-
UKAEA-CCFE-CP(23)552019
Cooling water in the primary circuit in both fission and fusion nuclear reactors is unavoidably exposed to neutrons leading to the generation of problematic short-lived isotopes, most importantly, 16N (T1/2=7.3s) via the 16O(n,p)16N reaction. This presents a significant itinerant radiation source to consi…
-
UKAEA-CCFE-CP(20)832018
The authors exposed a radiatively cooled, lithium-filled tantalum heat pipe (HP) to a hydrogen plasma in DIFFER’s linear plasma source Magnum PSI continuously for ~2 hours. The beam made a saddle-shaped footprint along the side of the inclined ~195-mm-long HP. During several steps with constant overall heat load, we tilted the HP to vary the peak…
-
UKAEA-CCFE-CP(20)792018
The Chinese Fusion Engineering Test Reactor (CFETR) bridges the gap between ITER and a demonstration fusion power plant (DEMO). The primary objectives of CFETR are: demonstrate tritium self-sufficiency, ~1GW fusion power, operate in steady-state and have a duty cycle of 0.3-0.5 [1]. CFETR is in the pre-conceptual design phase and is currently envis…
-
UKAEA-CCFE-CP(20)762018
In 1998 Makhankov [1] described the concept of modular exchangeable plasma facing components (PFCs) based on liquid metal heat pipes which are radiatively cooled. Here we present results from recent experiments with a lithium filled tubular heat pipe owned by Sandia National Laboratories. The tantalum envelope (~20mm diameter by ~200mm long) was he…
-
UKAEA-CCFE-CP(19)542019
Protecting the divertor in a nuclear fusion power plant is a key criteria for operation. Detailed divertor and scrape-off-layer (SOL) modelling is computationally intensive and unsuitable for a systems code. For the use of such models in systems codes they need to be simplified and made computationally fast, while still capturing the most important…
-
UKAEA-CCFE-CP(19)402019
In magnetic confinement devices, boundary turbulence is responsible for transporting plasma and energy from the well-confined region towards the material surfaces where it can severely harm reactor relevant machines. It is therefore essential to develop a solid understanding of the mechanisms behind the transport in the edge of the plasma. Large fl…
-
2011
The CYCLE consortium has been designing the ITER ICRF antenna since March 2010, supported by an F4E grant. Following a brief introduction to the consortium, this paper: describes the present status and layout of the design; highlights the key mechanical engineering features; shows the expected impact of cooling and radiation issues on the design an…
Showing 11 - 17 of 17 UKAEA Paper Results