-
UKAEA-CCFE-PR(25)3862025
In high performance regimes short (sub ms) bursts of heat and particles from the core (edge localised modes, ELMs) happen cyclically increasing temporarily the heat flux by 2-3 orders of magnitude, and this can hardly be tolerated by large tokamaks. If ELMs happen when the target is detached the plasma temporarily reattaches and looses energy in th…
-
UKAEA-CCFE-PR(25)3692024
Plasma detachment in tokamaks is useful for reducing heat flux to the target. It involves interactions of the plasma with impurities and neutral particles, leading to significant losses of plasma power, momentum, and particles. Accurate mapping of plasma emissivity in the divertor and X-point region is essential for assessing the rel…
-
UKAEA-CCFE-PR(23)112023
A prototype infrared video bolometer (IRVB) was succesfully deployed in MAST-U, the first deployment of such a diagnostic in spherical tokamaks. The IRVB was designed to study the radiation around the x-point and has the potential to return emissivity profiles of unprecedented spatial resolution. The system was fully characterised prior installatio…
-
UKAEA-CCFE-PR(22)542022
As tokamak research moves to reactor conditions, the control of a stable, optimally-detached divertor plasma has become increasingly relevant. Simple predictions of such detachment control have been performed previously using the Detachment Location Sensitivity (DLS) model of detachment. In this study the DLS model is extended and combined with SOL…
-
UKAEA-CCFE-PR(19)072018
Ray-tracing techniques are applied to divertor filtered imaging, a diagnostic that has long been plagued by polluting reflected light features in metal walled fusion machines. A physically realistic surface reflection model is developed from a Cook-Torrence microfacet BRDF model. Camera calibration images of in-vessel point lights at JET are use…
Showing 1 - 5 of 5 UKAEA Paper Results
Page 1 of 1