- 
       UKAEA-CCFE-PR(23)822019
One of the biggest challenges to achieve the goal of producing fusion energy in tokamak devices is the necessity of avoiding disruptions of the plasma current due to instabilities. The Disruption Event Characterization and Forecasting (DECAF) framework has been developed in this purpose, integrating physics models of many causal events that can …
 - 
       UKAEA-CCFE-PR(20)672019
Disruption prediction and avoidance is a critical need for next-step tokamaks such as ITER. The Disruption Event Characterization and Forecasting Code (DECAF) is used to fully automate analysis of tokamak data to determine chains of events that lead to disruptions and to forecast their evolution allowing sufficient time for mitigation or full av…
 - 
       2014
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 …
 
                Showing 11 - 13 of 13 UKAEA Paper Results