-
2012
We present a combined experimental and computational study of high-temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. Magnetic Cluster Expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as functions of alloy composition. We …
-
2012
Generic materials-related problems foreseen in connection with the operation of a fusion power plant present a major challenge for the development of magnetically confined fusion as a commercial power generation option. In this review, we focus on the predictive capabilities of first-principles-based atomistic models for radiation defects and phase…
-
2012
The high-energy, high-intensity neutron fluxes produced by the fusion plasma will have a significant life-limiting impact on reactor components in both experimental and commercial fusion devices. As well as producing defects, the neutrons bombarding the materials initiate nuclear reactions, leading to transmutation of the elemental atoms. Products …
-
2012
We develop a dynamic spin-lattice-electron model for simulating the time-dependent evolution of coupled spin, atomic, and electronic degrees of freedom in a magnetic material. Using the model, we relate the dissipative parameters entering the Langevin equations for the lattice and spin degrees of freedom to the heat transfer coefficients of a pheno…
-
2012
We develop an atomistic spin-lattice-dynamics model for simulating energy relaxation in magnetic materials. The model explicitly solves equations of motion for the atoms and spins, and includes interaction with electron excitations. We apply the model to simulate the dynamics of propagation of a compressive elastic wave in iron. We find that coupli…
-
2012
We perform large-scale molecular dynamics simulations to study the magnetic properties of amorphous iron under pressure. Simulations, exceeding by at least two orders of magnitude those accessible to density functional calculations, use the recently developed magnetic interatomic potential for iron. The distributions of the size of atomic magnetic …
-
2011
Noncollinear configurations of local magnetic moments at Fe/Cr interfaces in Fe-Cr alloys are explored using a combination of density functional theory (DFT) and magnetic cluster expansion (MCE) simulations. We show that magnetic frustration at Fe/Cr interfaces can be partially resolved through the formation of noncollinear magnetic structures, whi…
-
2011
Nanoscale prismatic loops are modeled via a partial stochastic differential equation that describes an overdamped continuum elastic string, with a view to describing both the internal and collective dynamics of the loop as a function of temperature. Within the framework of the Langevin equation, expressions are derived that relate the empirical par…
-
2011
The structure and phase stability of binary tungsten-vanadium and tungsten-tantalum alloys are investigated over a broad range of alloy compositions using ab initio and cluster expansion methods. The alloys are characterized by the negative enthalpy of mixing across the entire composition range. Complex intermetallic compounds are predicted by ab i…
-
2011
Microscopic stochastic Langevin-type spin dynamics equations provide a convenient and tractable model describing the relaxation of spin and spin-lattice ensembles.We develop a robust and numerically stable algorithm for integrating the Langevin spin dynamics equations, and explore, both numerically and analytically, a range of applications of the m…
Showing 91 - 100 of 116 UKAEA Paper Results