Design and implementation of a full profile sub-cm ruby laser based Thomson scattering system for MAST
A major upgrade to the ruby Thomson scattering (TS) system has been designed and implemented on the Mega-ampere spherical tokamak (MAST). MAST is equipped with two TS systems, a Nd:YAG laser system and a ruby laser system. Apart from common collection optics each system provides independent measurements of the electron temperature and density profile. This paper focuses on the recent upgrades to the ruby TS system. The upgraded ruby TS system measures 512 points across the major radius of the MAST vessel. The ruby laser can deliver one 10 J 40 ns pulse at 1 Hz or two 5 J pulses separated by 100–800 µ s. The Thomson scattered light is collected at F/15 over 1.4 m. This system can resolve small (7 mm) structures at 200 points in both the electron temperature and density channels at high optical contrast; ~50% modulated transfer function. The system is fully automated for each MAST discharge and requires little adjustment.