-
UKAEA-CCFE-PR(23)1162022
Using exchange Monte Carlo (MC) simulations based on an ab initio-parameterized Cluster Expansion (CE) model, we explore the phase stability of low-Cr Fe-Cr alloys as a function of vacancy (Vac), carbon, and nitrogen interstitial impurity content. To parameterise the CE model, we perform density functional theory calculations for more than 1600 …
-
UKAEA-CCFE-PR(23)1102022
The realisation of fusion energy depends on the development of advanced materials for challenging environments. Rapid screening of prototype alloys using magnetron sputtering and high throughput characterisation is currently being applied to candidate W alloys with improved mechanical performance, reduced activation and tolerance to damage from neu…
-
UKAEA-CCFE-PR(22)492022
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission reactors, fusion devices, space applications, etc), design, prediction and control of advanced materials beyond current material designs become a paramount goal. Here, though a combined experimental and simula…
-
UKAEA-CCFE-PR(22)432022
We present a Density Functional Theory-based cluster expansion model to predict the configurational energy of a multicomponent W-Ta-Cr-V-Hf quinary alloy. Coupled with Monte Carlo simulations we show that the model reproduces experimental observations. We analyze the thermodynamic properties of the W.31Ta.34Cr.05V.27Hf.03 system and observe two ph…
-
UKAEA-CCFE-PR(22)412022
-
UKAEA-CCFE-PR(22)322022
Vanadium base alloys represent potentially promising candidate structural materials for use in nuclear fusion reactors due to vanadium’s low activity, high thermal strength, and good swelling resistance. In this work, the mechanical properties of the current frontrunner vanadium base alloy, V-4Cr-4Ti, have been interrogated using in-situ high ene…
-
UKAEA-CCFE-PR(23)922021
W-Cr-Y smart alloys are potential material candidates for plasma facing components due to their protective behaviour during the loss-of-coolant accident (LOCA), while maintaining beneficial properties of W during the normal operation of the fusion power plant. During plasma exposure the lighter alloying elements are preferentially sputtered at t…
-
UKAEA-CCFE-PR(23)912021
Understanding how properties of materials change due to nuclear transmutations is a major challenge for the design of structural components for a fusion power plant. In this study, by combining a first-principles matrix Hamiltonian approach with thermodynamic integration we investigate quasisteady state configurations of multi-component alloys, …
-
UKAEA-CCFE-PR(22)202021
In this work, the Universal Equation of States (UES) is revisited and generalised by including ferromagnetic and antiferromagnetic configurations. The energy of a system is calculated by means of three parameters, namely, the energy, volume and corresponding scaling volume (directly related to the bulk modulus) at the local ground state of the corr…
-
UKAEA-CCFE-PR(21)702021
Multi-component alloys are emerging as promising metallic materials for cryogenic applications for their excellent combination of high ultimate tensile strength and good ductility. But their low yield strength can severely limit their applications. Lattice distortion is emerging as a feasible method in overcoming this dilemma. Here, we investigate …
Showing 11 - 20 of 78 UKAEA Paper Results