#### M. R. Hardman F. I. Parra C. Chong T. Adkins M. S. Anastopoulos-Tzanis M. Barnes D. Dickinson J. F. Parisi H. Wilson

Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Hence, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes, due to the small electron-to-ion mass ratio and the large electron transit frequency. However, in gyrokinetic simulations of io…

Preprint Published#### M. R. Hardman M. Barnes C. M. Roach

Magnetised plasma turbulence can have a multiscale character: instabilities driven by mean temperature gradients drive turbulence at the disparate scales of the ion and the electron gyroradii. Simulations of multiscale turbulence, using equations valid in the limit of infinite scale separation, reveal novel cross-scale interaction mechanisms in …

Preprint Published#### M. R. Hardman M. Barnes C. M. Roach F. I. Parra

Multiple space and time scales arise in plasma turbulence in magnetic confinement fusion devices because of the smallness of the square root of the electron-to-ion mass ratio and the consequent disparity of the ion and electron thermal gyroradii and thermal speeds. Direct simulations of this turbulence that include both ion and electron space-ti…

Preprint Published