-
UKAEA-CCFE-CP(24)072022
Future fusion reactors using deuterium-tritium fuel will create high fluences of high-energy neutrons inside and around the reactor vessel. As well as causing material damage, fusion neutrons will activate materials, the decay of which leads to radiation fields in and around the reactor after shutdown. Gamma-ray emission from activated materials…
-
UKAEA-CCFE-PR(23)1372022
The International Thermonuclear Experimental Reactor (ITER) is an international nuclear fusion research and engineering project with the aim to prove the feasibility of nuclear fusion as a large-scale carbon-free source of energy. The reactor vessel contains several diagnostic windows that provide a line of sight to the plasma. Design and qualif…
-
UKAEA-CCFE-CP(23)522022
An investigation was conducted into minimising effective dose to members of the public in the unlikely event of an accident by optimising design parameters and site locations of future fusion power plants. This is part of our defence in depth approach for tritium safety that also includes significant work on the prevention of accidents. Calculat…
-
UKAEA-CCFE-CP(20)012020
The United Kingdom Atomic Energy Authority are involved in the design and manufacture of the diagnostic windows for ITER. ITER is an international project, with 35 nations collaborating to design, construct and operate a prototype controlled nuclear fusion reactor in southern France. As well as providing line of sight for diagnostics, the window…
-
UKAEA-CCFE-CP(19)452019
Spherical Tokamaks offer a number of potential advantages for a future fusion power plant. They have a high ratio of thermal to magnetic field pressure (beta) and strong flows, either of which could result in reduced turbulence. Fewer Toroidal Field (TF) coils and a different geometry offers the potential for new methods of remote maintenance …
-
UKAEA-CCFE-PR(19)762019
Shutdown dose rate calculations provide an essential input to the design and research of fusion power plant technology. They allow the estimation of dose to personnel and equipment during planned and unplanned maintenance. The mesh coupled rigorous 2 step (MCR2S) methodology used at Culham Centre for Fusion Energy (CCFE) was originally developed to…
Showing 1 - 6 of 6 UKAEA Paper Results
Page 1 of 1