-
UKAEA-CCFE-PR(26)4062025
Neutron bombardment of high temperature superconducting (HTS) magnets may compromise the integrity of the magnetic confinement in future fusion reactors. The amount of damage produced by a single neutron can be predicted from the threshold displacement energies (TDE) of the constituent ions in the HTS materials, such as the Rare Earth Cuperates.…
-
UKAEA-CCFE-PR(26)032025
Microstructural evolution–driven degradation governs material properties and is closely linked with defect behavior. Quantitatively characterizing defects and their evolution is essential for elucidating the underlying degradation mechanisms. To this end, the defects were introduced at room temperature using self-ion irradiation for damage lev…
-
UKAEA-CCFE-PR(26)012025
Refractory High-Entropy Alloys (RHEAs) are promising candidates for structural materials in nuclear fusion reactors, where W-based alloys are currently leading. Fusion materials must withstand extreme conditions, including i) severe radiation damage from energetic neutrons, ii) embrittlement due to H and He ion implantati…
-
UKAEA-CCFE-PR(25)3772025
The vacancies and interstitials produced in high-energy collision cascades of irradiated tungsten can form prismatic dislocation loops with Burgers vectors 1⁄2⟨1 1 1⟩ and ⟨1 0 0⟩. The 1⁄2⟨1 1 1⟩ loops are very mobile, and their mobility is essential for the microstructure development of irradiated materials, It is a key parameter …
-
UKAEA-CCFE-PR(25)3302025
A phase-field model is developed to simulate intergranular corrosion of ferritic/martensitic steels exposed to liquid lithium. The chromium concentration of the material is used to track the mass transport within the metal and liquid (corrosive) phase. The framework naturally captures intergranular corrosion by enhancing the diffusion of chromiu…
-
UKAEA-CCFE-PR(25)3292025
Tungsten-based low-activation high-entropy alloys are possible candidates for next-generation fusion reactors due to their exceptional tolerance to irradiation, thermal loads, and stress. We develop an accurate and efficient machine-learned interatomic potential for the W–Ta–Cr–V system and use it in hybrid Monte Carlo mo…
-
UKAEA-CCFE-PR(25)3272025
High-entropy alloys (HEAs) are being explored as potential candidates for radiation-tolerant materials, with some compositions exhibiting good resistance to defect cluster formation. One such system is WTaCrV, although only a single composition has been experimentally tested under ion irradiation, where it showed phase decomposition at low temperat…
-
UKAEA-CCFE-PR(25)3222025
The development of quantitative models for understanding physical properties of alloys requires a proper treatment of magnetic interactions, which is of paramount importance for the microstructural stability, especially in steels and high-entropy alloys containing magnetic elements. These magnetic interactions also control the defects behavior w…
-
UKAEA-CCFE-PR(25)3132025
This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 ◦C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against…
-
UKAEA-CCFE-PR(25)3082025
Showing 1 - 10 of 36 UKAEA Paper Results