-
UKAEA-STEP-PR(25)252024
This paper discusses the importance of parallel and perpendicular magnetic field perturbations in gyrokinetic simulations of electromagnetic instabilities and turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect- ratio tokamak STEP. Previous studies have revealed the presence of unstable hybrid…
-
UKAEA-CCFE-PR(24)2332024
Starting from the assumption that saturation of plasma turbulence driven by temperature-gradient instabilities in fusion plasmas is achieved by a local energy cascade between a long-wavelength outer scale, where energy is injected into the fluctuations, and a small-wavelength dissipation scale, where fluctuation energy is thermalized by particle…
-
UKAEA-CCFE-PR(22)012021
Electromagnetic instabilities and turbulence driven by the electron-temperature gradient are considered in a local slab model of a tokamak-like plasma, with constant equilibrium gradients (including magnetic drifts but no magnetic shear). The model describes perturbations at scales both larger and smaller than the electron inertial scale de…
-
UKAEA-CCFE-PR(20)212020
Local linear gyrokinetic simulations show that electron temperature gradient (ETG) instabilities are the fastest growing modes for kyρi >~ 0.1 in the steep gradient region for a JET pedestal discharge (92174) where the electron temperature gradient is steeper than the ion temperature gradient. Here, ky is the wa…
-
UKAEA-CCFE-PR(20)202020
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a Z-pinch) and an equilibrium temperature gradient. Numerical simulat…
Showing 1 - 5 of 5 UKAEA Paper Results
Page 1 of 1