-
UKAEA-CCFE-PR(23)1182023
A new open source tool for fluid simulation of multi-component plasmas is presented, based on a flexible software design that is applicable to scientific simulations in a wide range of fields. This design enables the same code to be configured at run-time to solve systems of partial differential equations in 1D, 2D or 3D, either for transport (st…
-
UKAEA-CCFE-PR(22)502022
Fusion power plant designs based on magnetic confinement, such as the tokamak design, offer a promising route to sustainable fusion power but require robust exhaust solutions capable of tolerating intense heat and particle fluxes from the plasma to material surfaces. Turbulent plasma transport in the divertor volume – the region where the plasma-…
-
UKAEA-CCFE-PR(22)362022
There exists a large body of previous work using reduced two-dimensional models of the SOL, which model fluctuations in the drift-plane but approximate parallel transport with effective loss terms. Full size three-dimensional simulations of SOL turbulence in experimental geometries are now possible, but are far more computationally expensive than …
-
UKAEA-CCFE-PR(22)062022
Intermittent fluctuations in the boundary of magnetically confined plasmas are investigated by numerical turbulence simulations of a reduced fluid model describing the evolution of the plasma density and electric drift vorticity in the two-dimensional plane perpendicular to the magnetic field. Two different cases are considered, one describing resi…
-
UKAEA-CCFE-CP(23)162021
A comparison between different alternative divertor configurations, in terms of benefits and additional complexity is carried out for the European DEMO. A synergetic approach between different aspects of the problem, including physics and engineering, provides new insight on the capabilities of the new divertors to handle the exhausted power wit…
-
UKAEA-CCFE-PR(21)762021
We present the first parallel electron transport results obtained using the newly developed 1D transport code SOL-KiT. In order to properly predict divertor heat loads it is of key importance to develop a thorough understanding of discrepancies between different parallel transport modelling approaches. With the capability to self-consistently sw…
-
UKAEA-CCFE-PR(21)622021
Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in particular for magnetically confined fusion applications, as well as in solar and astrophysical research. This letter discusses the choice of Ohm’s law in these models, the resulting dispersion relations for the dynamics parallel to the magnetic field, and the i…
-
UKAEA-CCFE-PR(21)452021
Transport processes around the magnetic X-point of tokamaks, such as turbulence and mean-field drifts, are scarcely understood and difficult to investigate in experiments. In this paper, we explore the dynamics in a newly developed X-point scenario on the basic toroidal plasma device TORPEX and use it to validate plasma edge turbulence codes. In-si…
-
UKAEA-CCFE-CP(20)1222020
A thorough physics and engineering analysis of alternative divertor configurations is carried out by examining benefits and problems by comparing the baseline single null solution with a Snowflake, an X- and a Super-X divertor. It is observed that alternative configurations can provide margin and resilience against large power fluctuations, but the…
-
UKAEA-CCFE-PR(20)1102018
The role of magnetic perturbations generated by filaments in the scrape-off layer is investigated by performing simulations of 3D seeded filaments with an electromagnetic numerical code which includes sheath boundary conditions. Depending on the plasma , three smoothly connecting regimes were identified: an electrostatic regime where the magnet…
Showing 1 - 10 of 25 UKAEA Paper Results