4, which included engineering stress-strain respons…
-
UKAEA-CCFE-PR(22)252022
Hydride precipitation and reorientation has the potential to embrittle zirconium alloys. This study aims to better understand the influence of the Zr microstructure on hydride precipitation and reorientation. Specifically, the crystallography, phase stability and morphology of hydride precipitation was correlated to microstructural variations due t…
Showing 1 - 5 of 5 UKAEA Paper Results
Page 1 of 1