-
UKAEA-CCFE-PR(25)3132025
This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 ◦C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against…
-
UKAEA-CCFE-PR(25)3062025
Spinodal phase separation in SMART (Self-passivating Metal Alloys with Reduced Thermo-oxidation) materials based on binary W-Cr with alloying elements Y and Zr is systematically investigated by a combination of Density Functional Theory with Cluster Expansion Hamiltonian and large-scale Monte Carlo simulations with thermodynamic integration. Compar…
-
UKAEA-CCFE-PR(24)2272024
Tungsten is one of the primary materials for several applications in commercial fusion power plant designs, in particular for divertor targets and the first wall. In maintenance conditions or during a loss of coolant accident, tungsten is expected to reach temperatures at which it readily volatilises as tungsten trioxide in contact with air, potent…
-
UKAEA-CCFE-PR(24)2572023
Measuring temperatures between 100 and 150 million degrees, expected to be achieved in future fusion reactors, is a great challenge. Existing methods deliver ion temperature results with a delay from 5-10 minutes to several days after taking the measurements. A promising novel approach to real-time monitoring of deuterium-tritium plasma temperature…
-
UKAEA-CCFE-PR(24)2552023
Helium-induced defect nucleation and accumulation in polycrystalline W and W-0.5wt.%ZrC (W-ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000 °С at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current…
-
UKAEA-CCFE-PR(24)2402023
In this study, we compare the formation of radiation induced defects in W and W-Re-Os alloys, exposed to an equivalent dose of self-ion and neutron irradiation. Transmutation reactions in the neutron irradiated material are simulated in the ion implanted materials by alloying with representative quantities of Re and Os (1.4 and 0.1 at.% respecti…
-
UKAEA-CCFE-CP(24)102023
The successful realisation of energy production through the fusion of deuterium and tritium will necessarily lead to the generation of waste contaminated with tritium. Not only will some of the tritium fuel permeate into components of fusion reactors and their wider fuel cycle, but tritium will also be generated directly in materials exposed to the…
-
UKAEA-CCFE-PR(24)2192023
Heat transfer is a key consideration in the development of tritium breeder blankets for future fusion reactors. For solid tritium breeder materials there is a a fine balance to be struck between high levels of porosity to encourage tritium release and minimising it to maintain the thermal and mechanical properties. Therefore, in this work we emp…
-
UKAEA-CCFE-PR(23)1842023
Atomistic simulations using ab initio density functional theory and machine-learned potentials have been employed to map the structural, thermodynamic, and kinetic properties of the T-WOx system (x = 0 to 3). The simulations reveal that the T permeability is low in WO2 , intermediate in W, and relatively high in WO
-
UKAEA-CCFE-PR(23)1732023
While modern nuclear decay data can provide many details of a given nuclides β-decay modes (branching ratios, decay heating etc), knowledge of the emitted β-energy spectrum is often not included. This limitation hampers the use of decay data in some analysis, such as β-spectrometry of irradiated material, prediction of β-decay Bremsstrahlung…
Showing 1 - 10 of 86 UKAEA Paper Results