-
UKAEA-CCFE-PR(24)2272024
Tungsten is one of the primary materials for several applications in commercial fusion power plant designs, in particular for divertor targets and the first wall. In maintenance conditions or during a loss of coolant accident, tungsten is expected to reach temperatures at which it readily volatilises as tungsten trioxide in contact with air, potent…
-
UKAEA-CCFE-PR(24)2552023
Helium-induced defect nucleation and accumulation in polycrystalline W and W-0.5wt.%ZrC (W-ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000 °С at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current…
-
UKAEA-CCFE-PR(24)2402023
In this study, we compare the formation of radiation induced defects in W and W-Re-Os alloys, exposed to an equivalent dose of self-ion and neutron irradiation. Transmutation reactions in the neutron irradiated material are simulated in the ion implanted materials by alloying with representative quantities of Re and Os (1.4 and 0.1 at.% respecti…
-
UKAEA-CCFE-CP(24)102023
The successful realisation of energy production through the fusion of deuterium and tritium will necessarily lead to the generation of waste contaminated with tritium. Not only will some of the tritium fuel permeate into components of fusion reactors and their wider fuel cycle, but tritium will also be generated directly in materials exposed to the…
-
UKAEA-CCFE-PR(24)2192023
Heat transfer is a key consideration in the development of tritium breeder blankets for future fusion reactors. For solid tritium breeder materials there is a a fine balance to be struck between high levels of porosity to encourage tritium release and minimising it to maintain the thermal and mechanical properties. Therefore, in this work we emp…
-
UKAEA-CCFE-PR(23)1842023
Atomistic simulations using ab initio density functional theory and machine-learned potentials have been employed to map the structural, thermodynamic, and kinetic properties of the T-WOx system (x = 0 to 3). The simulations reveal that the T permeability is low in WO2 , intermediate in W, and relatively high in WO
-
UKAEA-CCFE-PR(23)1732023
While modern nuclear decay data can provide many details of a given nuclides β-decay modes (branching ratios, decay heating etc), knowledge of the emitted β-energy spectrum is often not included. This limitation hampers the use of decay data in some analysis, such as β-spectrometry of irradiated material, prediction of β-decay Bremsstrahlung…
-
UKAEA-CCFE-PR(23)1722023
Neutrons interacting with atomic nuclei in most of the materials included in the current fusion reactor designs—notably tungsten, ferritic and stainless steels, copper alloys—generate a γ-photon flux that is comparable in magnitude and e…
-
UKAEA-CCFE-PR(23)1392023
Refractory high-entropy alloys (RHEAs) with high melting points and low neutron absorption cross-section are sought for generation-IV fission and fusion reactors. A high throughput computational screening tool, Alloy Search and Predict (ASAP), was used to identify promising RHEA candidates from over 1 million four-element equimolar combinations. Th…
-
UKAEA-CCFE-PR(23)1352023
Nuclear data, describing neutron reaction probabilities (cross sections) and decay behaviour, are critical to the design and operation of fusion experiments and future fusion power plants. Equally vital, are the inventory codes that use the data to predict neutron-induced activation and transmutation of materials, which will define the radiologica…
Showing 1 - 10 of 83 UKAEA Paper Results