-
UKAEA-CCFE-PR(24)2422022
Spinodal phase separation in SMART materials based on binary W-Cr with alloying 1 elements Y and Zr is systematically investigated by a combination of Density Functional Theory with Cluster Expansion Hamiltonian and large-scale Monte Carlo simulations with thermodynamic integration. Comparing alloying of Zr with those from Y, it is shown that there…
-
UKAEA-CCFE-PR(23)1162022
Using exchange Monte Carlo (MC) simulations based on an ab initio-parameterized Cluster Expansion (CE) model, we explore the phase stability of low-Cr Fe-Cr alloys as a function of vacancy (Vac), carbon, and nitrogen interstitial impurity content. To parameterise the CE model, we perform density functional theory calculations for more than 1600 …
-
UKAEA-CCFE-PR(22)412022
-
UKAEA-CCFE-PR(23)922021
W-Cr-Y smart alloys are potential material candidates for plasma facing components due to their protective behaviour during the loss-of-coolant accident (LOCA), while maintaining beneficial properties of W during the normal operation of the fusion power plant. During plasma exposure the lighter alloying elements are preferentially sputtered at t…
-
UKAEA-CCFE-PR(19)382019
Multi-component alloy Fe-Cr-Mn-Ni is a promising new candidate system not only because of its potential application as structural materials beyond conventional austenitic steels but also for fundamental physics role played by Mn element in Fe-Cr-Ni based alloys. In this work, the phase stability of magnetic face-centered cubic (fcc) Fe-Cr-Mn-Ni sys…
Showing 1 - 5 of 5 UKAEA Paper Results
Page 1 of 1