-
UKAEA-CCFE-PR(25)2672024
The first generation of nuclear fusion reactors is expected to operate using a mixture of deuterium(D) and tritium(T) fuel. Controlling the D:T ratio is a promising option to control the fusion burn rate. The Joint European Torus (JET), as the only operational tokamak which can use tritium, is uniquely placed to test th…
-
UKAEA-CCFE-CP(25)112023
Retention of tritium in structural materials of a fusion reactor is a concern for tritium accountancy, maintenance, and decommissioning. Plasma facing materials will be exposed to high temperatures, neutron damage and hydrogen isotopes. The damage caused by these conditions is a large area of exploration for fusion, with many questions still to…
-
UKAEA-CCFE-CP(24)102023
The successful realisation of energy production through the fusion of deuterium and tritium will necessarily lead to the generation of waste contaminated with tritium. Not only will some of the tritium fuel permeate into components of fusion reactors and their wider fuel cycle, but tritium will also be generated directly in materials exposed to the…
Showing 1 - 3 of 3 UKAEA Paper Results
Page 1 of 1