-
UKAEA-CCFE-PR(25)3772025
The vacancies and interstitials produced in high-energy collision cascades of irradiated tungsten can form prismatic dislocation loops with Burgers vectors 1⁄2⟨1 1 1⟩ and ⟨1 0 0⟩. The 1⁄2⟨1 1 1⟩ loops are very mobile, and their mobility is essential for the microstructure development of irradiated materials, It is a key parameter …
-
UKAEA-CCFE-PR(25)3402025
Despite great efforts to study magnetic properties of 3d-transition metals from both fundamental and applied interest, there exists no modelling approach that would be able to describe magnetic and structural phase stability of all these elements on a unified formalism. In this work, we propose a qualitative improvement of the …
-
UKAEA-CCFE-PR(25)3302025
A phase-field model is developed to simulate intergranular corrosion of ferritic/martensitic steels exposed to liquid lithium. The chromium concentration of the material is used to track the mass transport within the metal and liquid (corrosive) phase. The framework naturally captures intergranular corrosion by enhancing the diffusion of chromiu…
-
UKAEA-CCFE-PR(25)3292025
Tungsten-based low-activation high-entropy alloys are possible candidates for next-generation fusion reactors due to their exceptional tolerance to irradiation, thermal loads, and stress. We develop an accurate and efficient machine-learned interatomic potential for the W–Ta–Cr–V system and use it in hybrid Monte Carlo mo…
-
UKAEA-CCFE-PR(25)3272025
High-entropy alloys (HEAs) are being explored as potential candidates for radiation-tolerant materials, with some compositions exhibiting good resistance to defect cluster formation. One such system is WTaCrV, although only a single composition has been experimentally tested under ion irradiation, where it showed phase decomposition at low temperat…
-
UKAEA-CCFE-PR(25)3222025
The development of quantitative models for understanding physical properties of alloys requires a proper treatment of magnetic interactions, which is of paramount importance for the microstructural stability, especially in steels and high-entropy alloys containing magnetic elements. These magnetic interactions also control the defects behavior w…
-
UKAEA-CCFE-PR(25)3132025
This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 ◦C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against…
-
UKAEA-CCFE-PR(25)3082025
-
UKAEA-CCFE-PR(25)3062025
Spinodal phase separation in SMART (Self-passivating Metal Alloys with Reduced Thermo-oxidation) materials based on binary W-Cr with alloying elements Y and Zr is systematically investigated by a combination of Density Functional Theory with Cluster Expansion Hamiltonian and large-scale Monte Carlo simulations with thermodynamic integration. Compar…
-
UKAEA-CCFE-PR(25)3782024
We develop an atomic cluster expansion (ACE) interatomic potential for lithium that accurately models both the solid and liquid phase and the corresponding melting point. The predicted properties for both phases are in close agreement with density functional theory (DFT) and experimental data from literature. The potential is able to capture the…
Showing 1 - 10 of 89 UKAEA Paper Results